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ABSTRACT
Background: COVID-19 is a worldwide pandemic caused by the highly infective
SARS-CoV-2. There is a need for biomarkers not only for overall prognosis but also
for predicting the response to treatments and thus for improvements in the clinical
management of patients with COVID-19. Circulating cell-free DNA (cfDNA) has
emerged as a promising biomarker in the assessment of various pathological
conditions. The aim of this retrospective and observational pilot study was to
investigate the range of cfDNA plasma concentrations in hospitalized COVID-19
patients during the first wave of SARS-CoV-2 infection, to relate them to established
inflammatory parameters as a correlative biomarker for disease severity, and to
compare them with plasma levels in a healthy control group.
Methods: Lithium-Heparin plasma samples were obtained from COVID-19 patients
(n = 21) during hospitalization in the University Medical Centre of Mainz, Germany
between March and June 2020, and the cfDNA concentrations were determined by
quantitative PCR yielding amplicons of long interspersed nuclear elements (LINE-1).
The cfDNA levels were compared with those of an uninfected control group (n = 19).
Results: Plasma cfDNA levels in COVID-19 patients ranged from 247.5 to
6,346.25 ng/ml and the mean concentration was 1,831 ± 1,388 ng/ml (± standard
deviation), which was significantly different from the levels of the uninfected control
group (p < 0.001). Regarding clinical complications, the highest correlation was
found between cfDNA levels and the myositis (p = 0.049). In addition, cfDNA levels
correlated with the “WHO clinical progression scale”. D-Dimer and C-reactive
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protein (CRP) were the clinical laboratory parameters with the highest correlations
with cfDNA levels.
Conclusion: The results of this observational pilot study show a wide range in
cfDNA plasma concentrations in patients with COVID-19 during the first wave of
infection and confirm that cfDNA plasma concentrations serve as a predictive
biomarker of disease severity in COVID-19.

Subjects Infectious Diseases, Medical Genetics, COVID-19
Keywords COVID-19, Sars-CoV-2, Cell free DNA, Organ dysfunction, Clinical outcome

INTRODUCTION
Coronavirus disease 2019 (COVID-19) is the greatest worldwide pandemic of the 21st

century caused by the highly infectious SARS-CoV-2. According to the World Health
Organization (WHO), SARS-CoV-2 has caused more than 768.2 million cases worldwide
to date (WHO, 2022b). Although COVID-19 vaccines are being developed rapidly,
compared to traditional vaccines, and have been approved worldwide (Kashte et al., 2021),
the ongoing COVID-19 outbreak is placing an enormous strain on healthcare resources
and poses an extraordinary threat to global public health (Hu et al., 2020). In addition, new
SARS-CoV-2 variants with increased transmission rates have emerged in the recent years,
further complicating the situation (van Oosterhout et al., 2021). Disease caused by SARS-
CoV-2 infection ranges from asymptomatic to mild course of illness to extensive
inflammation with severe respiratory disease, multiple organ failure and death. Pulmonary
manifestations are common, ranging from cough to pneumonia and acute lung failure
(ARDS). Hematological and immune system-related changes such as thrombocytopenia
and dysregulation of blood coagulation have been reported (Al-Samkari et al., 2020).
In addition, neurological manifestations (Wang et al., 2020), acute kidney failure (Yang &
Yang, 2020) and gastrointestinal symptoms such as nausea and vomiting, diarrhea, and
gastrointestinal bleeding are associated with COVID-19 disease (Cheung et al., 2020).
The WHO considers age �60 years or health conditions such as lung or heart disease,
diabetes or conditions affecting the immune system to be risk factors for severe course of
disease (WHO, 2022a). There are strong recommendations for corticosteroid treatment in
moderate cases, and recommendations for immunomodulatory treatment with Baricitinib
and Tocilizuman in patients with pneumonia. However, to date there is no universally
proven effective antiviral therapy for COVID-19 patients and no reliable laboratory
parameters to monitor therapy. Therefore, the only life-saving therapy in severe cases is
bridging-to-recovery, i.e., organ support or replacement in the event of organ failure.

Three years into the pandemic and despite the availability of effective vaccination the
incidence of SARS-CoV-2-infection continues to show a wavy trend with potentially
serious consequences in almost all age groups. Therefore, reliable biomarkers are still
required. Biomarkers are not only needed for prognosis, but also for predicting response to
treatment and thus for improving in the clinical management of patients with COVID-19.
Recent studies have linked laboratory measures of hyperinflammation such as macrophage
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chemoattractant protein 1 (MCP-1), C-reactive protein (CRP) and interleukin-6 (IL-6),
ferritin and procalcitonin (PCT) as strong predictors of disease severity in hospitalized
patients with COVID-19 (Broman et al., 2020; Jøntvedt Jørgensen et al., 2020;Mishra et al.,
2022). Another promising, non-invasive biomarker of COVID-19 severity from liquid
biopsy is cell-free DNA (cfDNA), which is passively released after cell damage and/or
actively released from hematopoietic (immune) cells (Dwivedi et al., 2012; Huttunen et al.,
2011). Increased levels of cfDNA have been detected in various pathological conditions
(Swarup & Rajeswari, 2007). In tumor diseases, cfDNA levels have been used to assess
tumor burden, progression, and response to treatment (Bettegowda et al., 2014; Ehlert
et al., 2017; Fleischhacker & Schmidt, 2007; Parkinson et al., 2016). Elevated levels of
cfDNA have also been found in patients with severe bacterial infections or viral infections
and correlated with disease progression and severity (Ha et al., 2011; Yi et al., 2014).
In particular, recent studies (Andargie et al., 2021; Mishra et al., 2022; Scozzi et al., 2021)
report on the value of cfDNA as a predictive biomarker for COVID-19 severity.
The measurement of cfDNA measurement in patient blood plasma is a highly precise and
minimally invasive diagnostic method applied in a wide range of pathological conditions.
It can also provide information about the tissue-of-origin through its nucleosome footprint
(Snyder et al., 2016; Sun et al., 2019). Here, we present data from a retrospective
observational pilot study to further assess the value of cfDNA as a potential biomarker in
hospitalized COVID-19 patients during the first wave of infection and compare it to
cfDNA levels in a healthy control group.

MATERIALS AND METHODS
Portions of this text were previously published as part of a preprint: https://www.medrxiv.
org/content/10.1101/2021.04.29.21256291v1.

Patients
A total of 21 patients hospitalized during the first wave of SARS-CoV-19 infection between
March and June 2020 at the University Medical Centre, Mainz, Germany, were evaluated
in this retrospective pilot study. This retrospective data collection is limited to the analysis
of a highly inhomogeneous patient population due to patient consent for release or
availability of their excess material, which also reflects the nature of a pilot study. When
patients presented to the hospital with symptoms of COVID-19 disease, a nasopharyngeal
swab was taken and tested for the presence of SARS-CoV-2 infection by polymerase chain
reaction (PCR) in the in-house virology department. If the test was positive, the patients
were included in the pilot study. Exclusion criteria were (1) age less than 18 years, (2)
pregnancy, (3) breastfeeding women. Patients’ clinical data and laboratory results were
reviewed retrospectively using the electronic hospital information systems (i.s.h.med�;
SAP, Weinheim, Germany, Nexus Swisslab, Berlin, Germany).

In addition, a prospective control group (n = 19) was included in the study in which
SARS-CoV-2 infection was excluded by nasopharyngeal swab. The control group was
subject to the exclusion criteria described above. To exclude other acute infections, CRP,
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leukocytes and platelets were also determined by laboratory tests. The cfDNA levels of the
control group were compared with those of the COVID-19 cohort (Fig. 1).

Depending on the severity of disease, patients were classified according to the WHO
clinical progression scale (Marshall et al., 2020). It is based on five levels of severity divided
into eleven sublevels ranging from 0 (uninfected) to 10 (dead). In this study patients were
classified into the five main severity levels according to their worst clinical disease
progression, and cfDNA levels were compared between groups. Plasma cfDNA levels
were divided into three concentration groups (low ≤ 1,000 ng/mL, moderate
1,000–2,000 ng/mL, and high > 2,000 ng/mL) for correlation with routine clinical
laboratory parameters such as CRP, PCT, etc., determined in the accredited (DIN-ISO
15.189) Institute for Clinical Chemistry and Laboratory Medicine of the University
Medical Centre, Mainz, Germany, as described (Falter et al., 2021).

The pilot study was approved by German law (Landeskrankenhausgesetz §36 and §37)
in accordance with the Declaration of Helsinki and by the local ethics committee of the
“Landesärztekammer Rheinland-Pfalz” (reference numbers 2020-15116-retrospective).
The Ethics Committee waived the requirement for informed consent for the retrospective
cohort.

Blood sample processing and quantification of cfDNA
Lithium-heparin syringes (S-Monovette, Sarstedt) were used to collect blood plasma
samples for routine laboratory analysis. Excess blood plasma was centrifuged at 3,746 × g
for 10 min at room temperature in a safety level 2 laboratory (S2) within 2–3 h after
collection. Plasma aliquots were stored at −80 �C prior to quantification of cfDNA
concentrations. Plasma cfDNA concentrations were determined according to Neuberger
et al. (2021) using plasma samples and quantitative real-time PCR (qPCR) without prior
DNA purification steps. The SYBR Green real-time qPCR amplifies a repetitive 90 bp
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(n=41)

hospitalized 
severe disease

(n=9)

hospitalized 
moderate disease

(n=10)

dead
(n=2)
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n=1 pregnancy
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Figure 1 Patient flow diagram. Overview of enrolled patients and controls and grouping according to
WHO clinical progression scale. Full-size DOI: 10.7717/peerj.16072/fig-1
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fragment of human long nuclear elements (LINEs) of the L1PA2 family using the
following forward and reverse primers: 5′-TGCCGCAATAAACATACGTG-3′, 5′-
GACCCAGCCATCCCATTAC-3′. Plasma was diluted 1:10 in ultra-pure H2O
(Invitrogen, Carlsbad, CA, USA), added to the reaction mix in a proportion of 1:7.5, and
measured in technical replicates in a final volume of 5 µl. The final concentrations of the
reaction mix were 0.04 IU Velocity Polymerase (Bioline, London, UK), 1.2 × Hifi Buffer
(Bioline, London, UK), 0.15 × SYBR Green (Sigma, St. Louis, MO, USA), 0.3 mM dNTPs
(Bioline, London, UK), 140 nM of each primer. Samples were amplified using a Bio-Rad
CFX384 system (Bio-Rad, Hercules, CA, USA), using the following protocol: 98 �C for 2
min, followed by 35 cycles of 95 �C for 10 s (denaturation) and 64 �C for 10 s (annealing/
extension), followed by a melting curve from 70–95 �C with 0.5 �C increments for 10 s.
No template control (NTC) samples, including H2O and mouse plasma, and two reference
samples for calibration were included in each qPCR run. As described by Neuberger et al.
(2021), the linearity, limit of quantification, and limit of detection of the assay, as well as
the reliability of the reference sample calibration were determined prior to the
measurements (LIT Neuberger et al., 2021). To calculate the amount of DNA, three
independent standard curves were prepared to determine the slope, intercept, and
dynamic range of the assay. After calibration of the reference samples, the DNA
concentration was determined respecting the Cq value of the measured sample, the
intercept and slope from the pre-validated assay, the final reaction volume (5 µl), the
dilution of the template (1:75), the number of primer targets per human genome
(3,416), and the weight per diploid genome (~3.23 pg) using the following formula
(ng/mL = pg/µL = 10((Cq-intercept)/slope)/5 µL/(1/75) × 3.23 pg/3,416). The assay has a
limit of quantification <1 ng/ml, a sufficient dynamic range and repeatability <12%.
To determine storage-dependent changes in cfDNA levels in lithium-heparin syringes,
EDTA or lithium-heparin syringes containing plasma from three different subjects were
collected and processed immediately, or stored at 4 �C for 5 days. As expected, EDTA
samples showed a significant ~60-fold increase in cfDNA concentration during prolonged
storage (p = 0.004). In lithium-heparin samples, no significant differences were observed
between direct processing and extended storage (p = 0.5). The samples showed a
concentration of 71.8 ± 33.1 and 80.2 ± 32.1 ng/ml (mean ± SD), respectively,
demonstrating that lithium-heparin plasma samples are more suitable for cfDNA analysis
than EDTA plasma samples.

Statistical analysis
Data analysis is descriptive. Means and standard deviations are presented for continuous
variables, and absolute and relative frequencies and percentages are presented for
categorical variables. A two-tailed Student’s T-test was performed to test the hypothesis
that cfDNA levels in plasma samples are associated with clinical complications and risk
factors in patients. Confidence intervals and p-values are reported for the results.
Spearman’s rank correlation coefficient was calculated analyzing the laboratory parameters
in three different cohorts of cfDNA concentration (low, moderate, high). Spearman’s rho
and p-values are given.
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To test the statistical correlation between the distribution of cfDNA and the
classification of patients on the “WHO clinical progression scale”, cfDNA levels were
log-transformed and a two-sided Spearman’s rank correlation test was performed. A
two-tailed t-test was used to compare the mean values of cfDNA between the control
group and each WHO group.

RESULTS
A total of 21 hospitalized patients with positive evidence of SARS-CoV-2 were evaluated in
this pilot study, of whom twelve were male and nine were female. The patients were 68 ±
17 years old and on average overweight (BMI 28.8 ± 6.6 kg/m2). The control group
consisted of nine female and ten male subjects. The mean age was 43 ± 11 years and
differed significantly between the two groups (p < 0.001). The control group had a mean
BMI of 24.2 ± 4.3, again a significant difference between the groups (p = 0.009). There were
no significant differences in other patient characteristics between the two groups.

Most of the patients had at least one pre-existing risk factor for a severe course of
COVID-19, including cardiac (19%), renal (33%), pulmonary (38%) or immunological
(14%) disease, arterial hypertension (57%), diabetes (19%) or adiposity (33%). In terms of
pre-existing conditions, the control group had predominantly immunological pre-existing
conditions (26.3%), mainly related to the thyroid. Overall, COVID-19 patients had
significantly more pre-existing medical conditions than the control group. Patient
characteristics are summarized in Table 1.

Several of the COVID-19 patients’ clinical laboratory values were elevated during the
course of disease (Table 2). Elevated levels of creatinine, urea or LDH and decreased
estimated glomerular filtration rate (eGFR) were indicative of organ dysfunction, i.e., acute
kidney injury (AKI). The inflammatory parameters CRP and procalcitonin (PCT) were

Table 1 Patient and control group characteristics.

Parameters (mean ± SD) Overall COVID-19 Control group p-value

Age (years) 56 ± 18.8 68 ± 17 43 ± 11 <0.001

Gender (m/f) 22/18 12/9 10/9 0.78

Height (cm) 174.7 ± 8.7 174.1 ± 8.2 175.3 ± 16.5 0.6

Weight (kg) 81.1 ± 21.3 87.5 ± 22.8 74.1 ± 16.6 0.46

BMI (kg/m2) 26.7 ± 6.4 28.8 ± 6.6 23.8 ± 4.1 0.006

Pre-existing conditions (n (%))

Renal 8 (19.5%) 7 (33%) 1 (5.3%) 0.03

Pulmonary 8 (19.5%) 8 (38%) 0 (0%) 0.002

Immunological 8 (19.5%) 3 (14%) 5 (26.3%) 0.36

Arterial hypertension 13 (31.7%) 12 (57%) 1 (5.3%) <0.001

Cardiac 5 (12.2) 4 (19%) 1 (5.3) 0.2

Diabetes mellitus Type II 4 (9.8%) 4 (19%) 0 (0%) 0.05

Adiposity (BMI ≥ 30 kg/m2) 8 (19.5%) 7 (33%) 1 (5.3%) 0.03

Notes:
Data are given as mean ± standard deviation and frequency (n (%)).
BMI, body mass index; m, male; f, female.
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markedly present in the majority of COVID-19 patients, reflecting hyperinflammation
and/or secondary bacterial infection. Increased D-Dimer concentration was considered as
an indicator of COVID-19 associated coagulopathy (Table 2).

Patients suffered from various complications, most commonly AKI (62%), followed by
pulmonary complications including invasive ventilation and ARDS (43%), anemia and
secondary infections (Table 3). COVID-19 was potentially fatal, with 2 of 21 patients dying
during hospitalization (Table 4).

Table 5 shows the correlation between cfDNA levels and complications, risk factors and
outcome parameters. The highest correlation was detected between cfDNA and myositis
(p = 0.049). Interestingly, thromboembolism was found in patients with lower cfDNA
concentrations and higher cfDNA concentrations were associated with absence of
thromboembolism. Regarding patient outcome, cfDNA was significantly associated with
in-hospital mortality (p < 0.001) (Table 5).

The mean plasma cfDNA concentration in COVID-19 patients was 1,831 ± 1,388 ng/ml
(Table 6), with the lowest cfDNA concentration being 248 ng/ml and the highest cfDNA
being 6,346 ng/ml. COVID-19 patients and the control group were graded according to the
“WHO clinical progression scale”. Patients were classified as “hospitalized with moderate
disease”, “hospitalized with severe disease”, and “dead”. Subjects in the control group were
classified as “uninfected, no viral RNA detected”. A significant increase in cfDNA levels
was observed between the control group and COVID-19 patients (Table 7). cfDNA levels
gradually increased with the severity of disease progression from “hospitalized with
moderate disease” to “dead” (Fig. 2). The Spearman’s rank correlation coefficient was 0.87
at a significance level of <0.001.

Associations between these three groups and complications were predominantly
cardiovascular, renal, and pulmonary. Complications were most common in the
hospitalized group with severe disease (Table 8). The levels of laboratory parameters
correlated with the levels of cfDNA, with CRP and D-dimer showing the highest statistical
correlation (p = 0.08, Table 9).

Table 2 Laboratory parameters reflecting organ dysfunction (creatinine, urea, LDH), inflammation
(CRP, PCT) or COVID-19 associated coagulopathy (D-dimer).

Laboratory parameter Mean ± SD [Min.–Max.] Reference range

Maximum D-dimer (mg/l) 7.59 ± 8.09 [0.55–28.69] <0.50

Maximum creatinine (mg/dl) 2.49 ± 2.23 [0.57–7.24] 0.73–1.18

Maximum urea (mg/dl) 50.71 ± 34.28 [6–106] 9–21

Lowest eGFR (ml/min/m) 50.95 ± 36.29 [7–120] 68–108

Maximum CRP (mg/l) 235.7 ± 158 [46–568] <5

Maximum PCT (ng/ml) 11.56 ± 43.99 [0.02–208] <0.5

Maximum LDH (U/l) 669.67 ± 374.5 [235–1,849] <245

Note:
CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; LDH, lactate dehydrogenase; PCT, Procalcitonin;
SD, standard deviation.
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Table 3 Overview of complications.

Type of complication Frequency (n (%)) (n = 21) Gender distribution (f/m)

Pulmonary complications

ARDS 9 (43%) 2/7

ECMO therapy 0 (0%) n.a.

Invasive ventilation ≥7 d 9 (43%) 2/7

Reintubation 2 (11%) 1/1

Tracheostomy 6 (34%) 2/4

Lowest oxygenation-index (mmHg) 98.33 ± 37.65 n.a.

Need for invasive ventilation (days) 20.4 ± 15.51 n.a.

Thromboembolism

Mesenterial ischemia 1 (5%) 0/1

Catheter associated thrombosis 2 (10%) 0/2

Pulmonary artery embolism 1 (5%) 1/0

Neurological complications

Critical illness polyneuropathy 1 (5%) 0/1

Delirium 7 (33%) 2/5

Relapse of pre-existing condition 3 (14%) 1/2

Delayed wake up 3 (14%) 0/3

ICU acquired weakness 1 (5%) 1/2

Renal complications

AKI 1–3 (KDIGO or RRT) 13 (62%) 3/10

Cardiac complications

CPR 1 (5%) 1/0

Myocardial injury 1 (5%) 0/1

Atrial fibrillation 2 (10%) 0/2

Angina pectoris 1 (5%) 0/1

Other complications

Secondary infection 12 (57%) 3/9

Anemia 18 (86%) 6/12

Diarrhea 2 (10%) 1/1

Note:
AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; CRP, C-reactive protein; ECMO, extra corporal
membrane oxygenation; ICU, intensive care unit; KDIGO, kidney disease: improving global outcomes; RRT, renal
replacement therapy; SD, standard deviation; f, female; m, male.

Table 4 Course of the disease.

Parameter n (%) or mean ± SD Gender distribution (f/m)

LOS ICU (d) 28.78 ± 19.31

Readmission on ICU 1 (5%) 1/0

LOS in-hospital (d) 29.94 ± 19.45

Mortality (n (%)) 2 (10%) 0/2

Note:
d, days; ICU, Intensive care unit; LOS, Length of stay; SD, standard deviation; f, female; m, male.
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Table 5 Association between cfDNA concentration and complications, risk factors or outcome.

Complication, risk factor or outcome cfDNA (ng/ml; mean ± SD) 95% Confidence interval T value p-value

Complications

ARDS 2,010 ± 1,068. n = 11 [−962.5 to 1,741.6] 0.603 0.554

No ARDS 1,620 ± 1,829. n = 10

Thromboembolism 1,054 ± 689. n = 4 [−2,626.3 to 723.3] −1.189 0.249

No thromboembolism 2,005 ± 1,540. n = 17

AKI 1,679 ± 1,998. n = 13 [−1,019.3 to 1,964.4] 0.663 0.515

No AKI 1,914 ± 1,084. n = 8

Vasopressor 1,769 ± 889. n = 9 [−1,473.2 to 1,280.2] −0.147 0.885

No vasopressor 1,866 ± 1,808. n = 12

Delirium 1,741 ± 1,069. n = 10 [−1,521.4 to 1,204.2] −0.244 0.81

No delirium 1,900 ± 1,786. n = 11

Myositis 2,260 ± 1,582. n = 14 [4.5–2,609.9] 2.1 0.049

No myositis 953 ± 553. n = 7

SOFA <= 9 1,237 ± 596. n = 3 [−1,155.7 to 3,168.5] 1.073 0.314

SOFA > 9 1,853 ± 978. n = 7

Risk factors

Arterial hypertension 1,744 ± 1,124. n = 12 [−1,532 to 1,186.5] −0.286 0.778

No arterial hypertension 1,932 ± 1,879. n = 9

Diabetes mellitus 1,687 ± 1,183. n = 4 [−1,903.1 to 1,565.1] −0.204 0.869

No diabetes mellitus 1,856 ± 1,542. n = 17

BMI >= 30
BMI < 30

1,724 ± 1,075. n = 7
1,874 ± 1,648. n = 14

[−1,594.0 to 1,294.6] −0.217 0.831

Outcome

Survived 1,470 ± 860. n = 20 [2,332.9–5,229.0] 5.47 <0.001

Died 5,245 ± 1,557. n = 2

Notes:
Two-sided T-test (unequal variance, Levene). p-value, significance level.
AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; BMI, body mass index; cfDNA, cell-free Desoxyribonucleic acid; SOFA, sequential organ failure
assessment.

Table 6 Groups of cfDNA concentrations in COVID-19 patients.

Cohort Sample size n (%) Gender distribution
(f/m)

Mean ± SD (ng/ml)

All patients 21 (100%) 9/12 1,813.1 ± 1,387.96

cfDNA. high
>2,000 ng/ml

8 (36%) 4/4 3,190.1 ± 1,350

cfDNA. moderate
1,000–2,000 ng/ml

7 (32%) 1/6 1,475.6 ± 347.5

cfDNA. low
<1,000 ng/ml

7 (32%) 4/3 576.9 ± 204.2

Note:
cfDNA, cell-free Desoxyribonucleic acid; SD, standard deviation; f, female; m, male.
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Table 7 Distribution of cfDNA in the WHO clinical progression scale.

Cohort Sample size n (%) Gender distribution
(f/m)

Mean ± SD (ng/ml) p-value

Control group (uninfected) 19 9/10 108.79 ± 132.1

COVID-19 patients 21 (100%) 9/12 1,813.1 ± 1,387.96 <0.001

Hospitalized: moderate disease 10 (47.6%) 7/3 1,189.6 ± 824.05 <0.001

Hospitalized: severe disease 9 (42.9%) 2/7 1,769.05 ± 889.5 <0.001

Dead 2 (9.5%) 0/2 5,245.05 ± 1,557.33 <0.001

Notes:
cfDNA, cell-free Desoxyribonucleic acid; SD, standard deviation; f, female; m, male.
p-values obtained from paired t-test.

Table 8 Complications and outcome measured on the WHO clinical progression scale.

Complications Hospitalized: moderate disease (n = 10) Hospitalized: severe disease (n = 9) Dead (n = 2)

Cardiovasculatory 0 (0%) 9 (100%) 0 (0%)

Renal 3 (30%) 9 (100%) 1 (50%)

Pulmonary 1 (10%) 9 (100%) 1 (50%)

Neurological 3 (30%) 6 (67%) 1 (50%)

Thromboembolism 1 (10%) 3 (33%) 0 (0%)

Other complications 5 (50%) 7 (78%) 2 (100%)

Notes:
Data are given in n (%).
cfDNA, cell-free desoxyribonucleic acid.

ρ= 0.87, P = <0.001

Hospitalised: moderate 
disease

Hospitalised: severe
disease

Dead
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Figure 2 Correlation between cfDNA (ng/ml) and disease severity classification of patients in the
treatment and control groups according to the WHO clinical progression scale. Statistical analysis
was performed using the two-sided Spearman rank correlation test after logarithmic transformation of
the cfDNA levels. Full-size DOI: 10.7717/peerj.16072/fig-2
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DISCUSSION
This retrospective observational pilot study compared plasma cfDNA levels between
COVID-19 patients and an uninfected control group and explored correlations between
cfDNA levels and clinical complications and outcomes as well as clinical blood laboratory
measures in patients with COVID-19 during the first wave of infection. In our patient
cohort, cfDNA levels were associated with patient outcome as measured by the WHO
clinical progression scale, mortality, complications such as myositis, elevated D-dimer and
CRP levels, thus reflecting outcome, organ complications and inflammation. Limitations of
the present pilot study include the small cohort size with a broad spectrum of COVID-19
severity. This is mainly due to the unique human resource and structural conditions at the
beginning of the COVID-19 pandemic. In such exceptional situations, the evaluation of
small patient cohorts is extremely important in order to gain relevant clinical insights for
future studies and therapy. We also analyzed a single plasma sample from each patient at
individually different stages of their hospitalization. Therefore, it is not possible to
generalize the results of this pilot study to all patients with COVID-19 and we cannot
discuss on dynamic alterations of cfDNA data over time. Nevertheless, this pilot study has
shown that even in a small sample, cfDNA levels correlate with disease severity as

Table 9 Association between cfDNA concentration and laboratory parameters.

Laboratory parameters (unit, normal range,
reported value)

Low cfDNA (n = 7,
mean)

Moderate cfDNA (n = 6,
mean)

High cfDNA (n = 8,
mean)

Spearman’s
rho

p-
vaule

Creatinine
(mg/dl, 0.73–1.18, max in 7 days)

0.68 1.77 1.85 0.28 0.21

Bilirubin
(mg/dl, 0.2–1.2,
max in 7 days)

0.70 1.35 0.75 0.24 0.29

Lactate
(mmol/l, 0.5–1.6,
max in 2 days)

1.10 1.40 1.90 0.36 0.23

LDH
(U/l, <245,
max in 2 days)

386.00 367.50 481.50 0.38 0.18

D-dimer
(mg/l, <0.5,
max in 2 days)

1.12 4.01 4.27 0.67 0.08

Thrombocytes
(/nl, 150–360,
min in 2 days)

227.00 263.50 230.00 −0.01 0.98

CRP
(mg/l, <5,
max in 2 days)

54.00 65.50 89.00 0.39 0.08

Leucocytes
(/nl, 3.5–10,
max in 2 days)

8.30 8.67 8.54 0.10 0.66

Notes:
cfDNA, cell-free desoxyribonucleic acid; CRP, C-reactive protein; LDH, lactate dehydrogenase.
Spearman’s rank correlation coefficient was calculated analyzing the laboratory parameters in three different cohorts of cfDNA concentration (low, moderate, high).
The laboratory parameters evaluated here are maximum (max) or minimum (min) values during the next 2 or 7 days after cfDNA concentration was measured.

Hoeter et al. (2023), PeerJ, DOI 10.7717/peerj.16072 11/21

http://dx.doi.org/10.7717/peerj.16072
https://peerj.com/


measured by the “WHO clinical progression scale”, clinical laboratory parameters and
complications, and are significantly different from uninfected controls.

Pre-existing conditions other than hypertension, obesity, and diabetes mellitus, which
are considered typical risk factors for severe COVID-19 disease, were not assessed in this
study. Although these pre-existing conditions were not correlated with cfDNA levels, we
cannot exclude the possibility that other pre-existing conditions may have an overall effect
on cfDNA levels that was not captured in this pilot study.

cfDNA has been shown to be a valid marker for acute conditions such as stroke
(O’Connell et al., 2017). Other pre-existing conditions, such as cardiovascular disease, can
also affect baseline cfDNA levels (de Miranda et al., 2021). For example, a recent
myocardial infarction resulted in 10-fold higher cfDNA levels compared to a healthy
control group (Einbinder et al., 2020). Data on the impact of chronic pre-existing
conditions are scarce. However, several factors may contribute to its increase, such as
hypertension, smoking, diabetes mellitus, physical activity, ageing and other unknown
factors (de Miranda et al., 2021).

Notably, our assay amplifies repetitive LINE-1 elements, which comprise approximately
17% of the human genome. LINE-1 are retrotransposable elements that are epigenetically
silenced in somatic cells and exhibit rare events of retrotransposition (Brouha et al., 2003;
Xiao-Jie et al., 2016). LINE-1 dysregulation has been described in diseases such as cancer,
but also metabolic, neurological and autoimmune disorders (Zhang, Zhang & Yu, 2020),
which could affect the number of targeted LINE-1 elements.

Currently, there is no universal protocol for measuring cfDNA levels and presenting the
data (Andargie et al., 2021; de Miranda et al., 2021; Zuo et al., 2020). This limits the
comparability of studies and their results.

In addition, our results confirm previous studies showing that cfDNA is a liquid biopsy
marker potentially suitable for predicting disease severity in patients with COVID-19
(Andargie et al., 2021; Mishra et al., 2022; Zuo et al., 2020). Another limitation of our
retrospective pilot study is, that we examined cfDNA levels from patients hospitalized
during the first wave of SARS-CoV-2 infection. Subsequent emergence of variants of
concern (VOC) or vaccination may have affected plasma cfDNA levels in patients with
SARS-CoV-2 during the more recent waves of infection. However, apart from the
aforementioned pre-existing conditions, the absence of vaccines and VOCs at the time of
sample collection provides a fairly unbiased picture of cfDNA levels in COVID-19
patients, but at the same time precludes an unbiased comparison with cfDNA levels from
patients who were infected with later emerging VOCs and who may have been vaccinated.
Larger prospective studies are needed to analyze the impact of subsequent viral variants on
cfDNA levels.

Despite these limitations, our results are consistent with recently reported data on the
predictive value of circulating (mitochondrial) cfDNA for COVID-19 outcome (Andargie
et al., 2021;Hammad et al., 2021; Scozzi et al., 2021). Significant correlations have also been
reported between total cfDNA and LDH (Cheng et al., 2021), a biomarker of cell damage,
similar to circulating cfDNA. LDH is commonly elevated in severe COVID-19 cases and is
increased in non-survivors (Zhou et al., 2020). As the relative range of cfDNA
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concentrations found in COVID-19 patients in our pilot study was wider than the range of
LDH, cfDNA may be used to more accurately differentiate between different levels of
COVID-19 severity and potentially provide a prognostic assessment. Testing this
hypothesis is the subject of ongoing studies.

We found the most significant correlations between cfDNA and CRP. Compared to
CRP, cfDNA is a potentially more sensitive marker for monitoring and predicting disease
progression. CRP is a non-specific acute-phase protein, produced by the liver in response
to inflammation and tends to peak within 48 h of symptom onset. The half-life of CRP
ranges from 12 to 24 h, depending on the underlying disease and factors such as age.
On the other hand, cfDNA is released immediately after cell damage and may be useful in
monitoring disease severity, progression, treatment response and predicting outcome in
infectious diseases. The half-life of cfDNA in healthy individuals ranges from 15 min to 2
h, and can be increased in various health conditions, allowing for “real-time” analysis
(Kustanovich et al., 2019). Furthermore, cfDNA levels show a wide range between 0 and
100 ng/ml in healthy individuals and between 0–5 and >1,000 ng/ml in cancer patients
(Thierry et al., 2016). In contrast, CRP shows a narrower range. CRP levels >500 mg/l are
very rare. Therefore, cfDNA is likely to allow finer graded differentiation for diagnosis and
prognosis.

Although both CRP and cfDNA are non-specific markers, cfDNA can provide
information on the origin of cell damage through methylation analysis to specify organ
damage.

With our research showing that cfDNA correlates with disease severity in SARS-CoV-2
infection, further studies can be initiated to substantiate this advanced hypothesis.

There are still hurdles to overcome before cfDNA can be used as a full-fledged
biomarker for infectious diseases. Despite years of implementation in many medical fields,
the determination of cfDNA is still very time-consuming compared to conventional
inflammation parameters. The measurements are still not fully automated and require a
high level of experience and expertise from laboratory professionals. In infectious disease
monitoring, a combination of multiple biomarkers provides the best assessment of disease
progression and response to treatment. CfDNA can add significant value to this portfolio.
It should be noted that cfDNA is not only a biomarker for upstream pathophysiological
mechanisms, but has also been proposed to trigger specific downstream effects.
For example, cfDNA has been shown to be a regulator of the immune system (Korabecna
et al., 2020), with different immunoregulatory properties in healthy and diseased
individuals (Brynychova et al., 2019). It has also become clear that cfDNA is one of the
factors contributing to the formation of neutrophil extracellular trap (NET). NET plays a
key role in immunothrombosis and has been shown to be consistently increased in
COVID-19 and associated with disease severity (Leppkes et al., 2020; Ng et al., 2020).
Currently, NET is being discussed as a potentially useful biomarker to discriminate
between severe and non-severe COVID-19, but not to predict thrombotic risk (Gorog et al.,
2022). Indeed, complications such as acute arterial thromboembolism have been reported
in COVID-19 (Indes et al., 2021), and inflammatory cells are prominent in arterial
thromboembolic material from COVID-19 patients (Yesilkaya et al., 2021). However,
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recent data have shown no evidence of classic thrombotic microangiopathy in COVID-19
(Falter et al., 2021), consistent with our observation that higher cfDNA concentrations
were not associated with thromboembolism. One hypothesis is that laboratory features of
thrombotic microangiopathy are absent in COVID-19 due to its limitation to the
pulmonary microcirculation (Falter et al., 2021), thereby distinguishing the pulmonary
pathology of COVID-19 from that of an equally severe influenza virus infection
(Ackermann et al., 2020). It has been hypothesized that neutrophils may amplify
pathological damage and exacerbate a hyperinflammatory state (Borges et al., 2020). SARS-
CoV-2 was also found to induce the release of neutrophil extracellular traps (NETs) by
neutrophils (Veras et al., 2020). It remains to be clarified whether specific pathways
downstream of cfDNA are critical for hyperinflammation and COVID-19-associated
coagulopathy following SARS-CoV-2 infection. However, current evidence is consistent
with the hypothesis that cfDNA triggers both hyperinflammation and coagulation (Fig. 3).
Given that pre-existing conditions also affect cfDNA levels, this may contribute to the
exacerbation of the acute infection in pre-diseased patients.

D-dimer is another biomarker for of coagulation and fibrinolysis (Krychtiuk et al., 2021)
that is elevated in patients with COVID-19 (Berger et al., 2020). The consensus statement
of the COVID-19 International Colloquium on Thrombosis confirms that D-dimer is
associated with disease severity and adverse outcomes (Gorog et al., 2022). Other studies
have shown a positive association between elevated CRP levels and disease severity and
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Figure 3 Hypothetical role of cfDNA in COVID-19. ACE2 receptor, angiotensin-converting enzyme 2
receptor; cfDNA, cell-free desoxyribonucleic acid; IL, interleukin; NET, neutrophil extracellular traps;
NF-κB, nuclear factor kappa B; TLR, toll-like receptor; TMPRSS2, transmembrane protease serine
subtype 2; TNF-a, tumor necrosis factor alpha. Full-size DOI: 10.7717/peerj.16072/fig-3
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mortality in COVID-19 (Leisman et al., 2020; Zhou et al., 2020). Our data are in line with
these findings. D-dimer and CRP levels were the most highly correlated with cfDNA levels
in this pilot study.

CONCLUSIONS
CfDNA levels in blood plasma samples from COVID-19 patients were significantly higher
than those in an uninfected control group and correlated with the occurrence of clinical
complications and disease severity as measured by the “WHO clinical progression scale”.
Clinical laboratory measurements of D-dimer and CRP showed the highest correlations
with cfDNA levels. The strong elevation of cfDNA in patients with COVID-19 in the first
wave of disease confirms that cfDNA may be an important prognostic factor. This
association has also been demonstrated in later waves of infection. However, inconsistent
quantification methods make it difficult to compare measurements across studies.
Whether cfDNA is a suitable method for monitoring therapy during the course of disease
needs to be investigated in further studies. Therefore, prospective studies with
quantification of cfDNA levels at defined time points during the course of disease are
required.
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