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ABSTRACT
The genetic diversity of a taxon has often been estimated by genetic diversity measures.
However, they assume random sampling of individuals which is often inapplicable.
Except when the distribution of the taxon is limited, researchers conventionally choose
several sampling locations from the known distribution and then collect individuals
from each location. Spatial sampling is a formalized version of the conventional
sampling, which objectively provides geographically even sampling locations to cover
genetic variation in a taxon assuming isolation by distance. To evaluate the validity of
the spatial sampling in estimating genetic diversity, we conducted coalescent simulation
experiments. The sampling locations were selected by spatial sampling and one sample
was collected from each location for the sake of theoretical simplicity. We also devised a
newmeasure of genetic diversity, ς , which assumes spatial sampling and is independent
of allele frequency. This new measure places an emphasis on rare and phylogenetically
distant alleles which have relatively small effect on nucleotide diversity. Therefore, it can
complementarily serve for conservation studies although it cannot be used to estimate
population mutation rate. We compared ς with the other diversity measures in the
experiments. Nucleotide diversity, expected heterozygosity and ς showed within 3%
relative biases on average while Watterson’s theta was 31% overestimation on average.
Thus, genetic diversities other than Watterson’s theta held good robustness under the
spatial sampling.

Subjects Biodiversity, Biogeography, Bioinformatics, Ecology, Genomics
Keywords Genetic diversity, Sampling

INTRODUCTION
Estimating genetic diversity within a taxon is important in conservation and evolutionary
biology. Genetic diversity is considered as one of the three components of biodiversity to
be conserved in the Convention on Biological Diversity (https://www.cbd.int/). Because
estimating genetic diversity is costly, rougher and more inexpensive evaluation indices
without using genetic data have recently been suggested (e.g.,Hoban et al., 2020). However,
genetic diversity has been originally represented by measures like heterozygosity (Nei &
Tajima, 1981) or nucleotide diversity (Nei & Li, 1979; Nei & Tajima, 1981) which have
been developed in population genetics. These measures depend on the allele frequency
which assumes random sampling. Random sampling is not always equivalent to haphazard
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sampling which extracts samples without planning or arbitrariness. In random sampling,
all samples must have an equal probability to be extracted from statistical populations.

Assuming random sampling in estimating statistics is common in population genetics.
Violating this assumption of random sampling can trigger an unexpectable bias in
estimation of the statistical parameters, and this means that the current measures of
genetic diversity can be imprecise in practice except when the whole population size of
the taxon is small enough to enable random sampling. Tajima (1995) investigated the
effect of non-random sampling on segregating sites, heterozygosity and average number of
nucleotide differences. He reported that its effect on the segregating sites was large whereas
that on heterozygosity and average number of nucleotides differences was negligible. The
sampling scheme in the study (Tajima, 1995) was, so to speak, double random sampling,
in which sequences were randomly sampled at first, and then the sampled sequences
were again randomly sampled. The merits of this sampling scheme are that it can be
mathematically analyzed, and the demerits are that it is far from practical procedures.

When one desires to estimate natures of a taxon, the statistical populations are considered
to be all individuals of the taxon. If the distribution of the taxon is restricted and all the
individuals are easily found, random sampling can be conducted. In the other ordinal cases
where the distribution is vast and all the individuals are uncountable, random sampling is
difficult to conduct because one cannot assign an equal probability to be sampled to each
individual. A two-stage sampling is usually applied to this case. The two-stage sampling
of a taxon chooses the multiple sampling locations from the known distribution first and
then conducts sampling of individuals in each sampling location (e.g., Maltagliati et al.,
2010). This is a prevailing sampling method, but is not equivalent to random sampling of
individuals.

The conventional two-stage sampling lacks an objective criterion to select the sampling
locations. Meanwhile, a kind of sampling methods provides the way to objectively decide
the sampling locations. We here call them ‘‘comprehensive sampling’’. Comprehensive
sampling aims to select the most diverse set of samples covering the range of the genetic
diversity of a taxon. Quijano, Iriondo & Torres (2012) created a sampling method which
utilized ecological information to cover the diversity. Theirmethod extracts themost diverse
sampling locations based on isolation-by-environment, an assumption that individuals
at different environments should be genetically different. The spatial sampling by Aoki
& Ito (2020) extracts the best sampling locations which represent the diversity of a taxon
assuming isolation-by-distance (IBD), a theory that geographically closer individuals are
genetically closer (Malécot, 1955; Kimura & Weiss, 1964; Weiss & Kimura, 1965). Spatial
sampling does not require environmental information, and therefore, it is easily applied to
all kind of taxa.

The comprehensive sampling provides objectivity and reproducibility to the
conventional sampling method and is expected to collect genetically representative samples
of a taxon. However, the bias and accuracy of the genetic diversity estimated through the
comprehensive sampling has never been examined by comparing its statistical parameter.
The existing genetic diversity measures, such as nucleotide diversity, assumes random
sampling, and there is still no measure of genetic diversity assuming the comprehensive
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sampling. The purpose of this study is to clarify suitable measure under the assumption
of the comprehensive sampling. For this purpose, we quantify the bias and accuracy of
the genetic diversity measures estimated under the comprehensive sampling. We also
developed a new measure of genetic diversity theoretically applicable to the comprehensive
sampling which does not depend on the allele frequencies. We compared this new measure
to the existing measures using coalescent simulation data. This study focuses on a measure
based on a single random sample per location and spatial sampling. One reason for using
a single sample per location is that its simplicity is a good start point to build the theory.
Another reason is that sampling one individual per location is the easiest way of random
sampling from a location since one does not have to consider correlation of the sampling
probability among multiple samples. The reason for using spatial sampling is that it
has the basal theory of IBD and easier applicability than sampling using environmental
information.

MATERIALS & METHODS
Existing and new genetic diversity measures
The expected heterozygosity He (Nei & Tajima, 1981) is defined as

He = 1−
N∑
i=1

p2i , (1)

where N is the total number of sequences in a population, and pi is allele frequency. Nei
(1977) showed the unbiased estimator of the expected heterozygosity as

Ĥe =
2n

(2n−1)

(
1−

n∑
i=1

p2i

)
, (2)

where n is the sample size.
The nucleotide diversity π (Nei & Li, 1979; Nei & Tajima, 1981) is defined as

π =

N∑
i=1

N∑
j=1

pipjπij, (3)

where N is the total number of sequences in a population, pi and pj are allele frequency of
the sequence i and j, and πij is the substitution rate, or the number of nucleotide differences
per nucleotide site between the sequence i and j. Clearly, πij = 0 when i= j. In this measure,
the allele frequencies pi and pj require the assumption of random sampling for unbiased
estimation. To distinguish a statistic and the statistical parameter of nucleotide diversity,
we denote the statistic as π̂ , namely

π̂ =

n∑
i=1

n∑
j=1

pipjπij .

According to Nei & Tajima (1981), the unbiased estimator π for the sample size n is

π̃ =
n

(n−1)

n∑
i=1

n∑
j=1

pipjπij .

Aoki et al. (2023), PeerJ, DOI 10.7717/peerj.16027 3/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.16027


Watterson’s theta (Watterson, 1975) is one of estimators of population mutation
rate. Therefore, there is no parameter and only an estimator unlike the other measures
introduced here. It is defined as

θw =K/

(n−1∑
i=1

1/i

)
,

where K is the number of segregating sites.
The new statistical parameter ς that does not rely on random sampling was defined

without a frequentistic element like an allele frequency:

ς =


1

M (M−1)

M∑
i=1

M∑
j=1

πij (M > 2)

0(M = 1),

(4)

where M is the total number of allele types, or the number of distinct alleles within a
taxon. The character ς (final sigma) etymologically comes from ‘‘s’’ of ‘‘substitution rate’’,
avoiding σ which is often used for standard deviations. The ς ranges from 0 to 1; when
a population contains only one allele, ς = 0 by its definition, and when all alleles in
a population are completely different from each other (πij = 1), ς = 1. The statistical
parameter ς is interpreted as the average substitution rate among all allele types within
a taxon. The nucleotide diversity π includes the information of the allele frequency, and
provides the highest value when all alleles with the same πij have an equal frequency.
On the other hand, the average substitution rate ς does not count allele frequencies or
the rarity of each allele. Because the new measure ς is not affected by allele frequency
which is practically difficult to estimate and rare alleles are expected to be averagely
sampled via spatial sampling, the new measure has theoretically its advantage in unbiased
estimation under spatial sampling. Although the new measure cannot be used to estimate
the population mutation rate like the nucleotide diversity, the new measure can serve as a
complementary genetic measure of population which emphasizes rare and phylogenetically
distant alleles. When all alleles are different from each other (M = N, pi = 1/N for i = 1
... N ), ς is always larger than π and converges to π under N →∞. Therefore, when the
observed sequence is long enough to distinguish all the samples and the sample size is large,
ς and π provide an almost identical value. Concerning ς , we can suppose a statistic ς̃ ,

ς̃ =


1

m(m−1)

m∑
i=1

m∑
j=1

πij (m> 2)

0(m= 1).

(5)

Here, m indicates the number of allele types in the sample. Note that when m = n, ς̃ =
π̃ . Then, its expected value for m >2 is

E [ς̃]= E

 1
m(m−1)

m∑
i=1

m∑
j=1

πij

. (6)
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Formula (6) is the expected value of average substitution rates among all allele types in
the population, and this is exactly equivalent to ς . Thus,

E [ς̃]= ς

However, this estimator assumes that all allele types are randomly sampled, and this
assumption is usually not fulfilled by random sampling of individuals of a taxon. Generally
speaking, closely related alleles are relatively common in a taxon, and distantly related
alleles are rare. Therefore, the estimator ς̃ based on random sampling of individuals is
considered to underestimate ς by missing rare distant alleles.

The estimator ς̃ based on random sampling is theoretically inappropriate to estimate
ς . Then, how about spatial sampling of locations and random sampling of one individual
in each location? We use another statistic as the estimator of ς . We define the following
auxiliary measure

ςn=maxSn(n= 2,3,...,M ,...,N ), (7)

where Sn is a set of ς̃s in formula (7) with the sample size n. For example, ς2 is ς̃ calculated
between the two most distant sequences in the population. Clearly, ςN= ςM= ς . In some
cases, ςn can be equal to ςn+1. For example, when ς2 is calculated from the two sequences
‘AAA’ and ‘GGG’ and third sequence is ‘TTT’, then ς2 = ς3 = 1.0. Likewise, ς4 = 1.0
when the fourth sequence is ‘GGG’. Thus, ςn decreases or does not change as the sample
size n increases. We now prove that ς̃ based on spatial sampling is theoretically equivalent
to ςn in the supporting information (S1). Nucleotide sequences are mathematically
too complicated. Therefore, we indirectly treat them as substitution rates in the proof.
Discussion about the assumptions will be described in the Discussion section.

Since ςn monotonically decreases as n increases, ςn ≥ ς . When n→ N, where N is
the total population size, ςn→ ς . Thus, ς̃ based on spatial sampling is also a consistent
estimator of ς . When all the alleles are different, namely n = m, ςn = π̃ . Considering
from this fact, when ςn> π̃ , it means that the frequencies of the alleles which have high
substitution rate among them are relatively low, and when π̃ > ςn, such allele frequencies
are relatively high. Because phylogenetically distant alleles are usually rare, π̃ should be
larger than ςn in ordinary cases. The ςn will be larger than π̃ when the species is severely
decreasing and its distribution is divided, for example.

The calculation method of ς as a measure of genetic diversity is the same as that of π . It
can be calculated for each locus as well as for the sequences which is made by concatenating
multiple loci. Indels in sequences are not directly used to calculate π or ς , but gap coding
(e.g., Borchsenius, 2009) enables this as long as its maximum parsimony estimation stands.
This method also enables to use microsatellite data to calculate π or ς .

We now denote the estimated ς as ς̂ . Simulation experiments are necessary to analyze
the effects of the simulation parameters and to compare the estimated ς and π .

Estimation test of genetic diversities
First, we define the terms used in the following simulation experiments. Subpopulation
means a group of individuals where all individuals randomly breed. A portion of the
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individuals migrates to the other subpopulation(s) every generation, and the portion is
defined by the migration rate. Population means a group composed of all subpopulations.
Meanwhile, statistical population and statistical sample mean data to be estimated and data
extracted from the statistical population, respectively. There are two kinds of migration
pattern, the stepping stonemodel and islandmodel. In the stepping stonemodel, migration
occurs only between adjacent subpopulations. The adjacency is judged in a gridmanner, and
the maximum number of adjacent subpopulations is four. On the other hand, migration
in the island model occurs between all the pairs of subpopulations. Variables used in the
simulation experiments are described as simulation parameters, whereas the true values of
the genetic diversity measures to be estimated are described as statistical parameters.

We start from the explanation of the common part of experiments. The experiments
were conducted using coalescent simulations on 10,000 haploid individuals. The coalescent
simulation was conducted using ms (Hudson, 2002). However, the poor pseudorandom
number generator implemented in ms (a linear congruential generator) was replaced by
dSFMT which is a descendant of Mersenne twister (Matsumoto & Nishimura, 1998). The
replaced version of ms is available at https://github.com/heavywatal/msutils. The resultant
coalescent trees were processed with Seq-Gen (Rambaut & Grass, 1997) to obtain fasta
sequence files. One sequence per individual was generated and the sequence length was
set to 1,000. The mutation rate per generation followed that used in the comparison of
coalescent simulators in Chen, Marjoram &Wall (2009): 2× 10−8/bp. The generalized
time reversible (GTR) model (Tavaré, 1986) was used for the substitution model. We
extracted 10, 20, 30, 40 and 50 sequence samples and calculated π̃ for each sample size.
The simulation was iterated 20 times for each combination of the simulation parameters,
including the sample size. Although ς̂ is an unbiased estimator of ςn, it was infeasible to
calculate ςn for each sample size due to combination explosion. Therefore, we compared
ς̂ to ς10000 = ς of which ς̂ was a consistent estimator. Likewise, π were calculated from
each coalescence result using all the 10,000 sequences as the statistical parameter to be
estimated by π̃ . We also calculated expected heterozygosity He and per-site Watterson’s
theta θw . The Watterson’s theta was divided by 1,000 to obtain the per-site values. The
nature of estimators is usually analyzed by multiple data on a single statistical parameter.
For example, a bias in the estimation of population mean under random sampling is the
difference between the population mean and the mean of data randomly extracted multiple
times. However, it is impossible to obtain multiple data on a single statistical parameter
in this study, because spatial sampling can provide only a single set of locations and data
per simulation. Therefore, instead, we compared the estimators by their bias relative to
each statistical parameter. When comparing the mean of the relative biases or the scaled
mean error (SME), e.g., the means of (ς̂n−ς)/ς , we checked the sign and size of their
relative biases for each simulation result using R (R Core Team, 2022). The accuracy or
the scaled root mean square error (SRMSE) (Walther & Moore, 2005), e.g., the means of
|(ς̂n−ς)/ς | was calculated. The standard deviations of the bias and accuracy were also
calculated. An estimator with its relative bias nearer to zero is considered to have smaller
bias. If the difference of the accuracy is below zero, it means ς̂n has better accuracy than
π̃ . Now, we move to the explanation of parts specific to each experiment. In this study,
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Table 1 A list of the simulation experiments.

No. Migration Subpopulation structure Subpopulation size

#1 Stepping stone model Designed in a grid manner
(A–D in Fig. 1 Left top)

Even

#2 Stepping stone model Designed in a grid manner
(A and C in Fig. 1 Left top)

Uneven (Fig. 1 Right top)

#3 Island model Random (Fig. 1 Left bottom) Even
#4 Island model Random (Fig. 1 Left bottom) Uneven (Fig. 1 Right bottom)
#5 No migration Single population NA

Notes.
NA, Not applicable since there is no subpopulation.

five types of simulation experiments were conducted to evaluate the estimation of genetic
diversity measures (Table 1).

The experiments #1 and #2 were based on the stepping stone model and were simulated
under even and uneven subpopulation sizes, respectively. The migration rates were
0.001, 0.01, 0.1, 0.5 and 0.9. All adjacent pairs of the subpopulation had the same
migration rates. The following four types of stepping stone subpopulation structure
were prepared (Fig. 1). The x × y in the following explanations means the numbers
of longitudinal (x) and latitudinal (y) subpopulations. A: 100×1 linear structure. B:
100× 1 circular structure. C: 10× 10 plane structure. D: 50× 2 cylindrical structure.
These subpopulations were positioned on the artificial coordinates. Since all pairs
of the subpopulations had an equal migration rate, coordinates were positioned to
have an equal distance between adjacent locations or subpopulations. The distances
were calculated in the web site of Geospatial Information Authority of Japan (https:
//vldb.gsi.go.jp/sokuchi/surveycalc/surveycalc/bl2stf.html), and was based on Geodetic
Reference System 1980 (GRS80).Gst (Pons & Petit, 1995) andNst (Pons & Petit, 1996) were
calculated for each migration rate to investigate the differentiation among subpopulations.
The experiments #1 used all of these subpopulation structures, while the experiments
#2 used only the subpopulation structure A and C. Both of the experiments had 100
subpopulations. All the subpopulations in the experiment #1 had an even subpopulation
size, namely 100 individuals in each subpopulation. On the other hand, the subpopulation
sizes in the experiment #2 followed one-dimensional or two-dimensional truncated normal
distribution with the mean zero and the variance one (Fig. 1 Right top). The subpopulation
sizes in the experiment #2 were rounded to integers. This distribution of the individuals was
intended to follow the center-periphery hypothesis (Lawton, 1993), which assumed that
individuals at the center of the distribution were abundant and that those at the margins
were few. This is the reason for not using the structure B and D that do not have an ‘‘edge’’.
Then, using the coordinates of the subpopulations, spatial sampling was conducted using
Samploc software (Aoki & Ito, 2020) to extract 10, 20, 30, 40 and 50 subpopulations. The
simulated annealing in Samploc was repeated 100,000 times, and calculation of the distance
was based on GRS80. Finally, one sequence was randomly extracted per location. Mersenne
twister was used for the pseudorandom number generator. Namely, we first sampled the
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Figure 1 Subpopulation structures and subpopulation sizes used in the experiments #1–4.Note that
the subpopulation sizes in the experiments #1 and #3 are even and not shown in the panels. Left top panel:
artificial coordinates used for the experiment #1 and #2. (A) 100×1 linear structure. (B) 100×1 circular
structure. (C) 10×10 plane structure. (D) 50×2 cylindrical structure. Numbers on the figures show the
latitude and longitude. Right top panel: Distribution of the subpopulation sizes for the population in the
experiment #2. Structure A (linear, left) and C (plane, right). (Left) The vertical axis shows the subpopula-
tion sizes. The horizontal axis shows the relative coordinate of each subpopulation. (Right) The horizontal
(x and y) axes show the relative coordinate of each subpopulation. The remaining vertical axis shows the
subpopulation sizes. Left bottom panel: Randomly generated subpopulation locations for the experiment
#3 and #4. Right bottom panel: Relationship between the degree of the latitude (horizontal axis) and the
subpopulation size (vertical axis) in the experiment #4. The circles correspond to the subpopulations.

Full-size DOI: 10.7717/peerj.16027/fig-1

subpopulations in geographically even manners, and then we randomly sampled one
sequence per subpopulation.

The experiments #3 and #4were based on the islandmodel. A total of 100 subpopulations
were set in random (uniform) coordinates (Fig. 1 Left bottom).Gst andNst were calculated
just like the experiments #1 and #2. The latitude and longitudewere decided by independent
pseudo random numbers based on Mersenne Twister. The migration rate mij between
subpopulation i and j was given by the following formula:

mij =
r
d
·

1/dij
1/(
∑L

i=1
∑L

j=1dij)
,

where dij is the distance between subpopulation i and j, d is the mean of all dij , r is average
migration rates, which were 0.001, 0.01, 0.1, 0.5, and 0.9, and L is the total number of
subpopulations. The given migration rates decreased as the distance increased in inverse
proportion. The distance was calculated based on GRS80. The sample was extracted
by spatial sampling in the same way as experiments #1 and #2. The subpopulation size
in experiment #3 was even (all 100). On the other hand, the subpopulation size of the
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experiment #4 was first approximately given by the next formula:

10,000 ·dnorm(0.027 · lati)
/ L∑

i=1

dnorm(0.027 · lati),

where dnorm(x) is the probability density function of the normal distribution N (x | 0, 1),
lat i is the latitude of the subpopulation and

∑L
i=1dnorm(0.027· lati) is the sum of all dnorm

(0.027 · lat i). The coefficient 0.027 was decided to make the minimum subpopulation
size 10. The obtained relationship between the latitude and the subpopulation size is
shown in the right bottom panel in Fig. 1. This formula provides larger sizes to the
subpopulations nearer to the equator and smaller to ones nearer to the poles, guaranteeing
the total population size 10,000. However, the sizes given by the above formula are not
necessarily an integer. Therefore, we secondly rounded down all the sizes to the integer,
and then increased each of the subpopulation sizes by one until the sum of the sizes
reached 10,000; the increment was preferentially conducted for the subpopulation sizes
with the larger rounded-down residuals. The experiments #3 and #4 were intended to avoid
the non-uniqueness of the result of spatial sampling on the symmetrical subpopulation
structure in the experiments #1 and #2. We will minutely discuss this in the ‘Discussion’
section.

The experiment #5was simulated in a single population. Therewas no subpopulation nor
migration. While random sampling is generally inapplicable for wild taxa, it is applicable
when the taxon is severely threatened, and its distribution and population size are very
restricted. Random sampling is more appropriate rather than spatial sampling, if the
distribution is small enough for panmixis where isolation-by-distance cannot be assumed.
Testing estimation of ς under random sampling is important to enable comparison of
genetic diversities between such a threatened taxon and a non-threatened taxon using the
same measure ς . Here, we conducted the simulation experiment #5 to test the quality of
estimation under random sampling. The samples were extracted from the population by
random sampling based on Mersenne Twister.

RESULTS
First, the statistical population data at themigration rate 0.9 in the experiment #4 contained
no mutations. Therefore, its data were excluded from the results. For the same reason, two
of the twenty statistical population data were excluded from those in the experiment #5
and in the migration rate 0.5 in the experiment #4.

Since our experiments have numerous resultant data, we first oversee the average result.
Figs. 2 and 3 show the mean values of biases and accuracies of the genetic diversities.
While the result of the random sampling experiment (#5) showed large difference between
π̃ and ς̂ , those of the spatial sampling experiments (#1–4) showed similar values for π̃
and ς̂ . The average values of ς̂ were always larger than π̃ . In most cases, the biases of
π̃ were slightly higher than those of ς̂ except when the low migration rates in the linear
subpopulation structure of the experiment #2. The bias of He were usually similar to π̃
and ς̂ , and its accuracy was a little better than those of π̃ and ς̂ , but the experiment #5 was
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Figure 2 The relative bias or scaled mean error of estimated genetic diversities in the experiments #1–
5.

Full-size DOI: 10.7717/peerj.16027/fig-2

-50%

0%

50%

100%

150%

200%
π_accuracy
ς_accuracy
H_accuracy
θ_accuracy

#1 #2 #4#3 #5

Figure 3 The accuracy or scaled root mean square error of genetic diversities in the experiments #1–5.
Full-size DOI: 10.7717/peerj.16027/fig-3

the exception. The estimation of θw was consistently overestimation and showed worse
accuracy compared to the other measures. Figure S1 show Gst and Nst in the tests. The
Gst mostly increased as the migration rate increased and the Nst mostly decreased as the
migration rate increased. The exception was the experiments #3 and it showed the converse
results. Figure S2 shows individual relative biases and accuracies of genetic diversities. All
the biases and accuracies in highly differentiated population (under a low migration rate
and a linear, circular or cylindrical subpopulation structure) tended to approach zero as the
sample size increased (Fig. S2). On the other hand, the biases and accuracies in population
with relatively low differentiation tended to be constant against the increase of the sample
size.

Experiment #1 (designed even subpopulations)
Mostly similar averaged biases and accuracies were observed for ς̂n and π̃ , but the standard
deviations of π̃ were smaller than those of ς̂n by ca. 1% at the migration rate 0.001 in the
subpopulation structure A (linear) and B (circular). The biases of He were mostly negative
and their accuracies were always better than those of ς̂n and π̃ . On the other hand, the
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biases of θw were mostly positive and their accuracies were mostly worse than ς̂n and π̃ .
Especially, the biases of θw at low migration rates were impractically bad. For example, the
biases at 0.001 migration rate always exceeded 50%.

Experiment #2 (designed uneven subpopulations)
All the averaged biases for π̃ and ς̂n mostly showed similar values, but π̃ showed 5–10%
better biases than ς̂n at low migration rates in the structure A (linear). Likewise, the
standard deviations of π̃ were smaller than those of ς̂n by 3–6% at 0.001 migration rate in
the structure A. The biases of He were also similar to those of ς̂n and π̃ on average, but
the biases of He were relatively better than them at low migration rate of the structure A
(linear). The biases and accuracies of θw were much worse than the other measures. This
tendency was clearer in low migration rates in the structure A (linear).

Experiment #3 (random even subpopulations)
In most cases, the biases of ς̂n were similar to those of π̃ and were a little lower than those
of π̃ . The biases of He were always negative and small. The biases and accuracies were
always within 3% at 20 or more sample sizes. The biases of θw was always positive and ca.
10%.

Experiment #4 (random uneven subpopulations)
Just like the result of the experiment #3, the biases of ς̂n were similar to those of π̃ and
were a little lower than those of π̃ . The biases of He were also similar to those of ς̂n and π̃ .
The accuracies of He was about half of those of ς̂n and π̃ except for that of the migration
rate 0.5. When the migration rate was 0.5, He had the almost same biases as π̃ , and ς̂n had
the values lower than them. The biases of θw greatly varied depending on the migration
rates; they were ca. −15% for the migration rates 0.001 and 0.01 while they were ca. 15%
and 80% for the rate 0.1 and 0.5, respectively.

Experiment #5 (single population)
The biases of ς̂n and π̃ were not similar and rather, those of π̃ and He were similar. The
biases of π̃ and He ranged ca. 20–90%. The biases of ς̂n were ca. −10–15%. The biases of
θw were ca. 50–90%.

DISCUSSION
On the simulation experiments
The Nst decreased as the migration rate increased. Since Nst reflects differentiation among
subpopulations, this behavior of Nst is what is expected as more migration usually triggers
lower differentiation among subpopulations. On the other hand, the Gst showed the
opposite tendency. This may be because Gst does not consider the substitution rates and
does not weight phylogenetically far alleles within a subpopulation which increase at high
migration rates or in island model.

The nucleotide diversity, heterozygosity and our new genetic diversity measure ς held
within 3% unbiasedness and within 10% accuracy in our simulation experiments using
spatial sampling in spite of the violation of the assumption of random sampling. This is
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good news for researches and monitoring of genetic diversity, in which almost always the
assumption of random sampling is not satisfied. On the other hand, Watterson’s theta
showed 31% overestimation and 42% accuracy on average. Therefore, its estimation should
be avoided in this sampling scheme (spatial sampling of one individual per location).

The smaller values of π̃ than ς̂n were as expected because this simulation did not shrink
the population nor delete the subpopulations. The π̃ showed the robustness against the
violation of the random sampling assumption under spatial sampling; the bias of π̃ was
within 2% on average in spatial sampling (the experiments #1–4) and this bias was much
lower than the average bias obtained by random sampling (19% in the experiment #5).
Considering that the bias and accuracy of π̃ behaved similarly to those of ς̂n, which assumes
the comprehensive sampling, we can say that π̃ has good robustness against the violation
of the random sampling assumption as long as one sample per location is collected under
the spatial sampling of the locations. The large positive bias in the experiment #5 may be
due to the low statistical parameter; the π̃ in the experiment #5 were ca. 10−4 while those
in the experiments #1–4 were ca. 10−1–10−2 except for those at the migration rate 0.5 in
the experiment #4 (theirs were ca. 10−4). The low statistical parameter exaggerates the
positive relative biases. In addition, the minimum negative relative bias is −100% when
the statistics is 0 while the positive relative bias can be larger than 100%. This large biases
in the experiment #5 were also observed for He and θw . The bias overestimation of π̃ ,
ς̂n and He in highly differentiated populations (under a low migration rate and a linear,
circular or cylindrical subpopulation structure) reflects that spatial samples were more
diverse than the statistical population. This tendency should be regarded but should be
rather a rare situation. This is because the subpopulation structure of a species is usually
plane (structure C in this study) rather than linear, circular or cylindrical (structure A, B
or D in this study) and very low migration rates triggers speciation.

The bias of ς̂n mostly behaved similarly to that of π̃ . This is probably because ς̂n= π̃
when n=m. The bias and accuracy of ς̂n and π̃ in the experiments #1–4 were roughly equal.
The accuracy of the estimator ς̂n was evaluated by ς not by its statistical parameter ςn in this
study. The standard deviation of the biases were also similar, but the standard deviation of
ς̂n was slightly larger than that of π̃ in some highly differentiated population. This reflects
that rare alleles have larger effects on ς̂n than π̃ . Because ςn≥ ς , ς̂n should be overestimation
as an estimator of ς . On average, this was not true for the designed subpopulation in all
the experiments. The reason for the underestimation in the experiment #1 and 2 may be
imperfection of spatial sampling. Imperfection of spatial sampling is caused by geometric
plurality of the best combinations of the locations. For example, the best combinations of
the ten locations sampled from the circular subpopulation structure B have ten patterns
where every sampled location is ten locations away from the two nearest sampled locations.
Even when there are multiple best combinations of the locations for spatial sampling, the
best combinations that provides ςn are not always as many as ones that are best for spatial
sampling. Therefore, the geometric plurality decreases the effectivity of spatial samples
to estimate ςn. In practical, however, the geometric plurality is rarely problematic. This
is because the distance among candidates of sampling locations usually varies, and the
candidates are rarely arranged in a geometrically symmetrical manner. The reason of the
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underestimation in the experiments #3 and 4 are unknown, but the estimator probably
should be adjusted up to obtain the unbiased estimator just as π̃ is multiplied by 2n/(2n−1)
from the statistical parameter even in non-random sampling.

The experiments also showed the robustness of He as its biases were within 4%, and
this result is consistent with that of Tajima (1995). However, He consistently tended to
be underestimate. This means that the number of the allele types in the sample are small
and that the allele frequencies in the sample are unbalanced compared to those in the
statistical population. Because spatial sampling tries to obtain more types of alleles, this
underestimated He is an unexpected result. Considering the result that Gst increased as the
migration rate increased, the spatial sampling may do not provide diverse samples when
not considering the substitution rate. The accuracy of He was smaller than that of ς̂n and
π̃ . Unlike the other diversity measures, the biases ofHe in highly differentiated populations
were underestimation. The reason for this is unidentified, but maybe the same reason as
the general underestimation of He discussed above. The reason why the biases of He and π̃
were almost same in the experiments #5 and at the migration rate 0.5 in the experiment #4
is that almost all the substitution rates between alleles were 1/1,000. In this situation, He is
ca. 1/1,000 of π̃ , and so are their statistical parameters. Therefore, their relative biases have
almost identical values.

The bias of θw was 34% on average. This tendency of overestimation is as expected
because spatial sampling tries to collect more mutations than random sampling. The biases
in highly differentiated population were 80–113% even when using 50 samples. Therefore,
one probably had better avoid applying θw to species which are expected to be highly
differentiated. Otherwise, one should use as many samples as possible to obtain accurate
estimates. The biases of θw in highly differentiated population vary more largely depending
on the sample sizes than those of the other genetic measures. This is consistent with the
known result that the sample size has more effect on θw than π̃ (Subramanian, 2016).

The samples by spatial sampling can provide more accurate genetic diversity measures
than random sampling of a single population. Although the unbiasedness of π̃ is
theoretically guaranteed when using random sample, the bias in the experiment #5 was
larger than those in the experiments #1–4. However, the size of bias does not necessarily
deny the unbiasedness. The result should be caused by the fact that the samples by spatial
sampling vary little in the twenty times iteration compared to those by random sampling
as it is shown in the smaller standard deviation of biases.

On the new diversity measure, ς

The new diversity ς is interpreted as the average substitution rate among all the allele types
in a population. As discussed above, its estimator ς̂n was estimated as accurate as π̃ in most
cases. While ς cannot be used to estimate the population mutation rate θ , it can be used
to complementarily quantify genetic diversity, regarding rare and phylogenetically distant
alleles which do not have much effect on the value of π . Therefore, ς is appropriate for
conservation studies rather than evolutionary studies.

The problem in the theory of ς̂n is that the simple IBD assumption in the proof about ς̂n
is not deductively proved by a population genetic study. This may be due to the difficulty
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to treat nucleotide sequences mathematically, and what has ever been proved is only about
the relationship between the distance and gene correlation (Kimura & Weiss, 1964; Weiss
& Kimura, 1965). However, the assumption that geographically distant individuals of a
taxon are expected to share less nucleotide bases is empirically plausible. Another problem
is that we proved the unbiasedness of ς̃ as an estimator of ς under various assumption,
but we failed to show its theoretical accuracy, such as mean square errors, relative to π .
Therefore, we could not discuss the resultant accuracy from the theoretical point of view.

Mutations within a location are assumed to have no effect on the substitution rates
on average. However, when estimating ςn, one must ideally obtain the best sequence that
maximizes ςn for every location. This means that the ideal method is to collect multiple
samples per location, to select the best sample per location and to calculate ςn, where n is
not the total number of collected samples but the number of sampling locations. However,
conducting this method is difficult due to combination explosion. Even when two samples
per location are collected for 50 sampling locations, that requires searching 250 ≈ 1.1 · 1015

combinations.
The genetic diversity ς converges to nucleotide diversity π when all allele frequencies

are equal, and the number of allele types increases. The effectiveness of ς based on spatial
samples varied depending on the dispersal ability of the taxon. When the dispersal ability
was low enough to be emulated by the stepping stone model, ς was more unbiased than
π , but π was more accurate than ς . When the dispersal ability was high enough, ς had
better accuracy and almost equal unbiasedness comparing to π . Therefore, we can say that
ς is better than π in the island model, but it is not clear that which is better in the stepping
stone model. Priority or balance between bias and accuracy may vary depending on the
research purpose or the number of the iteration of sampling. Further research is necessary
to investigate this problem as well as the statistically strict treatment of bias and accuracy
when the statistical parameter is not shared among resampling. Also, this study extracts
only one sample per location due to the problem of combination explosion. New theory
or calculation method is necessary to utilize information of multiple samples per location
for estimation of genetic diversity of a taxon and each location.

Practical application
According to the result of the simulation experiments, we suggest a practical procedure for
applying the tested scheme (Table 2) as follows:

The purpose of this scheme is to estimate genetic diversities of a taxon, which is
important for endangered taxa to genetically evaluate the extinction risk (e.g., Wang &
Zhou, 2021). This scheme is focused on substituting mutations and not on mutations
of sequence length like microsatellites. Although microsatellite markers are sometimes
employed for genetic assay of endangered taxa, microsatellite markers are known not to
accurately reflect genetic diversity in the whole genome (Väli et al., 2008). Calculating the
new measure ς as well as π provides insights into phylogenetically distant alleles. When ς
>π , there are more phylogenetically close alleles than phylogenetically distant alleles. This
situation is expected to be ordinary for taxa with a stable or increasing population size
without vicariance. However, if ς >π with population decrease or vicariance, it means that
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Table 2 Purpose and procedure for applying the tested scheme.

Purpose Estimate genetic diversity of a taxon.

Step 1 Collect distribution data of the taxon.
Step 2 Decide the sampling location by spatial sampling using

Samploca.
Step 3 Collect one sample per sampling location.
Step 4 Sequence the samples and obtain an aligned FASTA file.
Step 5 Calculate genetic diversities from the FASTA file using apeb

and gen.divc.

Notes.
aSoftware (Aoki & Ito, 2020). ( https://sites.google.com/view/s-aoki/software/samploc).
bAn R package (Paradis & Schliep 2019). ( https://CRAN.R-project.org/package=ape).
cAn R package devised in this study. ( https://github.com/Sa-to-shi-A-o-ki/gen.div_Rpacakge.git).

the taxa is preferentially losing phylogenetically distant alleles or that the subpopulations
are young, respectively. The situation of π >ς is expected to be ordinary for taxa with a
decreasing population size or taxa with vicariance. If endangered taxa are in this situation,
conservation breeding should be carefully and rapidly planned to conserve phylogenetically
distant alleles before their disappearance by genetic drift.

In the first step, researchers must collect distribution data of the taxon for spatial
sampling. Distribution data are geographical coordinates (latitude and longitude) where
the taxon was collected or observed. When distribution data is vague (e.g., ‘‘collected at Mt.
Fuji’’), researchers can manually compensate the coordinate of the location. Distribution
data can be obtained mainly through GBIF (https://www.gbif.org/) and specimen labels at
museums.

In the next step, spatial sampling is conducted to decide the sampling locations using
software Samploc (Aoki & Ito, 2020). Spatial sampling requires the distribution data, which
are collected in the previous step, and the number of sampling locations. The number of
sampling locations must be designated by the researcher. More locations will provide more
accurate estimation, but more locations cost more time and money. Thus, the number of
sampling locations depends on the time and money available for the researchers.

Next, sampling is conducted in the sampling locations decided by the spatial sampling.
In this scheme, only one sample per sampling location is necessary, but researcher may
keep multiple samples for the other purpose.

At the fourth step, sequencing of the samples is conducted to obtain an aligned FASTA
file. We omit the detailed procedure of sequencing and alignment because it depends on
the type of sequencing analyses.

At the final step, genetic diversities can be calculated from the FASTA file using R
packages ape (Paradis & Schliep, 1981) and gen.div. The latter package is what we newly
devised because the software we used for the simulation experiments is optimized for
simulation experiments and is difficult to apply it to a single set of samples without
population data. When multiple samples per location are available, one sample should be
randomly resampled for each sampling location. Iterating the resampling provides error
bars on the estimated diversities. The FASTA file can be imported into R using read.FASTA
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function in ape package. When the alignment includes gaps, mixed bases or unknown
bases, deleteGapUnknownColumn function in gen.div function must be applied to remove
them. Then, applying calc.diversity function in gen.div package provides seven diversity
measures,He , Ĥe , π̂ , π̃ , θw , per-site θw and ς̂n. However, please note that Watterson’s theta
estimated through this scheme has relatively large biases as the result showed.

CONCLUSIONS
The nucleotide diversity, heterozygosity and our new genetic diversity measure, ς , held
within 3% unbiasedness and within 10% accuracy in our simulation experiments using
spatial sampling in spite of the violation of the assumption of random sampling. This is
good news for researches and monitoring of genetic diversity, in which almost always the
assumption of random sampling is not satisfied. On the other hand, Watterson’s theta
showed 31% overestimation and 42% accuracy on average. Therefore, its estimation should
be avoided in this sampling scheme (spatial sampling of one individual per location). Our
analysis is the first study that tested the performance of genetic diversity measures under
comprehensive sampling. The new measure of genetic diversity ς is interpreted as the
average substitution rate among all allele types in a taxon, and is not based on allele
frequencies. The new measure weighs rare and phylogenetically distant alleles which have
less weights in nucleotide diversity but are more important in conservation. By comparing
nucleotide diversity and the new measure, researchers can judge whether phylogenetically
distant alleles are more abundant than phylogenetically closer alleles.
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