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ABSTRACT
Background. Genetic variants may potentially play a contributing factor in the
development of diseases. Several genetic disease databases are used in medical research
and diagnosis but the web applications used to search these databases for disease-
associated variants have limitations. The applicationmay not be able to search for large-
scale genetic variants, the results of searches may be difficult to interpret and variants
mapped from the latest reference genome (GRCH38/hg38) may not be supported.
Methods. In this study, we developed a novel R library called ‘‘DisVar’’ to identify
disease-associated genetic variants in large-scale individual genomic data. This R
library is compatible with variants from the latest reference genome version. DisVar
uses five databases of disease-associated variants. Over 100 million variants can be
simultaneously searched for specific associated diseases.
Results. The package was evaluated using 24 Variant Call Format (VCF) files (215,054
to 11,346,899 sites) from the 1000 Genomes Project. Disease-associated variants were
detected in 298,227 hits across all the VCF files, taking a total of 63.58 m to complete.
The package was also tested on ClinVar’s VCF file (2,120,558 variants), where 20,657
hits associated with diseases were identified with an estimated elapsed time of 45.98 s.
Conclusions. DisVar can overcome the limitations of existing tools and is a fast and
effective diagnostic andpreventive tool that identifies disease-associated variations from
large-scale genetic variants against the latest reference genome.

Subjects Bioinformatics, Computational Biology, Genomics, Medical Genetics
Keywords Bioinformatics, GWAS, Genetic variants, Genetic diseases, Genetic disease databases,
R package, Disease diagnosis, Disease prevention

INTRODUCTION
The genetic information of living things is stored and transmitted by DNA. Differences in
DNA sequences between individuals or populations are called variants and may play a role
in the development of genetic disorders (Benton et al., 2021) that lead to common diseases
such as cancer, diabetes, or hypertension. These diseases result from single or combined
variations in DNA loci and, given the right environment or lifestyle habits, can promote
or increase the severity of a disease (Jackson et al., 2018). Variants that are associated with
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traits in a population are commonly identified in genome-wide association studies (GWAS)
(Tam et al., 2019). These studies have successfully identified relationships between single
nucleotide polymorphisms (SNPs) and disease (Visscher et al., 2012). Comparisons with
the reference genome have revealed up to 5 million sites where variants exist (Auton
et al., 2015). Several genetic disease databases provide resources for medical research
and diagnosis. Some well-known examples include the GWAS catalogue, GWASdb, the
Genome-Wide Repository of Associations Between SNPs and Phenotypes (GRASP), The
Genetic Association Database for Centers of Disease Control (GADCDC), and Johnson and
O’Donnell’s database. The GWAS catalogue summarizes the results of GWASs, looking for
correlations between genetic variants and traits or diseases, and contains 71,673 pathogenic
variants from 3,567 studies (Buniello et al., 2019). GWASdb provides access to summary
statistics and individual-level data from GWASs for further research and meta-analysis
(Li et al., 2012). GRASP provides information on the associations between SNPs and
phenotypes, including disease-related traits, and is derived from 2,082 studies containing
approximately 8.87 million disease-related variants (Eicher et al., 2015). Johnson and
O’Donnell’s database, based on 118 studies, contains 56,411 variants with high disease
specificity, and is used in specific research projects or studies (Johnson & O’Donnell,
2009). However, current methods of searching for disease-associated variants have their
limitations. For example, the GWAS Catalog web tool is widely used for its convenience
and efficiency in searching for single variants but is not suitable for simultaneous searches
for multiple variants (Welter et al., 2014). Simultaneous searches for multiple variants
can be performed with the GWAS4D web application, but it is difficult to interpret the
results to identify a disease (Huang et al., 2018). The identification of diseases from Variant
Call Format (VCF) files is possible with the prediction tool MutationTaster2021, but the
program does not support variants from the latest reference genome (GRCh38/hg38)
(Steinhaus et al., 2021). It is challenging to find all the millions of variants because every
web application has a limited capacity for large-scale searches for variants. Moreover,
processing takes a long time and variants mapped from the latest reference genome are not
supported.

The R language is an open-source, free computational and statistical analysis instrument
that is compatible with Windows, Linux, and macOS. It is highly effective at processing
large amounts of data, statistical computations, and modelling, and can be easily integrated
into pipelines. R packages, developed by a community of programmers, provide a set of
functions, datasets and compiled code that simplify complex computations (Kim et al.,
2019). R packages are stored in libraries and can be selected from a wide range of options
(Sangket et al., 2015; Sangket et al., 2022), such as the sqldf package, which allows SQL
statements to be executed on data frames, facilitating database management and variant
searching.

In this research, an R package called ‘‘DisVar’’ was created to overcome the limitations
of existing web tools in the detection of disease-associated variations from large-scale
individual genomic data. This package is compatible with variants from the latest reference
genome version and can process large amounts of variants rapidly and effectively. This
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Table 1 An example of a VCF format file (fileformat = VCFv4.1).

##fileformat=VCFv4.1
CHROM POS ID REF ALT

3 4700592 rs6762644 A G
6 149842694 rs1125107 T C
16 5225061 rs2333967 C T
X 83723541 rs35161124 A G

makes it possible to identify genetic disorders based on individual variations, making
disease detection and prevention easier.

METHODS
Data preparation
VCF is a text file format used in bioinformatics to store variations in gene sequences input
to identify variants associated with diseases. VCF files derived from GRCh38/hg38 were
obtained from the 1000 Genomes Project (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_
collections/1000G_2504_high_coverage/working/20201028_3202_raw_GT_with_annot)
and ClinVar (https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/).

Risk SNP database files were collected from VARAdb, a comprehensive database of
human variation annotations that combines the five databases used to develop the DisVar
R library: the GWAS catalogue, and the GWASdb, GRASP, GADCDC, and Johnson and
O’Donnell’s databases (http://www.licpathway.net/VARAdb/download.php).

Table 1 shows an example of a VCF format file. It consists of meta-information lines, a
header line, and then data lines, each containing information about variants in the genome.
The header line and data lines are separated into multiple columns by tabs. The DisVar
library reads data from the CHROM column, which presents the chromosome names,
and the POS column, which indicates the position of the variation on that chromosome.
The REF column lists the allele found at the POS position in the reference genome,
and the ALT column lists the alternate allele in the variation, which differs from the
reference allele. The type of variant can be determined by comparing the REF and ALT
columns, which can be an SNP, an insertion, a deletion, or a more complex variation.
This data can be used to refine and prioritize variants for analysis. The REF and ALT
columns, together with the CHROM and POS columns, provide important information
for efficiently identifying disease-associated variants, and facilitate the detection of genetic
diseases based on the genetic variants of individuals. Since DisVar is compatible with
variants from GRCh38/hg38, it can detect the most up-to-date variants.

Instruments and software
The R package was developed on an ASUS TUF Gaming F15 FX506HCB laptop with a
2.70 GHz Intel Core i5-11400H processor, 32 GB RAM and a 512 GB solid-state drive. The
laptop ran Windows 11 Home 64-bit and was equipped with a dedicated NVIDIA GeForce
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Figure 1 An overview of the development of DisVar.
Full-size DOI: 10.7717/peerj.16086/fig-1

RTX 3050 graphics card. All coding and testing of the R package was performed on this
laptop using R version 4.3.0 and RStudio version 2023.03.1+524.

DisVar development
An R package called ‘‘DisVar’’ was developed for identifying disease-associated variants
from individual genetic information. The overview of the DisVar development workflow in
Fig. 1 summarizes the following process. TheGWASCatalog, GWASdb, GRASP,GADCDC,
and Johnson and O’Donnell databases were obtained. VCF files were prepared for coding
the DisVar package. To prepare data for testing this R package, files were downloaded
from the 1,000 Genomes Project, and the output format that would be obtained from
processing the program was designed. Next, using the data.table package, a DataFrame on
the R workspace was loaded with all the databases. Then, using the biomaRt package, all the
databases were converted from GRCh37 to GRCh38 and saved as R Data (RDA) files. The
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Figure 2 The DisVar flowchart.
Full-size DOI: 10.7717/peerj.16086/fig-2

package was developed and modified to read large VCF files using the data.table package
and disease-associated variants were searched using the data.table package. This involved
implementing algorithms to search VCF files for the chromosomal position and location
of SNP variants and to perform a database comparison to retrieve relevant information. In
the first test of the package, the functionality of the algorithms was tested using a VCF file
containing six to eight disease-associated variants. The package was then tested with a large
dataset from the 1000 Genomes Project, comprising VCF files that contained from 215,054
to 11,346,899 variants, and the time elapsed in processing the data was measured using
the system.time function. Finally, a manual for the package was written and submitted to
GitHub.

DisVar is a tool for analyzing SNPs in genomic data. The DisVar flowchart is illustrated
in Fig. 2. It begins by prompting the user to input a VCF file, which contains information
about SNPs such as the chromosome number, position, and alleles. The function then reads
this file and converts it into a data frame for further processing. Next, the function retrieves
data from a pre-processed RDA file, which contains additional information about the SNPs
such as the P-value (Confidence) and the GWAS trait, which is the trait associated with the
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SNP in a GWAS. The data is stored in a separate data frame. The function then searches
multiple databases for SNPs using the chromosome number and position as key criteria.
Any SNPs that meet the criteria with a P-value less than 1.0 × 10−7 are retrieved, along
with the Rsid (a unique identifier for the SNP), the reference allele, the alternative allele,
and the GWAS trait. If no matching SNPs are found in the databases, the user is informed,
but if SNPs are found, a data frame is created and aligned according to the disease name,
and diseases are sorted from the least to the greatest p-value. Finally, the function generates
an output file in TSV (tab-separated values) format, which can be easily imported into
other software for further analysis. The output file contains the disease, chromosome name,
position, gene name, variant type, alleles of the variant in the sample, alleles of the variant
in the database, p-value, database name, quality, filter, and info. GWAS trait for each SNP,
arranged in a table according to the specified format. An example is shown in Table 2.

RESULTS
The DisVar R package was subjected to a performance test using VCF files from the 1000
Genomes Project. The dataset consisted of 24 VCF files with different numbers of variants
ranging from 215,054 to 11,346,899 sites. When testing the package, each VCF file was run
separately. The total elapsed time was 63.58 min, and 298,227 hits of diseases-associated
variants were returned across all 24 VCF files. The test results for each file are displayed in
Table 3. The ClinVar VCF file was also examined. This file contains 2,120,558 total variant
sites, and 20,657 hits associated with diseases were identified with an estimated elapsed
time of 45.98 s.

A scatterplot and trendlinewere constructed of elapsed time in seconds versus the number
of variants in millions using the Excel program (Fig. 3). The elapsed time increased as the
variant size increased and there was a positive linear relationship between them. The linear
regression model of trendline revealed a significant positive association between variant
size and elapsed time (R-squared = 0.9). The regression equation was:

Elapsed time =−39.78+ (3×10−5×Number of variants)

The regression equation indicated that for every increase of one variant in input data,
there was an average increase of 0.03 ms in elapsed time. These results suggest that our
R package function performed well for small inputs of data but became slower for large
inputs. Even so, the function can handle large VCF files. For example, a file with 5 million
variants should take about 1.84 min to process.

DISCUSSION
The DisVar R library was developed to overcome the limitations that currently exist in web
applications. Compared to existing methods, this R package offers several advantages for
identifying disease-associated variants. A comparison of program performance is shown
in Table 4. First, DisVar is compatible with variants of the latest version of the reference
genome and can simultaneously search for individual diseases in over 100million sites. This
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Table 2 Example of the output format.

Disease Chr Position Gene Variant_id Variant_type Allele
Variant

Allele DB P-value DB Qual Filter Info

Alzheimer’s disease 6 41161514 TREM2 rs75932628 missense C>T C>T 2.00E−12 GWASdb 7296.45 PASS AC=14;AF=0.00218613;AN=6404;BaseQRankSum=0.155;
ClippingRankSum=0.481;DP=111734;. . .

8 95041772 C8orf38 rs7818382 intron C>T C>T 8.00E−08 GWASdb 1587730 PASS AC=3017;AF=0.471112;AN=6404;BaseQRankSum=0.223;
ClippingRankSum=0;DP=106075;. . .

Breast cancer 10 121577821 FGFR2 rs2981579 intron A>G A>G 2E-170 GWASdb 1491780 PASS AC=3227;AF=0.503904;AN=6404;BaseQRankSum=0.098;
ClippingRankSum=-
0.024;DP=95506;. . .

Nasopharyngeal
carcinoma

10 121577821 FGFR2 rs2981579 intron A>G A>G 2.00E−10 GWASdb 1491780 PASS AC=3227;AF=0.503904;AN=6404;BaseQRankSum=0.098;
ClippingRankSum=-
0.024;DP=95506;. . .
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Table 3 The test results for each VCF file.

Chromosome Variant Elapsed time(s) Hits found

1 11,122,108 318.54 25,101
2 11,346,899 485.86 24,913
3 9,174,723 263.45 15,608
4 9,052,888 244.67 15,035
5 8,360,596 256.40 14,658
6 7,769,430 234.63 36,513
7 7,650,658 170.45 12,860
8 7,107,721 174.21 12,038
9 6,060,229 143.47 11,829
10 6,528,421 182.78 11,590
11 6,497,949 190.42 20,301
12 6,274,676 180.79 14,569
13 4,964,958 111.35 5,993
14 4,207,249 107.50 8,350
15 3,942,335 104.24 12,009
16 4,391,676 135.50 10,657
17 3,910,272 88.56 12,177
18 3,826,115 77.56 4,465
19 3,020,915 71.22 11,077
20 3,193,659 71.21 7,310
21 2,021,390 44.03 3,525
22 2,092,942 39.99 6,167
X 5,311,865 112.60 1,481
Y 215,054 5.54 1
Total 138,044,728 3,814.97 298,227

Figure 3 Scatterplot of elapsed time (s) versus the number of variants (millions).
Full-size DOI: 10.7717/peerj.16086/fig-3
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Table 4 A comparison of DisVar performance with other existing tools.

#Variants/Program name DisVar GWAS4D MutationTaster2021 VARAdb GWAS Catalog

1 Yes Yes Yes Yes Yes
100 Yes Yes Yes Yes No
40,000 Yes Yes Yes No No
11,346,899 Yes No No No No
138,044,728 (Multiple VCF files) Yes No No No No

is a significant improvement over web applications such as the GWAS Catalog, where vcf
files are not supported. It can only search for single variants or a range of genome positions
and does not support the variants of the latest reference genome. In addition, compared
to VARAdb, which is similar to the GWAS Catalog, it can search for a genomic location
or rsIDs, but VARAdb can search up to 100 variations. Furthermore, the results generated
by DisVar are simple to understand and give users a clear understanding of the variants
that are associated with a disease. In comparison, GWAS4D can simultaneously search
approximately 40,000 variants but the results generated make it difficult to determine the
disorder associated with a variant. Another limitation of GWAS4D is that it only shows the
results for one variant at a time in each database and does not support VCF files as input.
Therefore, users must check multiple databases and convert their VCF files to a compatible
format before using GWAS4D. Similar to MutationTaster2021 is also able to support large
files, but cannot support up to millions of positions, and neither of them can support VCF
files derived from the latest reference genome. Finally, DisVar is able to process enormous
amounts of data quickly and effectively, and handle multiple VCF files simultaneously.
This is crucial in medical facilities or research settings where large amounts of data need to
be promptly and precisely evaluated to identify genetic diseases. The functions of DisVar
will be improved in the future, with a particular emphasis on its ability to analyze data
from various sources and to incorporate new disease-associated variations. One potential
advantage of this package is that it is an R package, which allows users to program and
customize their analysis pipeline.

CONCLUSIONS
An R package called DisVar was developed for identifying large-scale disease-associated
genetic variants against the latest reference genome. This package simplifies the process
of detecting genetic diseases based on an individual’s genetic variants by enabling users to
simultaneously search for individual diseases across over 100 million sites. Our study has
shown that DisVar can process large data sets rapidly and effectively, and handle multiple
VCF files simultaneously, providing a useful tool for medical facilities or research settings.
It is a useful approach to identifying disease-associated variants from large-scale individual
genomic information. Due to its ability to quickly and effectively analyze large volumes of
data and its compatibility with the variants of the most recent reference genome, DisVar
can help the identification and prevention of many diseases.
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