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The Protein Kinase Ontology (ProKinO) is an integrated knowledge graph that
conceptualizes the complex relationships among protein kinase sequence, structure,
function, and disease in a human and machine-readable format. In this study, we have
significantly expanded ProKinO by incorporating additional data on expression patterns
and drug interactions. Furthermore, we have developed a completely new browser from
the ground up to render the knowledge graph visible and interactive on the web. We have
enriched ProKinO with new classes and relationships that capture information on kinase
ligand binding sites, expression patterns, and functional features. These additions extend
ProKinO's capabilities as a discovery tool, enabling it to uncover novel insights about
understudied members of the protein kinase family. We next demonstrate the application
of ProKinO. Specifically, through graph mining and aggregate SPARQL queries, we identify
the p21-activated protein kinase 5 (PAK5) as one of the most frequently mutated dark
kinases in human cancers with abnormal expression in multiple cancers, including a
previously unappreciated role in acute myeloid leukemia. We have identified recurrent
oncogenic mutations in the PAK5 activation loop predicted to alter substrate binding and
phosphorylation. Additionally, we have identified common ligand/drug binding residues in
PAK family kinases, underscoring ProKinO’s potential application in drug discovery. The
updated ontology browser and the addition of a web component, ProtVista, which enables
interactive mining of kinase sequence annotations in 3D structures and Alphafold models,
provide a valuable resource for the signaling community. The updated ProKinO database is
accessible at https://prokino.uga.edu.
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27 Abstract

28 The Protein Kinase Ontology (ProKinO) is an integrated knowledge graph that conceptualizes 

29 the complex relationships among protein kinase sequence, structure, function, and disease in a 

30 human and machine-readable format. In this study, we have significantly expanded ProKinO by 

31 incorporating additional data on expression patterns and drug interactions. Furthermore, we have 

32 developed a completely new browser from the ground up to render the knowledge graph visible 

33 and interactive on the web. 

34 We have enriched ProKinO with new classes and relationships that capture information on 

35 kinase ligand binding sites, expression patterns, and functional features. These additions extend 

36 ProKinO's capabilities as a discovery tool, enabling it to uncover novel insights about 

37 understudied members of the protein kinase family.

38 We next demonstrate the application of ProKinO. Specifically, through graph mining and 

39 aggregate SPARQL queries, we identify the p21-activated protein kinase 5 (PAK5) as one of the 

40 most frequently mutated dark kinases in human cancers with abnormal expression in multiple 

41 cancers, including a previously unappreciated role in acute myeloid leukemia. We have 

42 identified recurrent oncogenic mutations in the PAK5 activation loop predicted to alter substrate 

43 binding and phosphorylation. Additionally, we have identified common ligand/drug binding 

44 residues in PAK family kinases, underscoring ProKinO�s potential application in drug discovery. 

45 The updated ontology browser and the addition of a web component, ProtVista, which enables 

46 interactive mining of kinase sequence annotations in 3D structures and Alphafold models, 

47 provide a valuable resource for the signaling community. The updated ProKinO database is 

48 accessible at https://prokino.uga.edu.

49

50 Introduction

51 The protein kinase gene family with nearly 535 human members (collectively called the 

52 human kinome) is a biomedically important gene family associated with many human diseases 

53 such as cancer, diabetes, Alzheimer�s, Parkinson�s, and inflammatory disorders. They make up 

54 one-third of all drug-related protein target discoveries in the pharmaceutical industry, with over 

55 50 FDA-approved drugs developed since 2001 (Ferguson & Gray 2018; Zhang et al. 2009). 

56 However, despite decades of research on the protein kinase family, our current knowledge of the 

57 kinome is skewed towards a subset of well-studied kinases with nearly one-third of the kinome 

58 largely understudied. These understudied kinases, collectively referred to as the �dark� kinome 

59 by the Knowledge Management Center (KMC) (Nguyen et al. 2017) within the Illuminating the 

60 Druggable Genome (IDG) consortium, constitute both active kinases and inactive pseudokinases, 

61 which lack one or more of the active site residues, but perform important scaffolding and 

62 regulatory roles in signaling pathways (Byrne et al. 2017; Eyers et al. 2017; Eyers & Murphy 

63 2013; Murphy et al. 2017) and are druggable (Foulkes et al. 2018). Incomplete knowledge of the 

64 structure, function, and regulation of these understudied kinases and pseudokinases presents a 

65 major bottleneck for drug discovery efforts. While multiple initiatives are beginning to generate 

66 essential tools and resources to characterize dark kinases, integrative mining of these datasets is 
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67 necessary to develop new testable hypotheses on dark kinase functions. However, integrative 

68 mining of protein kinase data is a challenge because of the diverse and disparate nature of protein 

69 kinase data sources and formats. Information on the structural and functional aspects of dark 

70 kinases, for example, is scattered in the literature posing unique challenges for researchers 

71 interested in formulating routine queries such as �disease mutations mapping to conserved 

72 structural and functional regions of the kinome� or �post-translational modifications (PTMs) in 

73 the activation loop of dark kinases.� Formulating such aggregate queries requires researchers to 

74 go through the often time-consuming and error-prone process of collating information from 

75 various data sources through customized computer programs, which results in duplication of 

76 efforts across laboratories, and does not scale well with the growing complexity and diversity of 

77 protein kinase data. For these reasons, the IDG consortium has developed a unified resource, 

78 Pharos, for collating diverse forms of information on druggable proteins, including protein 

79 kinases (Nguyen et al. 2017; Sheils et al. 2020; Sheils et al. 2021). A focused Dark Kinase 

80 Knowledgebase has also been developed to make experimental data available on dark kinases to 

81 the broader research community (Berginski et al. 2021; Moret et al. 2021). While these unified 

82 resources provide a wide range of valuable information on druggable proteins, they offer limited 

83 data analytics capabilities in mining sequence and structural data. They do not conceptualize 

84 protein kinases' detailed structural and functional knowledge in a practical and understandable 

85 way for protein kinase researchers. Thus, to accelerate the biochemical characterization of 

86 understudied dark kinases, a semantically meaningful and mineable representation of the kinase 

87 knowledge base is needed (Fig. 1).

88 To semantically represent protein kinase data in ways protein kinase researchers use and 

89 understand, we previously reported the development of a focused protein kinase ontology, 

90 ProKinO (Gosal et al. 2011a; Gosal et al. 2011b; McSkimming et al. 2015), which integrates and 

91 conceptualizes diverse forms of protein kinase data in computer- and human-readable format 

92 (Fig. 2). The ontology is instantiated with curated data from internal and external sources and 

93 enables aggregate queries linking diverse forms of data in one place. ProKinO enables the 

94 generation of new knowledge regarding kinases and pathways altered in various cancer types, 

95 and new testable hypotheses regarding the structural and functional impact of disease mutations 

96 (Bailey et al. 2015; Cicenas & Cicenas 2016; Goldberg et al. 2013; Gosal et al. 2011a; Hu et al. 

97 2015; Liu et al. 2016; McClendon et al. 2014; McSkimming et al. 2016; McSkimming et al. 

98 2014; McSkimming et al. 2015; Meharena et al. 2013; Mohanty et al. 2016; Nguyen et al. 2015; 

99 Oruganty & Kannan 2013; Ruan & Kannan 2015; Simonetti et al. 2014; Taylor et al. 2015; U et 

100 al. 2014; Vazquez et al. 2016). For example, through iterative ProKinO queries and follow-up 

101 experimental studies, we identified oncogenic mutations associated with abnormal protein kinase 

102 activation and drug sensitivity (Lubner et al. 2017; McSkimming et al. 2016; McSkimming et al. 

103 2015; Mohanty et al. 2016; Patani et al. 2016; Ruan & Kannan 2015; Ruan et al. 2017). We have 

104 also employed federated queries linking ProKinO with other widely used ontologies and 

105 resources such as the Protein Ontology (PRO), neXtProt, Reactome, and the Mouse Genome 

106 Informatics (MGI) to prioritize understudied dark kinases for functional studies and generate 
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107 testable hypotheses regarding post-translational modification and cancer mutations (Huang et al. 

108 2018).

109 While our preliminary studies have demonstrated the utility of ProKinO in hypothesis 

110 generation and knowledge discovery, to fully realize the impact of ProKinO in drug discovery 

111 and dark kinome mining, the ontology and the associated analytics tools need to be further 

112 developed to expand its scope and usability. For example, mutations at specific functional 

113 regions of the protein kinase domain, such as the gatekeeper and activation segments, are known 

114 to impact drug binding efficacies (Gajiwala et al. 2009; Yun et al. 2008). Likewise, kinase 

115 mRNA expression profiles strongly correlate with drug response (Benhar et al. 2002; Duncan et 

116 al. 2012; Kim et al. 2009; Niepel et al. 2017). Thus, integrative mining of disease mutations with 

117 drug sensitivity profiles and expression patterns can provide new hypotheses/data for the 

118 development and administration of combinatorial drugs where multiple mutated kinases in 

119 distinct pathways can be targeted for drug repurposing (Erika et al. 2016; Li & Jones 2012), as 

120 demonstrated by the repurposing of Gleevec for targeting c-kit kinase in Gastrointestinal tumors 

121 (Joensuu et al. 2001). Furthermore, the recent generation of structural models of various dark 

122 kinases using AlphaFold (Jumper et al. 2021) provides a new framework for generating new 

123 hypotheses by interactive mining and visualization of sequence annotations in the context of 3D 

124 models. However, the lack of interactive visualization tools to overlay sequence and functional 

125 annotations in 3D structural models presents a bottleneck in the effective use of AlphaFold 

126 models for function prediction. To address this and other challenges described above related to 

127 dark kinase mining and annotation, we have expanded ProKinO by including kinase expression 

128 data, as well as a variety of data related to ligand-motif interaction, and ligand response 

129 prediction (Huang et al. 2021). We have also significantly revamped the ProKinO browser 

130 through incorporation of new visualization tools for the interactive mining of sequence 

131 annotations in the context of experimentally determined 3D structures and AlphaFold models. 

132 We demonstrate the application of these new tools in dark kinase annotation and mining using 

133 the understudied p21-activated protein kinase 5, as an example. The updated ontology and 

134 browser provide a valuable resource for mining, visualizing, and annotating the dark kinome and 

135 pseudokinome.

136

137 Materials & Methods

138 Data Sources.

139 The ProKinO ontology includes data obtained from curated internal sources as well as 

140 external sources. Information from internal sources include annotations of kinase sequence and 

141 structural motifs retrieved from curated multiple sequence alignments. External sources are used 

142 for information related to kinase sequence and classification (KinBase & UniProt) (Bairoch et al. 

143 2005; Manning et al. 2002) cancer mutations (COSMIC) (Tate et al. 2018), pathways 

144 (Reactome) (Croft et al. 2011) and three dimernsioanl structure (PDB) (Berman et al. 2000). The 

145 ontology is populated and updated on a regular basis using protocols described in previous 

146 studies  (Gosal et al. 2011b; McSkimming et al. 2016). Here, we describe further enhancements 
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147 and additions to ProKinO through integration of data on kinase expression patterns and drug 

148 interactions, as described below. In a seperate significant project, we have identified and 

149 classified nearly 30,000 pseudokinases spanning over 1,300 organisms (Kwon et al. 2019). The 

150 schematic representation of the classification of kinases into groups, families, and subfamilies 

151 was already in place (Hanks & Hunter 1995; Manning et al. 2002). Consequently, the addition of 

152 the pseudokinases and their classification was relatively simple. However, it significantly 

153 enhanced ProKinO as a comprehensive knowledge graph representing kinase-related data. The 

154 definition and nomenclature of several kinome-wide conserved motifs were standardized based 

155 on several previously published studies which describe the kinase structural features such as 

156 subdomains (Hanks & Hunter 1995), regulatory spine/shell (Meharena et al. 2013), and catalytic 

157 spine (Hu et al. 2015). A subset of redundant or family-specific motifs were removed in the 

158 updated ontology and motif information on some of the atypical kinases such as ALPHAK2 is 

159 not included as they cannot be reliably aligned with canonical protein kinases. Portions of the 

160 text were previously published as a part of  a preprint (Soleymani et al. 2022) 

161 (https://www.biorxiv.org/content/biorxiv/early/2022/03/01/2022.02.25.482021.full.pdf).

162

163 Ligand interactions.

164 Information on kinase-ligand interactions were retrieved from the Kinase-Ligand 

165 Interaction Fingerprints and Structures (KLIFS) database (Kanev et al. 2021). The KLIFS 

166 database stores detailed drug-protein kinase interaction information derived from diverse 

167 (>2900) structures of catalytic domains of human and mouse protein kinases deposited in the 

168 Protein Data Bank. In addition, KLIFS provides an Application Programming Interface (API) for 

169 programmatic access to data related to chemicals and structural chemogenomics (Kanev et al. 

170 2021). However, it lacks information regarding kinase pathways or diseases which prevents the 

171 user from investigating the effect of drug-mutant protein binding on downstream pathways or 

172 diseases. KLIFS annotations, which report PDB residue positions, were converted to UniProt 

173 residue numbering using PDBrenum (Faezov & Dunbrack 2021), then converted to prototypic 

174 Protein Kinase A (PKA) numbering using Multiply Aligned Profiles for Global Alignment of 

175 Protein Sequences (MAPGAPS) (Neuwald 2009). Entries that could not be mapped or did not 

176 map to the kinase domain were filtered out.

177

178 Ligand responses.

179 We have also incorporated information on kinase drug sensitivity profile in the updated 

180 ProKinO. In particular, we retrieved drug dose response data for kinase-relevant ligands/drugs 

181 from the Genomics of Drug Sensitivity in Cancer (GDSC) (Yang et al. 2013). Kinase-relevant 

182 ligands are defined based on our previous study (Huang et al. 2020), which collected 143 small-

183 molecule protein kinase inhibitors from GDSC based on four drug-target databases: DrugBank 

184 (Wishart et al. 2018), Therapeutic Target Database (Li et al. 2018), Pharos (Nguyen et al. 2017), 

185 and The Library of Integrated Network-Based Cellular Signatures (LINCS) Data Portal (Koleti et 
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186 al. 2018). GDSC provides the half-maximal inhibitory concentration values (IC50) of these 143 

187 ligands in 988 cancer cell lines.

188

189 Ligand activities.

190 Ligand activities were retrieved from Pharos, a flagship resource (Nguyen et al. 2017) of 

191 the National Institutes of Health (NIH) Illuminating the Druggable Genome (IDG) program that 

192 includes data on small molecules, including approved drug data and bioassay data. Based on the 

193 protein classification (Lin et al. 2017), the drug targets in Pharos include kinases, ion channels, 

194 G-protein coupled receptors (GPCRs), and others. In this phase of the project, we decided to 

195 include the data relevant to ligand binding in kinases. Pharos integrates drug-target relationships 

196 from several resources, such as ChEMBL (Bühlmann & Reymond 2020) and DrugCentral 

197 (Avram et al. 2021).

198

199 Expression data.

200 An important part of our recent additions was kinase expression data. Genomic 

201 expression data (protein, RNA), as well as transcription factors and epigenomic associations, are 

202 among many facets of the data included in Pharos. Furthermore, the GDSC repository contains 

203 gene expression data (Affymetrix Human Genome U219 Array), as well. Additionally, 

204 COSMIC�s Cell Lines Project includes a significant amount of gene expression data, including 

205 kinase expression.

206

207 Dark kinases.

208 Dark kinases were labeled based on the information from Dark Kinase Knowledgebase 

209 (Berginski et al. 2021).

210

211 Protein kinase knowledge graph: schema and data organization.

212 The ProKinO ontology consists of classes, sub-classes, class types, relationships, 

213 relationship types, and constraints of protein kinase and related data (Fig. 2). The hierarchy 

214 connects all classes to the root, which is ProKinOEntity. Moreover, the schema defines types and 

215 constraints for the relationships. With such explicit and constrained schema, composing queries 

216 is more intuitive than conventional relational databases. In particular, to enable integrative 

217 mining of dark kinase expression data in the context of kinase sequence and structural features, 

218 we have introduced three new classes in ProKinO, the Ligand class (including its name, source, 

219 and chemical structure) and the following three related classes: (1) LigandInteraction, placed 

220 between the Ligand and (already existing) Motif classes to capture kinase-ligand binding and 

221 selectivity at the motif and residue level, (2) LigandActivity, placed between the Ligand and 

222 (already existing) Protein classes to represent kinases targeted by ligands (and drugs), and (3) 

223 LigandResponse, located between the Ligand and (already existing) Sample classes and 

224 representing ligand (and drug) sensitivity in kinases. To capture kinase expression, we added the 

225 GeneExpression relationship linking the Protein and Sample classes. The outline of the recently 
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226 added classes and their relationships in ProKinO is illustrated as a UML class diagram, shown in 

227 Figure 2.

228

229 ProKinO population.

230 The ProKinO knowledge graph is automatically populated from several external and 

231 local data sources at regular intervals, as originally described (Gosal et al. 2011b), ProKinO 

232 schema and the associated knowledge graph population software are routinely updated to 

233 incorporate additional sources of data such as pseudokinase and �dark� kinase classification and 

234 incorporating information on ligand interactions, ligand responses, ligand activities, kinase 

235 expression and associated object and datatype properties. We have been using the Protégé 

236 ontology editor for the schema creation and its subsequent modifications. The organization of the 

237 schema after these modifications is available at https://prokino.uga.edu/about.

238 The population software has been coded in Java and uses the Jena Framework. The 

239 population process is performed in several steps to add instances, their properties, and a 

240 combination of reading the prepared data from CSV, RDF, XML, and other file formats and 

241 accessing many remote data sources using their provided API (for example, Reactome�s REST 

242 API). Entity interconnections across data retrieved from different data sources are accomplished 

243 using UniProt identifiers, kinase names, and other accession identifiers. We modified the 

244 population software to create instances and properties for the newly added classes and 

245 relationships.

246 More specifically, using the KLIFS API, we retrieved the relevant kinases, ligands, and 

247 residue-level interaction data. The data was retrieved and then processed by custom Perl scripts. 

248 ProKinO ontology schema was modified, and ligands were included as new data, while 

249 interaction data (motifs) were either reconciled with the motifs already present in ProKinO or 

250 added as new, if not already there.

251 Similarly, the ligand response data was retrieved from GDSC and then processed by 

252 custom Perl scripts to create suitable CSV files. Additional ligands were included as new data, 

253 while the response data and the relevant samples were either reconciled with the samples already 

254 present in ProKinO or added as new, if not already there.

255 In order to populate the data on ligand activities, we retrieved from Pharos kinase-

256 relevant ligands, as well as their binding data on targeted kinases, for example, IC50 values. This 

257 data was retrieved and then processed by custom Perl scripts to produce the necessary CSV files. 

258 Additional ligands, not included in the KLIFS dataset, were included as new data. All kinases 

259 targeted by ligands were already present in ProKinO, so they were reused in this step.

260 Data on kinase expression was first retrieved from Pharos, COSMIC, and GDSC. As 

261 before, the relevant kinases were already present in the ProKinO knowledge graph. The 

262 expression data was stored as individuals in the Expression class. Some of the relevant data 

263 about samples were already present in ProKinO, as we already had a significant amount of 

264 sample data from COSMIC. Additional samples were included as new data.
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265 We reviewed and updated all the motifs already present in ProKinO. Furthermore, we 

266 updated the motif naming in cases where there were differences with the standard motif names.

267 Finally, we assembled an up-to-date list of dark kinases (Berginski et al. 2021) and added 

268 a Boolean datatype property, isDarkKinase, to identify them among all other kinases in the 

269 ProKinO knowledge graph.

270

271 Results / Discussion

272 The expanded ontology and its knowledge graph provide a wealth of data unifying the 

273 information available on both well-studied (light) kinases and understudied (dark) kinases that 

274 serve as a unified resource for mining the kinome. The current version of ProKinO (version 65), 

275 includes 842 classes, 31 objects and 67 data properties, and over seven million individuals 

276 (knowledge graph nodes). ProKinO contains information on 153 dark kinases. 137 dark kinases 

277 have information on structural motifs, 148 have disease mutations mapped to the kinase domain, 

278 45 dark kinases have pathway information, and 26 are associated with specific reactions, as 

279 defined in Reactome.

280 Users can navigate the ontology using the ontology browser by searching for a specific 

281 kinase of interest or by performing aggregate SPARQL queries linking multiple forms of data. 

282 Currently 35 pre-written queries linking different data types can be executed using the ProKinO 

283 browser (http://prokino.uga.edu/queries). A user can also download the ontology or browse data 

284 based on organisms, functional domains, diseases, or kinase domain evolutionary hierarchy. 

285 Below, we focus on the application of complex SPARQL queries and the ProtVista visualization 

286 tools for the illumination of understudied dark kinases.

287

288 Mutation and expression of understudied PAK5 in human cancers.

289 One possible way to prioritize dark kinases for functional studies is to ask the question, 

290 �which dark kinases are most mutated in human diseases, such as cancers?�. Typically 

291 answering this question would require collating and post-processing data from multiple resources 

292 such as COSMIC, Pharos, and the Dark Kinase Knowledgebase. However, with the updated 

293 Protein Kinase Ontology, these questions can be quickly answered using SPARQL. Having the 

294 �isDarkKinase� property within the Protein class and the RDF triples connecting the 

295 �Mutation�, �Sample� and �Sequence� classes, one can formulate aggregate queries requesting 

296 all dark kinases mutated in cancer samples. To avoid biases introduced by the length of 

297 protein/gene sequences (longer proteins tend to have more mutations), the query can be modified 

298 to normalize mutation counts by sequence length. Executing this modified query (Query 27, 

299 available at http://prokino.uga.edu/queries) displays the rank-ordered list of dark kinases based 

300 on mutational density. The top ten dark kinases with the highest mutational density are shown in 

301 Figure 3A. Notably, the p21 activated kinase 5 (PAK5) is at the top of the list with a mutational 

302 density of 1.917, followed by CRK7 (1.054), PKACG (1.011), PSKH2 (1.01) TSSK1 (1.008), 

303 CK1A2 (0.991), ERK4 (0.966), DCLK3 (0.912), PKCT (0.894) and PAK3 (0.859). Having 

304 identified PAK5 as the most frequently mutated dark kinase in cancers, one can further query the 
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305 ontology to explore the role of this kinase in various cancers. With the addition of the new 

306 �GeneExpression� class in ProKinO and the RDF triples connecting gene expression to the 

307 �Sample� and �Protein� classes (GeneExpression:InSample: Sample; 

308 GeneExpression:hasProtein: Protein), one can formulate queries for PAK5 expression in 

309 different samples (Fig. 3B). Rank ordering the samples based on PAK5 expression (Query 33) 

310 reveals cancer types such as adenocarcinoma (Zscore: 4701.5) and hepatocellular carcinoma 

311 (Zscore: 2038.3) that have previously been associated with abnormal PAK5 expression (Fang et 

312 al. 2014; Han et al. 2018; Huo et al. 2019; Zhang et al. 2017). However, the role of PAK5 in 

313 other cancer types such as acute myeloid leukemia (Zscore: 136.5) is relatively underappreciated 

314 (Quan et al. 2020). The identification of new cancer sub-types with dark kinase expression and 

315 regulation further exemplifies the use of ProKinO in knowledge discovery.

316

317 Mutational hotspots in the activation loop of PAK5.

318 Because ProKinO encodes a wealth of information on the structural and regulatory 

319 properties of multiple kinases, it can be used to generate mechanistic predictions on cancer 

320 mutation impact. We demonstrate this for the PAK kinases by asking the question �where are 

321 PAK5 mutations located in the protein kinase domain?� Using the RDF triples connecting the 

322 �Mutation�, �Motif� and �Sequence� classes (�Mutation: LocatedIn: Motif�; 

323 �Mutation:InSequence: Sequence�), one can formulate a query (Query 28) listing mutations in 

324 different structural regions/motifs of the PAK5 kinase domain. Examination of the query results 

325 reveals that the C-terminal substrate binding lobe (C-lobe) is more frequently mutated (320 

326 mutations) relative to the N-terminal ATP binding lobe (N-lobe: 173 mutations) (Fig. 4A). 

327 Within the C-lobe, nearly 78 mutations map to the activation loop, which is known to play a 

328 critical role in substrate recognition and activation in a diverse array of kinases (Huse & Kuriyan 

329 2002; Kornev & Taylor 2015; Oruganty & Kannan 2012). Despite the prevalence of activation 

330 loop mutations in PAK5, there is currently no information on how these mutations impact PAK5 

331 kinase structure and function. Nonetheless, based on the evolutionary relationships captured in 

332 ProKinO (based on the alignment of human kinases to the prototypic protein kinase A), one can 

333 formulate queries mapping mutations to specific aligned positions in the shared protein kinase 

334 domain. A query listing (wild type) WT type and mutant type residues in the activation loop of 

335 PAK5 and the equivalent aligned residue positions in PKA (Query 29) provides additional 

336 context for these mutations. For example, two distinct mutations map to residue   in the P602
PAK5

337 activation loop of PAK5 that structurally corresponds to a phosphorylatable residue, , in T197
PKA

338 PKA (Yonemoto et al. 1993). Having this context provides a testable hypothesis that S602 

339 mutations in PAK5 impact kinase phosphorylation and regulation. Likewise, WT residue 

340  is mutated in four distinct cancer samples and this position is equivalent to PKA P607
PAK5

341 residue , which configures the activation loop for substrate recognition (Knighton et al. P202
PKA

342 1991). Thus, mutation of this critical residue is expected to impact substrate binding and 

343 activation loop phosphorylation in PAK5. Additional insights into these mutations can also be 
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344 obtained by visualizing these residues in the context of the PAK5 AlphaFold models using the 

345 ProtVista viewer described below.

346

347 Insights into PAK5 ligand binding sites.

348 With the conceptualization of new information related to kinase ligands, their mode of action and 

349 interaction with specific motifs in the kinase domain, new aggregate queries linking mutated 

350 kinases to drug sensitivity profiles, mode of action, and ligand binding sites can be performed 

351 using the updated ProKinO. For example, queries such as �list proteins and drugs or ligands 

352 interacting with the protein's gatekeeper residue (GK.45)� (Query 31) and �list ligands targeting 

353 the Epidermal Growth Factor Receptor (EGFR) kinase and their mode of action� (Query 34) can 

354 be rapidly performed using the updated ProKinO ontology. We demonstrate the application of 

355 these new additions in the context of PAK5 by asking the question �what are the drugs targeting 

356 PAK family (PAK1-6) kinases?� Query 30 answers this question using the RDF triples 

357 connecting the �Ligand�, �Motif� and �Protein� classes (list triples) (Fig. 5). Examination of the 

358 query results indicates multiple drugs targeting PAK family kinases, including 

359 STAUROSPORINE and N2-[(1R-2S)-2-AMINOCYCLOHEXYL] that bind to structurally 

360 equivalent residues/motifs in the ligand binding pocket of PAK4 and PAK5, respectively. The 

361 ligand binding sites, and associated interactions can also be visualized using the ProtVista viewer 

362 described below. Additional queries linking dark kinases to drug sensitivities, structural motifs, 

363 and pathways are listed on the ProKinO website at https://prokino.uga.edu/queries.

364

365 Visualization tools for dark kinase annotation and mining.

366 To provide structural context for cancer mutations and to enable interactive mining of 

367 dark kinase sequence annotations in the context of 3D structures and predicted models from 

368 AlphaFold (Jumper et al. 2021; Tunyasuvunakool et al. 2021), we developed and incorporated a 

369 modified version of the ProtVista viewer in ProKinO. The viewer can be deployed for any 

370 protein kinase of interest by navigating to the Structure tab in the protein summary page and 

371 selecting either a PDB structure or AlphaFold model of interest. A snapshot of the ProtVista 

372 viewer displaying the AlphaFold model of PAK5 kinase is shown in Figure 6. The ProtVista 

373 viewer uses an enhanced version of the Mol* viewer and the PDB web component (Watkins et 

374 al. 2017) to provide two-way interactive navigation between the 3D structure (Fig. 6A, top 

375 panel) and annotation viewer (Fig. 6A, bottom panel).

376 The annotation viewer consists of multiple tracks populated dynamically based on data 

377 from ProKinO and external sources such as UniProt. In addition, prediction confidence scores 

378 for AlphaFold models are displayed in the annotation viewer along with additional annotations 

379 such as conserved sequence motifs, subdomains, and structural motifs involved in kinase 

380 regulation. The annotation viewer also shows other annotations from external sources such as 

381 ligand binding sites and predicted functional sites. Users can hover over the residues on the 3D 

382 structure viewer to view the equivalent information on the annotation viewer and vice versa. For 

383 example, selecting the �activation loop� in the annotation viewer highlights the corresponding 
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384 structural region in the AlphaFold model of PAK5 (Fig. 6A). Likewise, the selection of residues 

385 in the activation loop (S602 and P607) in the structure viewer highlights the annotations 

386 associated with these and interacting residues in the sequence viewer. Such interactive mining is 

387 expected to accelerate the functional characterization of dark kinases and provide new insights 

388 into disease mutations. For example, visualizing the interactions associated with S602 in the 

389 activation loop of PAK5 (Fig. 6B) indicates a hydrogen bonding interaction with R567, which is 

390 part of the conserved HRD motif (sequence annotation). Because the HRD-Arg is known to play 

391 a role in kinase regulation by stabilizing activation loop conformation (Huse & Kuriyan 2002), it 

392 provides additional context for predicting the impact of S602 altering mutations. Likewise, 

393 examining the structural and sequence context of P607 interacting residues provides new insights 

394 into how the alteration of this residue might impact substrate binding and kinase regulation. 

395 Together, these examples highlight the value added by the ProtVista viewer in the visualization 

396 and annotation of mutations in dark kinases.

397

398 Conclusions

399 This work presents an updated version of the Protein Kinase Otology (ProKinO) for 

400 mining and annotating dark kinases. ProKinO was developed following FAIR (Findable, 

401 Accessible, Interoperable, and Reusable) principles (Wilkinson et al. 2016) and serves as an 

402 integrated knowledge graph for relating and conceptualizing diverse forms of disparate data 

403 related to protein kinase sequence, structure, function, regulation, and disease (cancer). We 

404 present a new ontology browser for navigating these data and demonstrate the application of 

405 aggregate SPARQL queries in uncovering new testable hypotheses regarding understudied 

406 kinase members. We also provide several pre-written SPARQL queries that can rapidly retrieve 

407 information related to protein kinase mutations, pathways, expression, and ligand binding sites. 

408 However, writing new queries requires prior knowledge of the ontology schema and the 

409 SPARQL query language, which most bench biologists may not have. To alleviate this 

410 challenge, we are currently building a graphical SPARQL query interface, which will intuitively 

411 enable query formulation through the navigation of the knowledge graph schema. We are also 

412 exploring the application of ProKinO for machine learning-based knowledge discovery and 

413 hypotheses generation.
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Figure 1
The ProKinO architecture and work-flow.

A) Left panel shows a subset of curated data sources used in ontology population. B) The
middle panel shows a schematic of the ontology schema with classes (boxes) and
relationships (lines) connecting the classes. C) The right panel shows applications for
ontology browsing and navigation.
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Figure 2
Subset of the updated ProKinO schema with new classes and relationships.

The full schema can be accessed at http://prokino.uga.edu/. New classes are colored in cyan
and pre-existing classes are colored in pink. Black arrows indicate new relationships
introduced to connect the new classes.

PeerJ reviewing PDF | (2023:03:84188:1:1:NEW 25 Jul 2023)

Manuscript to be reviewed

http://prokino.uga.edu/


Figure 3
SPARQL query results for Query 27 and 33.

A) Output of Query 27 requesting top 10 dark kinases with most mutations in different cancer
types. The mutation counts are normalized by sequence length. B) Output of Query 33 listing
samples with abnormal PAK5 expression. The query also lists histology, cancer subtypes,
regulation, and Z-score. Only a subset of the query results is shown because of space
constraints.
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Figure 4
SPARQL query results for Query 28 and 29.

A) Output of Query 28 listing the number of unique cancer-linked mutations at various
structural locations of PAK5 kinase. B) Output of Query 29 listing unique point mutations in
the activation loop of PAK5 kinase. The query also lists the equivalent PKA position, disease
type, primary site of the tissue sample, equivalent residue for the PKA positioning of PKA, and
subtype of the tissue sample. Entries containing only one mutation per position were filtered
from the original query. Only a subset of the query results is shown.

PeerJ reviewing PDF | (2023:03:84188:1:1:NEW 25 Jul 2023)

Manuscript to be reviewed



Figure 5
SPARQL query results for Query 30.

Output of Query 30 listing ligands interactions with each PAK family member (PAK1-6). It also
includes motif names and positions of full sequence and PKA positioning. The output of Query
30 was rearranged to highlight the homology of PAK4 and PAK5 motif/ligand interactions and
the figure highlights only a subset of the query results. Run SPARQL query for full results.
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Figure 6
ProtVista viewer.

A) AlphaFold2 model of PAK5 kinase is shown in the structure viewer (top panel). Sequence
viewer with annotations are shown in the bottom panel. B-C) Zoomed in view of structural
interactions associated with S602 and P607 in PAK5 activation loop.
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