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ABSTRACT
Background.Metagenomics is an approach for characterizing environmentalmicrobial
communities in situ, it allows their functional and taxonomic characterization and to
recover sequences from uncultured taxa. This is often achieved by a combination of
sequence assembly and binning, where sequences are grouped into ‘bins’ representing
taxa of the underlying microbial community. Assignment to low-ranking taxonomic
bins is an important challenge for binning methods as is scalability to Gb-sized datasets
generated with deep sequencing techniques. One of the best available methods for
species bins recovery from deep-branching phyla is the expert-trained PhyloPythiaS
package, where a human expert decides on the taxa to incorporate in the model and
identifies ‘training’ sequences based on marker genes directly from the sample. Due
to the manual effort involved, this approach does not scale to multiple metagenome
samples and requires substantial expertise, which researchers who are new to the area
do not have.
Results.We have developed PhyloPythiaS+, a successor to our PhyloPythia(S) software.
The new (+) component performs the work previously done by the human expert.
PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated the
simultaneous counting of 4–6-mers used for taxonomic binning 100-fold and reduced
the overall execution time of the software by a factor of three. Our software allows
to analyze Gb-sized metagenomes with inexpensive hardware, and to recover species
or genera-level bins with low error rates in a fully automated fashion. PhyloPythiaS+
was compared toMEGAN, taxator-tk, Kraken and the generic PhyloPythiaSmodel. The
results showed thatPhyloPythiaS+ performs especially well for samples originating from
novel environments in comparison to the other methods.
Availability. PhyloPythiaS+ in a virtual machine is available for installation under
Windows, Unix systems or OS X on: https://github.com/algbioi/ppsp/wiki.
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INTRODUCTION
Metagenomics is the functional or sequence-based analysis of microbial DNA isolated
directly from a microbial community of interest (Riesenfeld, Schloss & Handelsman, 2004;
Kunin et al., 2008). As the cultivation conditions for most microorganisms are unknown
or too complex to reproduce in the laboratory (Hugenholtz, 2002), random shotgun
and amplicon-sequencing based metagenome studies have led to substantial advances
in our understanding of the structure and functions of microbial communities within
the last decade (Kalyuzhnaya et al., 2008; Turnbaugh et al., 2010; Hess et al., 2011; Pope
et al., 2011b; Zarowiecki, 2012; Schloissnig et al., 2013; Blaser et al., 2013). The taxonomic
classification or ‘binning’ of metagenome samples is often performed after sequence
assembly (Peng et al., 2011; Laserson, Jojic & Koller, 2011; Boisvert et al., 2012;Namiki et al.,
2012; Pell et al., 2012). This is a computationally demanding task, which for metagenome
samples results in a mixture of sequence fragments of varying lengths, originating from the
different microbial community members. A taxonomic binning defines ‘bins’ of sequence
fragments that were assigned the same taxonomic identifier, representing draft genomes or
pan-genomes of the differentmicrobial communitymembers. Taxonomic binningmethods
use sequence homology, sequence composition and similarities of contigs in read coverage
or gene counts, seeDröge & McHardy (2012) for a recent review. The subsequent analysis of
these bins allows characterizing the functional and metabolic potential for individual taxa.
For instance, in a collaboration with Mark Morrison’s group, a functional and metabolic
analysis of a draft genome recovered by taxonomic binning from the gut of the Australian
Tammar Wallaby metagenome led to the isolation and subsequent characterization of a
new and previously uncultivated bacterium (Pope et al., 2011b). Different from binning
methods, taxonomic profiling tools (Wu & Eisen, 2008; Stark et al., 2009; Liu et al., 2011;
Meinicke, Asshauer & Lingner, 2011; Wu & Scott, 2012; Segata et al., 2012; Sunagawa et al.,
2013; Silva et al., 2013) return a taxonomic profile for a metagenome sample to represent
the taxonomic composition of the underlying sampled community.

Composition-based binning methods assign metagenome sequences based on their k-
mer signature, which is derived from the counts of short oligomers (k-mers) for a sequence
(Karlin & Burge, 1995; Deschavanne et al., 1999). Our previously developed PhyloPythia(S)
(PPS) (McHardy et al., 2007; Patil, Roune & McHardy, 2011) software uses this information
in combination with a structured output support vector machine framework for taxonomic
classification. Composition-based signatures are global genomic properties, which can
be estimated from any sufficiently sized sequence sample for a taxon; e.g., for PP(S),
100 kb of reference sequences for a taxon are sufficient for accurate assignment, also
for low ranking taxa. Thus, no complete genome sequences of related organisms are
required for assignment, which is often a limiting factor for the homology-based methods.
Composition-based methods are very fast, with classification runtimes increasing linearly
with the size of the sequence sample, whereas the runtime of alignment-based methods
is proportional to the product of the reference collection size and the sequence sample
size. As the current sequencing technologies produce Gb-sized metagenome samples
(Metzker, 2010; Loman et al., 2012), scalability and computational efficiency are becoming
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Figure 1 Illustration of the PhyloPythiaS+ workflow. The recommended use of PPS is that a human
expert specifies the taxa to incorporate in a composition-based taxonomic metagenome classifier and
identifies the relevant ‘training’ sequences based on marker genes directly from the sample. The inclusion
of contigs originating directly from members of the microbial community, as ‘training’ sequences, is very
important for achieving good classification accuracy, as many members of microbial communities are
underrepresented in public sequence collections. In PPS+, the step of deciding which taxa to include in
the model and defining suitable ‘training’ sequences was automated in the + component, based on marker
genes, genome and draft genome sequence collections. The data generated by the + component are then
used to build the PPSmodels, that are subsequently used to generate the taxonomic binning of the entire
metagenome sequence sample.

increasingly important for computational metagenomic methods. Therefore, we have
developed a fully automated taxonomic binning software, that can rapidly process large
metagenome samples. PhyloPythiaS+ (PPS+) is the successor to our previously described
PPS software and improves on it in several important ways. We provide an automated
marker-gene based framework for design and creation of sample-derived structured output
support vector machine models, which allows the generation of accurate sample-derived
models without user intervention or expert knowledge. PPS+ is the first tool that combines
taxonomic profiling and subsequent taxonomic composition based binning of the whole
metagenome sample, which is particularly valuable for the draft genome reconstruction of
taxa from deep-branching phyla. By implementation of a faster k-mer counting algorithm,
we substantially increased its throughput to 0.5 Gb/h. PPS+ is distributed in a virtual
machine which facilitates installation under all common operating systems and runs on
inexpensive hardware available to most users.
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METHODS
The classification of a shotgun metagenome sequence sample with PPS+ proceeds in
two phases (Fig. 1): In the first phase, the newly developed (+) component identifies
sample-derived training sequences and the taxa to be modeled by searching for copies
of 34 ubiquitous taxonomic marker genes in the metagenome sample. The marker gene
analysis results in taxonomic assignments for a small fraction of the sample. Based on the
taxa abundance profile derived from these assignments and the sequences available in the
reference sequence collections, our method determines which taxa will be modeled and
which are the sample-derived data that will be used for training PPS.

The second phase is the composition-based taxonomic assignment of the entire
metagenome sample using PPS models trained using the data generated in the first
phase. PPS models can be reused to classify further metagenome samples, e.g., additional
samples from the same community.

PhyloPythiaS
Assignment with PPS proceeds in two steps: In the training step, an ensemble of structured
output Support Vector Machines (SVMs) (Joachims, Finley & Yu, 2009) for the specified
part of the NCBI taxonomy, defined by the taxa being modeled, are trained using the
sample-derived training sequences and additional data for these taxa from a customized
reference collection of sequenced genomes and draft genomes (Suplemental Information 1,
Section 3.3). The list of modeled taxa and sample-derived data are generated with the
+ component of PPS+. The list of taxa restricts the taxonomic output space that is
modeled, i.e., a sequence from a metagenome sample will be assigned to a leaf node taxon
or a corresponding higher-ranking taxon of the learned taxonomy.

In the prediction step, the PPSmodel ensemble identifies the taxon which best matches
a query sequence in terms of its k-mer profile and assigns to it the respective taxonomic
identifier. By default, sequences of 1 kb or more are classified (PPS+ configuration
parameter: minSeqLen).

The + component of PhyloPythiaS+
The input for the + component of PhyloPythiaS+ is the metagenome sample. This step
returns a list of clades and sample-derived data for the subsequent PPS training. The
+ component performs the following steps:
(1) Marker gene identification: DNA sequences from the sample are translated in all six

reading frames (i.e., also considering reverse complement sequences) to protein
sequences. In both the translated and untranslated sequences, regions with similarity to
the DNA or protein Hidden Markov model (HMM) profiles of 34 taxonomically
informative marker genes (Wu & Eisen, 2008; Stark et al., 2009; Liu et al., 2011;
Wu & Scott, 2012; Segata et al., 2012; Sunagawa et al., 2013) are identified (Supple-
mental Information 1, Section 3.3 and 6.1). The corresponding DNA marker gene
sequences from these regions are used for further analysis.
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(2) Taxonomic marker gene assignment : The marker gene sequences are assigned a
taxonomic identifier using the composition-based Naïve Bayes classifier (Schloss et
al., 2009) (Supplemental Information 1, Section 6.2).

(3) Taxonomic sequence assignment : If a sequence contains multiple marker genes, multiple
taxonomic identifiers are identified in Step 2. Then the highest bootstrap confidence
score (hcs) returned by the Naïve Bayes classifier (NBC) for one of the markers
on the fragment is identified. We use all marker gene assignments with confidence
scores larger than hcs ∗ (1− candidatePlTopPercentThreshold). The default setting for
the configuration parameter candidatePlTopPercentThreshold is 0.1. From the set of
taxonomic identifiers, the lowest taxon t is identified for which all other assignments
are either to the same taxon t or defined at higher-ranking parental taxa of t . Taxon
t is consequently used for the overall fragment assignment. The confidence score for
the fragment is set to the smallest confidence score for the set of retained marker gene
assignments.

(4) (Optional: Taxonomic scaffold assignment): Scaffolding information (i.e., the mapping
of contigs to scaffolds) can be used to obtain more training data for the relevant taxa.
Assembled contigs can be grouped into scaffolds based on the paired-end information
after the assembly. As all contigs of a particular scaffold originate from the same strain,
all contigs of the respective scaffold should have the same taxonomic label. Here, we
make use of this scaffolding information, such that unassigned contigs of a particular
scaffold can be assigned based on the assigned contigs of the respective scaffold. In the
first step, the taxonomic identifiers of all assigned contigs for a scaffold are corrected as
follows: Let us consider that n taxonomically assigned contigs of a scaffold are placed
along a common path from the root r down to a low-ranking clade lc in the reference
taxonomy. The unassigned contigs of a scaffold are not among these n contigs. To
obtain a consistent assignment for all the contigs of a scaffold and to correct for
‘outlier’ contig assignments to low ranking taxa, contigs are reassigned according to
the following: All n assigned contigs of the respective scaffold are reassigned to the
lowest taxon c , which lies on the path from r to lc, where c is chosen such that at least
(agThreshold ∗ n) of the contigs are assigned on the path from c to lc. In the second step,
unassigned contigs are assigned to the same taxon c , if a sufficient number of contigs
have already been assigned. Let us denote the sum of all contig lengths for a scaffold
as l and the sum of all assigned contig lengths of the respective scaffold as al. If al/l ≥
assignedPartThreshold, then the unassigned contigs of a scaffold are also assigned to
clade c (see the configuration parameters: placeContigsFromTheSameScaffold = True,
agThreshold = 0.3, assignedPartThreshold = 0.5).

(5) Assignment path truncation: Contigs assigned to a lower-ranking taxon than the
specified lowest rank are reassigned to the parental taxon of this lowest rank
(configuration parameter: rankIdCut ).

(6) Taxa selection for model specification: Any taxon for which at least 100 kb of sample-
derived data have been identified can bemodeled. Furthermore, species can bemodeled
if at least 300 kb of reference sequences are available in the reference sequence database,
and higher-ranking taxa can be modeled if data for at least three distinct species with
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this requirement (>300 kb per species) are available. Contigs assigned to taxa for
which there are fewer data are subsequently assigned to higher taxonomic ranks for
which sufficient data are available to allow their use as sample-derived training data
(configuration parameters: minGenomesWgs = 3 or 1, minBpPerSpecies = 300,000,
minBpToModel = 100,000).

(7) Abundant taxa selection: To reduce the number of taxa to the most relevant ones, the
least abundant taxon is removed iteratively. This is defined as the taxon to which the
minimum number of bp is assigned. Sequences assigned to this taxon are reassigned
to the closest defined taxon at a parental rank. The algorithm ends when the number
of leaf taxa is less than or equal to the maximum number of taxa to be modeled
(configuration parameter:maxLeafClades = 50; this can be set realistically up to 800).

Balancing training data: The part of the taxonomy that will be modeled with PPS is defined
by the taxa identified in the previous step. It has leaf nodes at different ranks above the
specified rank cut-off, and internal nodes. Only leaf node taxa and sample-derived training
data assigned to leaf node taxa in the preceding steps are specified as input for PPS training.
To balance the training data across clades, a maximum of 400 kb of sample-derived training
data are selected for each leaf node taxon (configuration parameter: maxSSDfileSize). For
this selection, contigs are used in order of decreasing confidence values and then in order
of decreasing length. The balancing of training data can be switched off by setting the
configuration parameter (maxSSDfileSize) to a large number.

Simultaneous counting of multiple short k-mers
We provide PPS+ with a new custom k-mer counting algorithm that is based on the Rabin
Karp string matching algorithm (Karp & Rabin, 1987). The algorithm is highly optimized
to count occurrences of short DNA sequences. It is very fast, as it is memory efficient,
because it does not need any large helper data structure similar to suffix trees. It explores
the locality of reference, uses very fast bit shift operations and is efficiently implemented
in C. Its complexity is O(n), where n is the length of the DNA sequence that is being
considered. It enumerates k-mers up to hundred times faster than when using suffix trees
that were employed in PPS. This made PPS+ overall up to 3x faster than PPS. Because the
algorithm allows to simultaneously enumerate k-mers of consecutive lengths in one run,
it is at least 2–7x faster than the state-of-the-art software Jellyfish (Marcais & Kingsford,
2011) and 11x faster than KAnalyze (Audano & Vannberg, 2014) in the scenario used in
PPS+, i.e., when calculating k-mers of length 4, 5, and 6 for every sequence (Table S1,
Supplemental Information 1, Section 2). We also found that the state-of-the-art k-mer
counting methods KMC 2 (Deorowicz et al., 2015) and Turtle (Roy, Bhattacharya & Schliep,
2014) are not applicable to our problem setting, as KMC 2 can count only k-mers ≥ 10
and Turtle is prohibitively slow for sequences ≥ 16 kb.

Algorithm description
Let us assume that we are given an array a, which represents a DNA sequence of length n
where all letters are encoded as numbers 0, 1, 2, 3 (where A ∼0, T ∼1, G ∼2, C∼3) and
let a0,...,an−1 denote the respective entries. We would like to count the occurrences of all

Gregor et al. (2016), PeerJ, DOI 10.7717/peerj.1603 6/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.1603/supp-17
http://dx.doi.org/10.7717/peerj.1603/supp-1
http://dx.doi.org/10.7717/peerj.1603


k-mers of length k and store the counts in an array c of length 4k , which is initialized by
zeros. Each k-mer maps to a unique index in the array c . The index of the first k-mer in
our sequence is calculated according to:

index0= a0 ∗4k−1+a1 ∗4k−2+···+ak−2 ∗41+ak−1 ∗40.

The index of the (i+1)th k-mer of the sequence is computed from the (i)th index as:

indexi+1= (indexi−ai ∗4k−1)∗ai+k ∗40.

When an index is identified, the corresponding k-mer count at this index position in array
c is incremented by one. For instance, the DNA sequence ATGCATG is encoded in array a
as [0, 1, 2, 3, 0, 1, 2]. For k = 2, we would add two counts for the k-mer AT in array c at
the index position 0∗4+1= 1, two counts for TG at the index position 1∗4+2= 6, one
count for GC at the index position 2∗4+3= 11 and one count for CA at index position
3∗4+0= 12. The multiplication operation X∗4m can be computed using the bit shift
operation X� 2∗m, which is usually much faster than multiplication.

Counting k-mers of different lengths at once
If index i is the index of the ith k-mer of length k, the index of the ith (k− j)-mer (of length
k− j) can be simultaneously computed using the bit shift operation as index i� (2∗ j)
(for j ∈ [1..k−1]) and the corresponding counter at the computed index of a respective
counter array of length 4(k−j) is incremented. The end of a DNA sequence can be handled
by adding several non-DNA characters to its end.

RESULTS
We evaluated PPS+ by comparing it to homology-based methods (MEGAN4, taxator-tk)
(Huson et al., 2011; Dröge, Gregor & McHardy, 2014), the fast taxonomic binning program
Kraken (Wood & Salzberg, 2014), the composition-based method PhyloPythia trained
under expert guidance (a recommended but time-consuming procedure) and to a generic
PPS model using default settings (Supplemental Information 1, Section 3.5–3.8). For a
performance comparison of PPS to methods with prohibitive runtimes for large datasets,
such as PhymmBL (Brady & Salzberg, 2011) and CARMA3 (Gerlach & Stoye, 2011), and
the web-based tool NBC (Rosen, Reichenberger & Rosenfeld, 2011) see Patil et al. (2011);
Patil, Roune & McHardy (2011); Dröge, Gregor & McHardy (2014), as PPS has already been
compared to these methods with favorable outcomes. For a comparison with ‘taxonomy-
free’ binning software CLARK (Ounit et al., 2015) see (Supplemental Information 1,
Section 7). We did not compare PPS+ to profiling tools such as (Liu et al., 2011), as PPS+ is
a binning method that assigns a taxonomic label to each input sequence. As benchmark
datasets, we created two simulated datasets, one with a uniform (137 Mb) and one with a
log-normal (66Mb) distribution of 47 community members (Supplemental Information 1,
Section 3.1, Datasets S1 and S2).We also used two real datasets, a metagenome sample from
the guts of two obese human twins (255 Mb) (Turnbaugh et al., 2010) and a cow rumen
metagenome sample (319 Mb) from Hess et al. (2011) (Supplemental Information 1,
Section 3.2, Datasets S3–S6) for evaluation.
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Table 1 Test scenarios. Test scenarios where data was removed (masked) up to the specified rank for the
corresponding taxa represented in the simulated metagenome datasets from the reference collections. RS
denotes the reference collection of complete or draft genomes;MG indicates the reference collection of
marker genes (Supplemental Information 1, Section 3.3).

Test scenario Rankmasked from RS Rankmasked fromMG

1. None None
2. Strain None
3. Species None
4. Genus None
5. Strain Strain
6. Species Strain
7. Genus Strain
8. Species Species
9. Genus Genus

Benchmarks with simulated datasets
We constructed the simulated datasets by assembling simulated reads with an empirical
error profile. The details on how the simulated reads were generated and assembled can
be found in (Supplemental Information 1, Section 3.1). For the evaluation, precision
and recall were calculated (Supplemental Information 1, Section 3.9). Furthermore, these
measures were also calculated with a ‘correction,’ to account for the case where the
sequences of one taxon were consistently assigned to a different taxon, as for draft genome
reconstruction, it is more important that the sequences are assigned consistently than that
the taxonomic identifier is correct. To assess the performance of the different methods
in assigning the simulated sequence fragments without related reference genomes being
available, ‘new strain,’ ‘new species’ and ‘new genus’ scenarios were simulated by removing
all sequence data from the taxa of the simulated test dataset at each rank from the reference
data. Furthermore, for PPS+, we distinguished whether the reference data were excluded
(masked) from the reference sequence (RS) collection or also from the marker gene (MG)
collection, since the MG collection included sequences for 15 times more distinct species
than the RS collection. There were therefore two different situations to consider (Table 1).

PPS+ showed a substantially improved precision and recall over the PPS generic model,
which demonstrated the impact of the improved selection of training data and modeled
taxa (Figs. 2A and 2C, S1A–S1D and S3A–S3D). PPS+ almost always had higher precision
and recall than MEGAN4 and Kraken, except when almost all test data were included
in the reference sequences (Figs. 2A and 2C, S1A–S1C, S1E, S3A–S3C, S3E, S14A). This
was even more pronounced when comparing bin quality using the corrected measures
(Figs. 2B and 2D, S2A– S2C, S2E, S4A– S4C, S4E, S14A and S14D). When comparing
PPS+ to taxator-tk, PPS+ had substantially improved recall, particularly for lower ranks
(Figs. 2A and 2C, S1A–S1C, S1F, S3A–S3C, S3F); while taxator-tk outperformed all other
methods in terms of precision (Figs. 2A and 2C, S1A–S1F and S3A–S3F). Both methods
were similarly precise when analyzing bin recovery, independent of assigning the taxonomic
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Figure 2 Performance comparisons with simulated datasets. (A) and (C) show the fraction of
correct, incorrect and unassigned bp for simulated datasets with uniform and log-normally distributed
species abundance for PhyloPythiaS+, the generic PhyloPythiaSmodel,MEGAN4, Kraken and taxator-tk
for assignments at the species, genus and family ranks. Results were averaged over all test ‘scenarios’
(Table 1), where sequences of the same strain, species or genus from the simulated metagenomes were
removed from the genome, draft genome and marker gene reference sequence collections (Figs. S1, S3,
S14A and S14C). (B) and (D) show the portion of consistently (correct), inconsistently (incorrect) and
unbinned (unassigned) bp without consideration of the taxonomic identifiers (Figs. S2, S4, S14B and
S14D, Supplemental Information 1, Section 3.9.2). The exact values and the corresponding precision,
recall and f1-score are contained in (Tables S2–S5) for (A–D), respectively.

identifiers to the corrected measures (Figs. 2B and 2D, S2A– S2C, S2F, S4A– S4C and S4F).
As a strong point of PPS+ , we also observed that it more rarely predicted wrong taxa that
were not a part of the sample than the other methods (Fig. S5). For example, for the genus
rank in Scenarios 3 and 8, PPS+ assigned sequences to only 2–5 false positive taxa, while
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taxator-tk identified 20,MEGAN4 37 and PPS 59 false ones. If PPS+ identified wrong taxa,
these were usually very closely related to the true taxa.

Benchmarks with real datasets
Comparison of scaffold and contig assignments
For each taxonomic rank, the percentage and the total number of kb (% agreement and
kb agreement) that were assigned the same taxonomic identifier were calculated for the
real datasets, based on the assignments of scaffold and contig sequences (Supplemental
Information 1, Section 3.10.1). For the chunked cow rumen dataset (Supplemental
Information 1, Section 3.2.2), taxator-tk had the highest assignment consistency (Table 2);
however, it assigned much fewer data than the other methods at lower taxonomic ranks.
A detailed comparison is given in heat maps (Figs. S6–S13). PPS+ performed substantially
better by both measures than the generic PPS model in almost all cases. PPS+ was also
more consistent than MEGAN4 for all lower ranks and assigned many more sequences
thanMEGAN4 overall. For instance, at the genus rank, the scores were 84.3 and 56
‘% agreement’, as well as 33,724 and 13,726 ‘kb agreement’ for PPS+ and MEGAN4,
respectively. The overall low numbers for Kraken suggests that it is rather not applicable
to samples containing novel taxa. Also, the low number of consistently assigned bp by
MEGAN4 and taxator-tk to lower taxonomic ranks reflects the availability of few related
reference genome sequences for the cow rumen metagenome sample, which is not an issue
for a composition-based method PPS+.

For the human gut microbiome, extensive sequencing of isolate cultures has resulted
in a large collection of several hundred reference genome sequences. Accordingly, for the
human gut dataset, taxator-tk, MEGAN4 and Kraken assigned many more sequences than
they did for the cow rumen dataset (Tables 2 and 3). For Kraken and MEGAN4, this was
most pronounced for the genus and species ranks, even though this was also caused by
counting scaffolds containing only one contig being consistent to itself. Themost consistent
method was again taxator-tk, but it also assigned fewer sequences than the other methods.
PPS+ performed better than the generic PPS model in all cases in terms of both measures
(Table 3). PPS+ and MEGAN4 showed comparable consistency, with PPS+ being more
consistent for the class, order and species ranks, and MEGAN4 being more consistent
for the superkingdom, family and genus ranks. However, PPS+ consistently assigned
(kb agreement) more sequences than MEGAN4, except for the genus and species ranks.
Thus, in the case of larger collections of related isolate genome sequences being available,
composition- and homology-based methods perform similarly well.

The taxonomic scaffold-contig consistency of the assignments was additionally
evaluated (Table S6 and Table S7) using a set of measures (Supplemental Information 1,
Section 3.10.2) that provide more detailed insights into assignment consistency
(Supplemental Information 1, Section 5.1) and support the conclusions in this section.

Comparison to an expert binning based on marker genes
A taxonomic binning generated by PhyloPythia (PP) with expert guidance for
sample-derived model construction (Turnbaugh et al., 2010) was compared to the
PPS+ assignments. Scaffolds that were unassigned by either method were not considered.
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Table 2 Comparison of contig and scaffold assignments of the chunked cow rumen dataset. Contigs
of the cow rumen dataset of at least 10 kb were divided into chunks of 2 kb for evaluation of assignment
consistency (Supplemental Information 1, Section 3.2.2). The contigs and scaffolds of the chunked cow
rumen dataset were assigned using PPS+ , the generic PPSmodel,MEGAN4, taxator-tk and Kraken. For
each method, up to two taxonomic identifiers were assigned to each contig at each rank, i.e., one identifier
came from the contig assignment and the second identifier came from the corresponding scaffold assign-
ment. Contigs with less than two taxonomic assignments at each rank were not considered in this com-
parison. The measure ‘% agreement’ was the percentage of contigs with the same two taxonomic identi-
fiers at a particular rank, whereas ‘kb agreement’ was the total number of kb of contigs with the same taxo-
nomic identifiers (Supplemental Information 1, Section 3.10.1). Bold numbers correspond to the best val-
ues, whereas italic numbers indicate the worst values.

Method Rank % agreement kb agreement

PPS+ Phylum 73.9 153,774
PPS Phylum 67.8 75,538
MEGAN4 Phylum 74.2 43,380
taxator-tk Phylum 98.2 59,702
Kraken Phylum 67.0 33,558
PPS+ Class 86.0 99,596
PPS Class 58.5 43,931
MEGAN4 Class 68.5 33,780
taxator-tk Class 97.7 23,190
Kraken Class 58.5 27,536
PPS+ Order 88.4 98,616
PPS Order 63.8 41,349
MEGAN4 Order 68.9 32,650
taxator-tk Order 98.0 22,368
Kraken Order 57.0 26,410
PPS+ Family 80.0 46,343
PPS Family 55.8 19,158
MEGAN4 Family 55.0 15,790
taxator-tk Family 98.9 7,276
Kraken Family 45.2 18,370
PPS+ Genus 84.3 33,724
PPS Genus 63.2 12,938
MEGAN4 Genus 56.0 13,726
taxator-tk Genus 99.1 6,042
Kraken Genus 43.7 16,912
PPS+ Species 91.6 9,821
PPS Species N/A N/A
MEGAN4 Species 54.6 8,502
taxator-tk Species 100.0 292
Kraken Species 38.1 14,186
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Table 3 Comparison of contig and scaffold assignments of the human gut metagenome dataset. Contig
and scaffold sequences of the human gut metagenome dataset were assigned using PPS+, the generic PPS
model,MEGAN4, taxator-tk and Kraken. The measures ‘% agreement’ and ‘kb agreement’ were used to
compare individual methods (Supplemental Information 1, Section 3.10.1). Bold numbers correspond to
the best values, whereas italic numbers indicate the worst values.

Method Rank % agreement kb agreement

PPS+ Phylum 99.0 140,283
PPS Phylum 97.0 124,884
MEGAN4 Phylum 99.0 127,658
taxator-tk Phylum 100.0 104,475
Kraken Phylum 97.6 123,428
PPS+ Class 99.5 134,707
PPS Class 96.9 118,068
MEGAN4 Class 98.5 122,131
taxator-tk Class 100.0 84,228
Kraken Class 96.3 121,071
PPS+ Order 99.5 134,127
PPS Order 97.3 117,185
MEGAN4 Order 98.6 121,811
taxator-tk Order 100.0 83,337
Kraken Order 96.3 121,003
PPS+ Family 94.0 110,664
PPS Family 92.6 97,066
MEGAN4 Family 96.2 98,582
taxator-tk Family 99.8 43,751
Kraken Family 89.4 109,151
PPS+ Genus 95.3 82,992
PPS Genus 91.9 58,883
MEGAN4 Genus 96.1 86,495
taxator-tk Genus 99.9 34,667
Kraken Genus 88.3 97,097
PPS+ Species 94.7 43,329
PPS Species N/A N/A
MEGAN4 Species 93.5 64,554
taxator-tk Species 99.7 10,314
Kraken Species 81.3 94,591

The PP expert binning and the PPS+ binning agreed well, down to the order rank (Table 4).
For the family and genus ranks, the overlap of bothmethods dropped to 69.5–74.1%, which
may partly be due to changes in the NCBI taxonomy since the generation of the expert
binning in 2009. Both PPS+ and PP assignments were highly consistent with the MG
assignments made by the + component of PPS+ alone, though only a small number
of scaffolds with marker genes could be compared (7–23% for different ranks). While
PPS+ had a larger overlap (‘% agreement’) with the MG assignments at the genus rank,
PP had a larger overlap (‘% agreement’) with the MG assignments at the family rank.
Moreover, we compared the number of taxonomic assignments for individual methods
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Table 4 Comparison to an expert binning based onmarker genes. Comparison of the taxonomic as-
signments of PPS+ versus PhyloPythia (PP), with expert guidance for sample-derived model construction
(Turnbaugh et al., 2010) for the human gut scaffolds (161, 343 kb) based on marker genes (MG), using
the + component of PPS+. The measure ‘% agreement’ represents the percentage of bp assigned by both
methods to the same taxonomic identifiers at a given rank, whereas ‘kb agreement’ is the corresponding
number of kb assigned by both methods to the same taxonomic identifier. Scaffolds assigned by only one
method are not considered in this comparison. Bold numbers correspond to the best values, whereas italic
numbers indicate the worst values.

Comparison Rank % agreement kb agreement

PP vs PPS+ Superkingdom 99.6 160,617
MG vs PP Superkingdom 99.7 38,314
MG vs PPS+ Superkingdom 99.5 38,220
PP vs PPS+ Phylum 95.4 149,213
MG vs PP Phylum 96.9 17,771
MG vs PPS+ Phylum 98.7 18,065
PP vs PPS+ Class 97.0 145,887
MG vs PP Class 98.1 17,599
MG vs PPS+ Class 100.0 17,869
PP vs PPS+ Order 98.0 145,373
MG vs PP Order 98.3 17,494
MG vs PPS+ Order 100.0 17,764
PP vs PPS+ Family 69.5 95,779
MG vs PP Family 90.7 13,047
MG vs PPS+ Family 83.7 12,013
PP vs PPS+ Genus 74.1 78,686
MG vs PP Genus 91.6 12,235
MG vs PPS+ Genus 94.9 11,479

(Fig. 3): PPS+ assigned sequences to low-ranking taxa down to the species level, in
agreement with theMG assignments, while PP often assigned the respective sequences only
to the parental taxa. This demonstrates that PPS+ can generate a high quality taxonomic
binning in a fully automated manner.

Throughput comparison
The throughput of the individual methods for contig assignments of the human gut sample
was calculated (Supplemental Information 1, Section 3.3, 3.4 and 5.3). The throughput of
Kraken substantially varied between 38.4Mb/h and 4.2 Gb/h in our experiments, depending
on whether its large (∼200 GB) reference database was already loaded in the main memory
or not, therefore Kraken is the fastest method in high performance environments. When
only the prediction step of PPS+ was considered, PPS+ assigned up to 0.5 Gb/h and was
more than 7 times faster than the homology-based methods (Fig. 4). This is relevant
when PPSmodels are reused for the classification of another sample. Moreover, unlike the
homology-based tools and Kraken, PPS+ can be run on a standard laptop, as it requires
much less main memory (see Supplemental Information 1, Section 3.4 for the hardware
configurations used).
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Figure 3 Comparison to expert binning based onmarker genes. The amount of assigned bp by
PhyloPythia (PP), PhyloPythiaS+ (PPS+) and taxonomically informative marker genes directly (MG)
to each taxon are indicated by the pie chart sizes on a log-scale for the human gut metagenome sample
(Turnbaugh et al., 2010; Patil, Roune & McHardy, 2011). PhyloPythiaS+ automatically determined the
taxa to model from the sample. For the expert-trained PhyloPythia, the taxa to model were specified by an
expert, and were included in the model if they were covered by sufficient reference sequence data retrieved
separately from the sample and from sequenced human gut isolates. PhyloPythiaS+ assigned sequences
to low-ranking taxa down to the species level, in agreement with the marker gene assignments, while
PhyloPythia often assigned these sequences to the parental taxa. For theMG assignments, a negligible
amount—only two contigs (3.6 kb) of two scaffolds (231 kb)—were used as sample-derived training data
for PPS+; as mainly sample contigs (2.5 Mb) that were not part of scaffolds were used as sample-derived
data to train PPS.

CONCLUSIONS
We describe a taxonomic assignment program that produces accurate assignments with a
precision of 80% or more also for low-ranking taxa from metagenome samples. PPS+ is
a fully automated successor of the PhyloPythiaS software. It automatically determines
the most relevant taxa to be modeled and suitable training sequences directly from
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Figure 4 Empirical comparison of execution times. The throughput was measured in Mb and the num-
ber of sequences classified within 1 h with one execution thread, using all assembled contigs of the human
gut metagenome dataset on a server computer with an AMD Opteron 6386 SE 2.8 GHz processor and 512
GB of RAM. Default settings were used for all methods (Supplemental Information 1, Section 3.5–3.7).
BothMEGAN4 and taxator-tk were run using BLAST. ForMEGAN4, only the runtime of BLAST was con-
sidered, as the runtime of the subsequent algorithm was negligible. For PhyloPythiaS and PhyloPythiaS+,
the throughput was calculated for the prediction step and both steps (training and prediction). The former
is relevant when using previously generated models for the classification of multiple samples. The execu-
tion time shown for PhyloPythiaS is approximately three times better than that for the original release, as
we incorporated the new k-mer counting algorithm. PhyloPythiaS+ was the only method that could also
be executed on a standard laptop (NB) with an Intel i5 M520 2.4 GHz processor, 4 GB of RAM and 150
GB disk space.

the input sample, which are then used to generate a sample-specific structured output
SVM taxonomic classifier for the taxonomic binning of a sample. This enables its use
for researchers without experience in the field or time to search for suitable training
sequences for themanual construction of well-matching taxonomic classifier to a particular
metagenome sequence sample.

PPS+ is best suited for the analysis of large NGS metagenome samples with assembled
contigs (> 1kb) carrying marker genes or datasets including the high quality longer
PacBio (Chin et al., 2013) consensus reads. Contrary to some recent methods for the
taxonomic profiling or binning of multiple similar samples (Sunagawa et al., 2013),
PPS+ can be also applied to individual samples. PPS+ requires only 100 kb of sample-
derived data to model a bin, while homology-based methods require large related reference
genome or draft genome sequence collections for substantial assignments to low-ranking
taxa. Our experiments on both real and simulated metagenome samples showed that
PPS+ automatically reconstructed many low-ranking bins from metagenome samples,
such as for genera and species, representing draft genomes or pan-genomes of different
community members.

The novel implementation of the k-mer counting algorithm accelerated k-mer counting
100-fold in comparison to the original PPS software and made PPS+ overall up to three
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times faster. The method performed favorably in comparison to all state-of-the-art k-mer
counting software for the simultaneous enumeration of 4–6-mers, commonly used for
composition-based binning.

PPS models can be reused when classifying multiple samples from the same or similar
environments. When comparing assignment with PPS+ to MEGAN4 and taxator-tk,
PPS+ showed a competitive processing time, allowing to process up to 0.5 Gb of sequences
per hour with a given PPS model on a single core with much lower main memory
requirements, while MEGAN4 processed 0.065 Gb and taxator-tk 0.03 Gb (Fig. 4). The
fastest method in the comparison was Kraken with up to 4.2 Gb/h; however, we have
found that Kraken should be used only for well-studied environments, for which many
closely related (draft) genomes have been sequenced, as an alternative to alignment-based
methods, as its use for samples originating from novel environments is very limited
(Fig. 2).

In terms of assignment quality, we found that PPS+ often outperformed MEGAN4
and Kraken in terms of precision, recall and consistency. Taxator-tk performed best
in terms of precision and consistency, but assigned substantially fewer sequences to
low taxonomic ranks. PPS+ also excelled in determining the taxa that were part of the
simulated metagenome community. We found that the fully automated PPS+ binning can
be as good as an expert-guided binning with the original PhyloPythia implementation.
PPS+ also showed a substantially improved assignment performance compared to the
generic PPS model.

To conclude, the newly introduced self-training (+) component and the faster k-mer
counting algorithm implemented in PPS+ allow users to generate high quality taxonomic
binnings of metagenome samples in a high-throughput fashion, without requiring
expensive hardware, manual intervention and expert knowledge. It should be helpful
to a wide range of users. An initial version of the software has been already employed for
the taxonomic binning of a metagenome sample from reindeer guts by Pope et al. (2011a)
and it is currently used in several other projects: for instance, a PPS+ binning of shotgun
metagenome samples indicated the likely metabolite flow and participating microbial
phylotypes for a biogas-producing microbial community tolerant of high ammonia levels
(Supplemental Information 2).

PPS+ is distributed with a large reference sequence collection (containing Bacterial and
Archaeal data) in a virtual machine, which makes it easy to install. This allows metagenome
sample analysis on a standard laptop under Windows, Unix or OS X systems.
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