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ABSTRACT
Heteroplasmy is the presence of two or more organellar genomes (mitochondrial
or plastid DNA) in an organism, tissue, cell or organelle. Heteroplasmy can be
detected by visual inspection of Sanger sequencing chromatograms, where it appears
as multiple peaks of fluorescence at a single nucleotide position. Visual inspection
of chromatograms is both consuming and highly subjective, as heteroplasmy is
difficult to differentiate from background noise. Few software solutions are available
to automate the detection of point heteroplasmies, and those that are available are
typically proprietary, lack customization or are unsuitable for automated heteroplasmy
assessment in large datasets.
Here, we present PHFinder, a Python-based, open-source tool to assist in the detection
of point heteroplasmies in large numbers of Sanger chromatograms. PHFinder
automatically identifies point heteroplasmies directly from the chromatogram trace
data. The program was tested with Sanger sequencing data from 100 humpback whales
(Megaptera novaeangliae) tissue samples with known heteroplasmies.
PHFinder detected most (90%) of the known heteroplasmies thereby greatly reducing
the amount of visual inspection required. PHFinder is flexible and enables explicit
specification of key parameters to infer double peaks (i.e., heteroplasmies).

Subjects Bioinformatics, Genetics, Marine Biology, Molecular Biology, Zoology
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INTRODUCTION
Heteroplasmy is the presence of multiple organellar (mitochondrial or plastid) genomes
in an organism, tissue or cell. Despite advances in so-called next-generation sequencing,
Sanger sequencing (Sanger, Nicklen & Coulson, 1977) is still widely employed in studies
targeting specific highly-variable organellarDNA regions, such as themitochondrial control
region. The DNA sequence is inferred from the resulting chromatogram, where the base
at each nucleotide position is represented by a fluorescent signal of base-specific colour
(each representing a different deoxynucleotide). Heteroplasmy, due to point mutations,
is apparent as two fluorescent peaks in the same nucleotide position. All other factors
being equal, the relative height of each fluorescent peak reflects the relative abundance of
each deoxynucleotide, and, by extension, the two mtDNA haplotypes (Irwin et al., 2009).
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Figure 1 Three examples of point heteroplasmy in different chromatograms. An asterisk (*) indicates
Putative heteroplasmies. (A) Completely overlapping fluorescent peaks (likely heteroplasmy). (B) Signif-
icantly lower secondary fluorescent peak (likely background noise). (C) Heteroplasmy with background
noise, making it more difficult to detect.

Full-size DOI: 10.7717/peerj.16028/fig-1

Heteroplasmy due to insertions or deletions results in multiple fluorescent peaks at several
consecutive nucleotide positions (length heteroplasmy).

Detecting heteroplasmy is necessary when studying certain mitochondrial diseases
(Stewart & Chinnery, 2015), conducting forensic work (Salas, Lareu & Carracedo, 2001) or
estimating mitochondrial mutation rates (Millar et al., 2008). Failing to take heteroplasmy
into consideration can also introduce errors in other kinds of studies. For example,
in relatedness studies, maternal relatives might appear to have different mitochondrial
haplotypes due to different heteroplasmic proportions (Klütsch et al., 2011). Visual
inspection of all chromatograms to detect putative double fluorescent peaks is impractical
in large datasets, and difficult to replicate given the subjective nature of the assessment
(Fig. 1).

Previous studies have applied different criteria to infer heteroplasmies from the ratio
of the two fluorescent peaks in a putative heteroplasmic nucleotide position (e.g., >10%,
Brandstätter, Niederstätter & Parson, 2004; Irwin et al., 2009; or >30%, Baker et al., 2013)
or altogether omitted (e.g., Vollmer et al., 2011).

Existing software can facilitate the automatic detection of double fluorescent peaks
in chromatograms. These are either proprietary (e.g., SEQUENCHER, GeneCodes Inc.,
Ann Arbor, MI) or lack customization and tend to disregard some double fluorescent
peaks as background noise, or are unable to process large datasets (e.g., SNAPGENE®

VIEWER v4.3.7, GSL Biotech LLC, Boston, MA, USA). We developed a bioinformatic
pipeline (point heteroplasmy finder, PHFinder) as a means to screen DNA chromatograms
in the commonly employed AB1 format (Applied Biosystems Inc, 2006); generated by DNA
sequencers, such as the Applied BiosystemsTM Genetic Analyzer series (Thermo Fisher
Scientific Inc., Waltham, MA, USA) to detect double fluorescent peaks in an automated
manner. PHFinder facilitates the detection of point heteroplasmies by applying filters using
average base call quality scores and the level of background noise in a user-specified target
region of the relevant DNA sequence. Portions of this text were previously published as
part of a preprint (https://www.biorxiv.org/content/10.1101/2022.08.17.501710v1).
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Implementation
PHFinder was written in Python v3.6.8 (Van Rossum & Drake Jr, 1995) and BASH (Ramey
& Fox, 2016). PHFinder dependencies include Biopython v1.73 (Cock et al., 2009) and
BOWTIE2 (Langmead & Salzberg, 2012).

First, a FASTQ file (sequence of nucleotides and the associated Phred quality scores
Ewing et al., 1998) is extracted from each AB1 file. FASTQ files are subsequently aligned
against a reference sequence with BOWTIE2 and the result is saved in a single Sequence
Alignment Map (SAM) format file (Li et al., 2009) per alignment. The orientation of
the chromatogram (forward or reverse) and starting point of the reference sequence is
subsequently extracted from each SAM file in order to position the trace information to
the correct region in each chromatogram.

The data elements stored with AB1 files are associated with specific tags. PHFinder
uses the information contained in the AB1 tags; DATA9 to DATA12 (trace information
for guanine, adenine, thymine and cytosine); PBAS2 (the sequence of base calls); PLOC2
(location of base calls) and PCON2 (per-base call quality score) as specified in the original
file fomat (Applied Biosystems Inc, 2006).

The presence of a double fluorescent peak (i.e., a potential heteroplasmy) was inferred
from the values of three ad hoc indexes calculated from the above data:
1. Average base call quality (AQ) of the bases in the targeted DNA sequence region

(measured as Phred quality scores, ranging from 0 to 93).
2. Main ratio (MR) of a double fluorescent peak, i.e., the height of the second highest

peak as a fraction of the highest peak (Fig. 2).
3. Secondary ratios (SR) of the three down- and upstream nucleotide positions flanking

the putative heteroplasmic position; estimated as the height of the second highest peak
as a fraction of the highest peak (Fig. 2).
A position is inferred to be heteroplasmic by PHFinder if the three indexes described

above exceeds user determined threshold values (Fig. 2).

MATERIAL AND METHODS
A test set of mitochondrial control region DNA sequences were determined in DNA
extracted from 100 skin samples collected during a long-term study of individual humpback
whales (Megaptera novaeangliae) in the Gulf of Maine (North Atlantic). DNA sequence
data were randomly selected from 30 samples with predetermined heteroplasmies as well
as from 70 samples that appeared homoplasmic. Heteroplasmies were identified based on
comparison to samples from close maternal relatives (known through longitudinal studies
of individuals or microsatellite markers) or experimental confirmation using the dCAPS
technique (Neff et al., 1998, data not shown).
Skin samples were collected by biopsy techniques (Palsbøll, Larsen & Hansen, 1991),

under U.S. NOAA, ESA/MMPA permits 787, 633-1483 and 633-1778, and stored in
5 M NaCl with 25% DMSO (dimethyl sulfoxide, Amos & Hoelzel, 1991) at -20/-80
degrees Celsius (◦C) prior to DNA extraction. Total-cell DNA was extracted by standard
phenol/chloroform extractions as described byRussel & Sambrook (2001) or usingQIAGEN
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Figure 2 Main ratio (MR) and secondary ratio (SR) indexes.
Full-size DOI: 10.7717/peerj.16028/fig-2

DNEasyTM Blood and Tissue Kit (QIAGEN Inc., Hilden, Germany) following the
manufacturer’s instructions. Extracted DNA was stored in 1xTE buffer (10 mM Tris–HCl,
1mM EDTA, pH 8.0) at −20 ◦C.

The sequence of the first 500 base pairs (bps) of the 5′ end of the mitochondrial
control region was determined as described previously by Palsbøll et al. (1995) using
the oligo-nucleotide primers BP16071R (Drouot et al., 2004) and MT4F (Arnason,
Gullberg & Widegren, 1993). Unincorporated nucleotides and primers were removed
from the polymerase chain reactions (PCR, Mullis & Faloona, 1987) with Shrimp Alkaline
Phosphatase and Exonuclease I, as described by Werle et al. (1994). Subsequent cycle
sequencing conducted with the above-mentioned nucleotide primers and the BigDye®

Terminator v3.1 Cycle Sequencing kit (Applied Biosystems Inc., Waltham, MA, USA)
following the manufacturer’s protocol. The cycle sequencing products were precipitated
with by ethanol and sodium (Russel & Sambrook, 2001). The order of sequencing fragments
was resolved by electrophoresis on an ABI 3730 DNA Analyzer® or and ABI PRISM® 377
DNA Sequencer (Applied Biosystems Inc., Waltham, MA, USA).

All chromatogramswere visually inspected for point heteroplasmies using SNAPGENE®

VIEWER (v4.3.7, GSL Biotech LLC). PHFinder was tested and validated (on GNU/Linux
systems) by analysing the dataset with different threshold values for each index (MR: 15, 25,
35, 45; SR: 0.2, 0.3, 0.4, 0.5; and AQ: 30, 40, 50, 60) resulting in 64 different combinations
of index threshold values. The results of each index threshold combination were visualized
to assess which combination was most efficient in detecting the known heteroplasmies;
specifically, the number of detected heteroplasmic AB1 files versus the number of false
positives (nucleotide positions that were incorrectly deemed as heteroplasmic).
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Figure 3 Number of detected heteroplasmic AB1 files from a total of 43 vs. false positives for each
combination of index threshold values divided according to AQ indexes (30, 40, 50, 60).

Full-size DOI: 10.7717/peerj.16028/fig-3

RESULTS
The data from the 100 samples comprised 189 AB1 files (tissue samples were
sequenced between 1-6 times). The first 500 bps of the mitochondrial control region
of M. novaeangliae, started at position 15,490 and ended at position 15,970 according to
the reference mitochondrial genome sequence NC_006927.1 published by Sasaki et al.
(2005), which was also used as reference in the alignment. The analyses conducted here
targeted the region from position 15,540 to position 15,815 (275 bps).

Among the 188 AB1 files, PHFinder was unable to process five (due to software
incompatibilities with data generated by older DNA sequencers) and another 19 files
were empty. Out of the 100 samples, 30 samples (43 AB1 files) contained known point
heteroplasmies at seven different nucleotide positions with MRs ranging from 18 to 88
(Table S1). Figure 3 shows the fraction of these knownheteroplasmies detected by PHFinder
for each combination of index threshold values as well as the number of false positives.

The number of samples and AB1 files included in each analysis varied with the AQ
index: AQ 30, 100 samples and 143 AB1 files. AQ 40, 88 samples and 115 AB1 files. AQ50,
68 samples and 79 AB1 files. AQ60, 37 samples and 15 AB1 files. Detailed results for each
combination of index threshold values are shown in Table S2.

DISCUSSION
PHFinder was developed to assist the detection of point heteroplasmies in large data sets.
The program automates a first pass of the data, reducing the number of AB1 files that need
to be visually inspected. Although PHFinder detected most of the point heteroplasmies
present in the dataset (95.3%), the present analysis revealed some limitations.

Suárez Menéndez et al. (2023), PeerJ, DOI 10.7717/peerj.16028 5/11

https://peerj.com
https://doi.org/10.7717/peerj.16028/fig-3
https://www.ncbi.nlm.nih.gov/nuccore/62184326
http://dx.doi.org/10.7717/peerj.16028#supp-2
http://dx.doi.org/10.7717/peerj.16028#supp-2
http://dx.doi.org/10.7717/peerj.16028


The samples were randomly selected from a large dataset in order to include a wide
range of DNA sequences in terms of overall DNA sequence quality, length, DNA strand
sequenced, as well as corrupted or older AB1 files and different MR values in order to test
PHFinder under realistic conditions. The samples were represented by different numbers
of AB1 files as some samples were re-sequenced several times (i.e., because of bad quality or
to sequence both DNA strands). Among the 100 samples, 30 samples contained a known
heteroplasmic nucleotide position to ensure sufficient data for testing PHFinder.

PHFinder was unable to process five AB1 files due to Biopython’s v1.73 (Cock et al.,
2009) inability to access AB1 files generated by older DNA sequencers (ABI PRISM® 377
DNA Sequencer in this instance). Potential compatibility issues could be due to differences
in the tags in AB1 files, and hence resolved by modifying the tag names in the PHFinder
main script.

The PHFinder assessment targeted the region from position 15,540 to position 15,815
(275 bps) in order to avoid regions of chromatograms with elevated background noise (i.e.,
the 5′ and 3′ ends). This strategy reduced the proportion of false positives of heteroplasmies
as the targeted region usually presents higher average qualities.

Unsurprisingly, the main limiting factor was the average base call quality of the AB1 files.
Low average base call quality is mainly due to elevated background noise which, in turn,
may be erroneously inferred as putative heteroplasmies. These kinds of false positives were
easily recognised as artefacts during subsequent visual inspection of the chromatograms.
Since all putative heteroplasmies highlighted by PHFinder should be visually confirmed,
the most efficient approach is to employ a combination of index threshold values that
yields the highest number of heteroplasmies and lowest number of false positives (for these
data; MR: 20, SR: 0.4 and AQ: 40, Fig. 3). In this study the aforementioned combination
of index threshold values identified 27 (out of 30 known heteroplasmies in 37 AB1 files)
and only eight false positives.

Employing low AQ index threshold values increased the number of AB1 files (and the
corresponding samples) in an assessment, without a similar increase in heteroplasmy
detection, i.e., the overall frequency of heteroplasmy detections was reduced (e.g.,
Fig. 3, AQ30 vs. AQ40). We observed a clear trade-off between the number of detected
heteroplasmies and false positives. Low PHFinder index threshold values (i.e., low MR,
SR, and AQ) increased the number of detected heteroplasmies but also the number of
false positives. Since all samples with putative heteroplasmies require visual inspection,
lowering the threshold index values led to increasing amounts of visual inspection. Applying
higher index threshold values (i.e., a high MR, SR and AQ) had the opposite effect, i.e.,
fewer false positives and less visual inspection accompanied with a lower detection rate of
heteroplasmies.

The SR filter is aimed at filtering out positions where an heteroplasmic double peak
can not be distinguish from the surrounding background noise in a chromatogram. This
filter is useful when there is background noise in the chromatograms but can exclude the
detection of multiple heteroplasmies if they are closer than three base pairs. The filter can
be effectively deactivated by setting a high threshold (e.g., 100) but with the trade-off of
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potentially introducing more noise in the results if the chromatograms do not have very
high quality.

Heteroplasmies with a MR as low as 15% could be potentially detected, based on the
detection limit of Sanger sequencing (Tsiatis et al., 2010). Although the lowest MR in this
study was estimated to 18%, (Table S1), the lowest MR index threshold applied was 15%
in order to assess the effect on the rate of false positives.

The optimal index threshold value combination will likely depend upon the aim of a
study and the overall quality of the DNA sequence chromatograms. If the goal is to compare
heteroplasmy frequencies, then a fairly strict index threshold value combination can be
employed to reduce the number of false positives. In more detailed assessments that are
aimed at identifying as many heteroplasmies as possible (e.g., to detect, novel deleterious
mutations), a lower index threshold value combination will facilitate a higher heteroplasmy
detection rate, but require elevated levels of post-analysis visual inspection. If the targets
are specific, known heteroplasmies (i.e., in a known nucleotide position), a lowered index
threshold value combination can be employed as only putative heteroplasmies in the
targeted positions would require post-analysis visual inspection.

Once double peaks are detected the potential causes need to be considered. Sequencing
artefacts as well as contamination from other samples could cause double peaks in
chromatograms. This is especially important when heteroplasmy has not previously
reported in the study organism. Re-extracting the sample and/or sequencing both the
forward and the reverse strand can help resolve such issues (Rodríguez-Pena et al., 2020).
Biological factors can also result in double peaks, such as parental leakage (Pearl, Welch
& McCauley, 2009), mutations (Suárez-Menéndez et al., 2023) and the presence of nuclear
mitochondrial DNA segments (Wallace et al., 1997). The probability of these events varies
among species and it may affect the pattern of heteroplasmy and the detection accuracy
(e.g., multiple heteroplasmic positions in close proximity of each other). It is key to be aware
of the peculiarities inherent to the specific organism. In some cases, it may be necessary to
further confirm the putative heteroplasmies whether by re-extraction, re-sequencing, next
generation sequencing or dCAPS.

Themain advantage of PHFinder is the ability to customize assessments on a case-by-case
basis. Written in Python, the source code can easily be changed and improved to fit specific
research needs. PHFinder provides the ability to implement and apply explicit assessment
criteria (in terms of base quality and fluorescent peak ratios), thereby facilitating direct
objective comparisons among different data sets. Although a final visual inspection of
chromatograms with putative heteroplasmic sites will always be required, PHFinder greatly
reduces the number of chromatograms requiring visual inspection which is especially
valuable in large datasets.
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Data accessibility
PHFinder scripts and all data used in this article are available online from https://github.
com/MSuarezMenendez/PHFinder and in Zenodo https://doi.org/10.5281/zenodo.8159009,
as well as instructions of how to use PHFinder on the command line.
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