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ABSTRACT
Background. Knee osteoarthritis is a highly prevalent disease worldwide that leads
to functional disability and chronic pain. It has been shown that not only changes
are generated at the joint level in these individuals, but also neuroplastic changes are
produced in different brain areas, especially in those areas related to pain perception,
therefore, the objective of this research was to identify and compare the structural and
functional brain changes in knee OA versus healthy subjects.
Methodology. Searches inMEDLINE (PubMed), EMBASE,WOS, CINAHL, SCOPUS,
Health Source, and Epistemonikos databases were conducted to explore the available
evidence on the structural and functional brain changes occurring in people with knee
OA. Data were recorded on study characteristics, participant characteristics, and brain
assessment techniques. The methodological quality of the studies was analysed with
Newcastle Ottawa Scale.
Results. Sixteen studies met the inclusion criteria. A decrease volume of the gray
matter in the insular region, parietal lobe, cingulate cortex, hippocampus, visual cortex,
temporal lobe, prefrontal cortex, and basal ganglia was found in people with knee OA.
However, the opposite occurred in the frontal lobe, nucleus accumbens, amygdala
region and somatosensory cortex, where an increase in the gray matter volume was
evidenced. Moreover, a decreased connectivity to the frontal lobe from the insula,
cingulate cortex, parietal, and temporal areas, and an increase in connectivity from
the insula to the prefrontal cortex, subcallosal area, and temporal lobe was shown.
Conclusion. All these findings are suggestive of neuroplastic changes affecting the pain
matrix in people with knee OA.

Subjects Anatomy and Physiology, Neurology, Radiology and Medical Imaging, Rheumatology,
Rehabilitation
Keywords Chronic pain, Osteoarthritis, MRI, EEG, Neuroplastic, KOA, Knee osteoarthritis,
Brain imaging
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INTRODUCTION
Knee osteoarthritis (OA) is the most common joint condition (Vos et al., 2012), due to
wear of the articular cartilage affecting all three compartments of the knee (medial, lateral,
and patellofemoral joint) (Roos & Arden, 2016; Lawson et al., 2022), and is considered a
progressive multifactorial disease (Hunter & Bierma-Zeinstra, 2019). The global prevalence
of knee OA reaches 16.0% in people aged 15 years or older and 22.9% in people older than
40 years with incidence rates over 20 years of 203 per 10,000 people annually (Cui et al.,
2020). Pain, the main symptom of OA of the knee (Parks et al., 2011), is associated with
dependence on healthcare systems (Peat, McCarney & Croft, 2001), a decrease in quality
of life (Salaffi et al., 2005), a deterioration in physical function, and an increased risk of
disability (Jinks, Jordan & Croft, 2007).

Although it is true that knee OA is classified as a peripheral joint disease, it has been
shown in these patients that the perception of pain intensity does not necessarily correlate
with the joint damage they present (Kurien et al., 2018; Simis et al., 2021; Iuamoto et al.,
2022) and even persists in those who undergo surgery (Baker et al., 2007; Kurien et al.,
2022). This is because pain processing is subjective and is mediated by both peripheral and
central mechanisms (Baliki et al., 2014; Fingleton et al., 2015; Fu, Robbins & McDougall,
2018). In this sense, neuroplastic changes have been identified in the central nervous
system at the spinal cord, brainstem, and brain level (Apkarian, Hashmi & Baliki, 2011),
related to prolonged duration of pain (Pelletier, Higgins & Bourbonnais, 2015; Alshuft et al.,
2016; Skou et al., 2016).

There is a growing body of evidence that has paid special attention to changes at the
brain level, pointing to the presence of structural plasticity and an important functional
brain reorganization in chronic musculoskeletal conditions assessed mainly by magnetic
resonance imaging (MRI) and electroencephalography (EEG) (Apkarian, Baliki & Geha,
2009; Kuner & Flor, 2016; Segning et al., 2022). Structural plasticity gives us information
on volumetric changes, mainly area and thickness (Kregel et al., 2015), while, within the
functional changes, the functional activity allows us to know the behavior in a specific area
(Herzberg & Gunnar, 2020) and functional connectivity (FC) allows us to estimate patterns
of interregional neuronal interactions (Lurie et al., 2020).

In this sense, it has been indicated that both the structure and the function of the
brain are affected in patients with knee OA in areas involved in sensory discrimination,
as well as affective and cognitive-evaluative areas (Soni et al., 2019). For example, gray
matter abnormalities have been found in the lateral prefrontal cortex, the parietal lobe, the
anterior cingulate cortex, the insula, and the limbic cortex in patients with KOA (Parks et
al., 2011; Howard et al., 2012; Hiramatsu et al., 2014). It has also been found that, in other
chronic musculoskeletal conditions, there are global and specific alterations in the gray
matter, mainly in the prefrontal regions, anterior insula, and cingulate cortex, basal ganglia,
thalamus, periaqueductal gray matter, pre and postcentral gyri and inferior parietal lobe
(Cauda et al., 2014). However, there are no reviews available that clarify the structural and
functional brain changes by comparing patients with knee OA with healthy subjects. It is
essential to identify the affected areas, the specific changes that occur, and their direction
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in order to comprehend the underlying pathophysiology and potentially establish a brain
biomarker for chronic pain in patients with knee OA (Tracey, Woolf & Andrews, 2019;
Davis et al., 2020).

Considering the aforementioned factors, including the variability of techniques used in
the analyses and the involvement of different brain areas, it becomes essential to conduct
a synthesis of the available information in the literature. To achieve this, a scoping review
was deemed appropriate and selected as the suitable method. This approach will provide
a comprehensive overview of the research landscape and help identify any existing gaps
in this particular area of study (Munn et al., 2018). The objective of this review was to
examine the available evidence on the structural and functional brain changes occurring
in people with knee OA in comparison with healthy controls. This information is valuable
across a wide range of knowledge in the field of pain neuroscience, benefiting researchers
interested in brain neuroplastic changes as well as healthcare providers involved in pain
management.

METHODS
Design
The PRISMA extension for scoping reviews (Tricco et al., 2018) was followed in this study.
The framework described by Arksey & O’Malley (2005) was utilized. The protocol was
registered in the OSF Registries (https://osf.io/eqth8/).

Search strategy
A systematic literature research was conducted inMEDLINE (via PubMed), EMBASE,Web
of Science, Cumulative Index toNursing andAlliedHealth Literature (CINAHL), SCOPUS,
Health Source, and Epistemonikos databases from inception to July 2022. Detailed search
strategy can be found in Supplementary Material 1. In addition, a manual search of the
references of the selected articles was performed to identify possible relevant studies.

Screening and study eligibility criteria
Two researchers (NV-S and JM-V) independently used the systematic review manager
Rayyan (http://www.rayyan.ai) (Ouzzani et al., 2016) to select potential studies based on
title and abstract. A third reviewer (GM-R) resolved any discrepancies. The same process
was performed for full-text screening performed in those studies where the title and abstract
did not provide enough information.

The studies were included if they presented the following inclusion criteria: adults
≥18 years of age with a diagnosis of knee OA based on the American College of
Rheumatology classification (Wu et al., 2005), the Chinese Guidelines for Diagnosis and
Treatment of Osteoarthritis (Zhang et al., 2020), or medical criteria (without specifying
the use of guidelines or classification), and graded in severity by using the Kellgren and
Lawrence classification (Kohn, Sassoon & Fernando, 2016); presenting a transversal design
where comparisons were made between people with knee OA and healthy controls,
and pre-experimental studies (only the baseline was considered for the comparison);
reporting at least one outcome variable regarding structural and/or functional brain
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changes as determined by imaging techniques such as magnetic resonance imaging (MRI),
electroencephalography (EEG), and positron emission tomography (PET).

Studies were excluded if they included other chronic visceral or cancer pain conditions
or were study protocols, conference proceedings, or case report studies.

Only studies written in English or Spanish were considered in this review.

Data extraction
Data extractionwas conducted using a standardized form.The following datawere extracted
from each article: First author and year of publication, study design, sample characteristics,
diagnostic criteria for knee OA, imaging technique employed to assess brain changes and
results of the study. Data extraction was performed separately by two reviewers (JS-M and
GM-R).

Quality of evidence assessment
Two investigators independently (JM-V and JS-M) used the Newcastle-Ottawa Scale (NOS)
to assess the quality of included studies, which is a validated and easy-to-use 8-item scale
in three domains: selection, comparability, and exposure/outcome. Studies receive a score
of one point for each item in the selection and exposure/outcome domain, while for the
comparability domain there are scores up to two. Studies are scored from 0 to 9, and those
studies are scored from 0 to 2 (poor quality), 3 to 5 (fair quality), 6 to 9 (good/high quality)
(Wells et al., 2012).

RESULTS
Study selection
A total of 1,570 studies were retrieved in the databases (Fig. 1). After removing duplicates,
and excluding articles based on title and abstract, 24 studies qualified for full-text screening.
Of these articles, eight were excluded leaving a total of 16 studies included in the review
(Fig. 1). A total sample of 1,119 participants (620 with KOA and 499 healthy controls) was
analysed. The number of participants per study is shown in Table 1.

Quality of evidence assessment
Only six studies presented good/high methodological quality, which represents 37.5% of
the research included in this review, while 10 studies were classified as fair quality, which
represents 62.5% of the studies. Regarding the evaluation by items, the one that presented
the least consideration was the representativeness of the cases (15 studies did not obtain
a score). The same method of ascertainment was used for cases and controls (12 studies
did not obtain a score) and selection of controls (11 studies did not obtain a score) (see
Table 2 for more details).

Study characteristics
Among the 16 included studies, a total of seven different diagnostic criteria were used. Four
studies used radiological criteria for diagnosis (Alshuft et al., 2016; Cottam et al., 2016;
Cottam et al., 2018; Guo et al., 2021), three used the Clinical Classification of American
College of Rheumatology together with the Kellgren-Lawrence classification (Barroso
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Identification of new studies via databases and registers

Records identified from:
Databases (n = 1,991):

Pubmed (n = 1,274)
CINHAL (n = 42)

EMBASE (n = 184)
Epistemonikos (n = 42)
Health Source (n = 3)

Scopus (n = 268)
Web of Science (n = 178)

Records removed before screening:
Duplicate records (n = 421)

Records screened
(n = 1,570)

Records excluded
(n = 1,546)

Reports sought for retrieval
(n = 24)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 24)

Reports excluded:
Experimental pain (n = 4)

Use data from other studies (n = 2)
Not variables of interest (n = 2)

New studies included in review
(n = 16)

Identification of new studies via other methods

Records identified from:
Citation searching (n = 0)

Reports sought for retrieval
(n = 0)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 0)

Reports excluded:
0 (n = 0)

Figure 1 Flowchart.
Full-size DOI: 10.7717/peerj.16003/fig-1

et al., 2020; Barroso et al., 2021; Cheng et al., 2022), two exclusively used the Clinical
Classification of the American College of Rheumatology (Mao et al., 2016; Liao et al., 2018),
two exclusively used the Kellgren-Lawrence classification (Ushio et al., 2020; Kang et al.,
2021b), two usedmedical criteria (Baliki et al., 2011;Baliki et al., 2014), one appliedmedical
together with radiological criteria (Lan et al., 2020), one used the Chinese Guidelines for
Diagnosis and Treatment of Osteoarthritis (Gao et al., 2022), and one study did not report
the diagnostic criteria (Lewis et al., 2018).

Of the 16 studies included in this review, twelve used MRI as the imaging technique for
exploring brain changes in the participants (Baliki et al., 2011; Baliki et al., 2014; Alshuft et
al., 2016; Mao et al., 2016; Liao et al., 2018; Cottam et al., 2018; Lewis et al., 2018; Barroso
et al., 2020; Barroso et al., 2021; Guo et al., 2021; Kang et al., 2021b; Cheng et al., 2022), 10
used resting state MRI (Baliki et al., 2014; Cottam et al., 2016; Cottam et al., 2018; Barroso
et al., 2020; Barroso et al., 2021; Lan et al., 2020; Ushio et al., 2020; Guo et al., 2021; Kang et
al., 2021b; Gao et al., 2022), whereas no study used EEG or PET (Table 1).

Structural brain changes in people with knee OA versus healthy
controls
Eight studies (Baliki et al., 2011; Alshuft et al., 2016;Mao et al., 2016; Lewis et al., 2018; Liao
et al., 2018; Barroso et al., 2020; Guo et al., 2021; Kang et al., 2021b) reported changes in
gray matter volume, reported by MRI, in people with knee OA in comparison to healthy
controls. A decrease in volume and thickness of the gray matter in the ínsula (Baliki et
al., 2011; Alshuft et al., 2016; Guo et al., 2021), the left precuneus cortex (Alshuft et al.,
2016), precuneus cortex (Barroso et al., 2020), hippocampus (Baliki et al., 2011; Mao et al.,
2016; Guo et al., 2021); paracentral lobule, middle anterior cingulate cortex (ACC), visual
cortex and inferior temporal cortex (Baliki et al., 2011); left middle temporal gyrus and
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left inferior temporal gyrus (Kang et al., 2021b), left temporal pole(Barroso et al., 2020),
bilateral orbitofrontal cortex, right lateral prefrontal cortex and postcentral cortex (Liao
et al., 2018), precentral cortex(Liao et al., 2018; Barroso et al., 2020), and caudate nucleus
(Mao et al., 2016) was found in people with knee OA in comparison to healthy subjects.
Contrarily, people with knee OA presented an increased volume of the gray matter in the
medial frontal gyrus (Barroso et al., 2020), bilateral nucleus accumbens, amygdala, and
ipsilateral primary somatosensory cortex (Lewis et al., 2018) compared to healthy controls.
No differences in the gray matter at the right and left ACC, and paracingulate gyri was
reported between subjects with knee OA and controls (Barroso et al., 2020).

One study reported white matter changes evidenced by an increase in fractional
anisotropy and a decrease in axial diffusivity, radial diffusivity, and mean diffusivity
at the regions of the corpus callosum, corona radiata, superior longitudinal fasciculus,
cingulum, and thalamic radiation in people with knee OA in comparison to healthy
controls (Cheng et al., 2022).

On the other hand, when grouping studies by diagnostic criteria (radiological, clinical,
mixed), it can be seen that those studies using a single diagnostic criterion (i.e., radiological
or clinical) showed a tendency to identify a decrease in gray matter volume, while those
studies using both criteria for the selection of participants showed a tendency to find both
an increase and a decrease in gray matter volume.

Functional brain changes in people with knee OA versus healthy
controls
Different studies reported brain functional changes, using rs-fMRI, in several brain areas
in people with knee OA in comparison to healthy subjects. In particular there was found
a decreased connectivity at the left supramarginal gyrus (SMG) (Baliki et al., 2014), right
anterior insula associated with posterior cingulate cortex, bilateral parietal areas, and
superior frontal gyrus (Cottam et al., 2018), within the right temporal pole into the inferior
frontal gyrus (Cottam et al., 2018); and left middle temporal gyrus to superior frontal gyrus,
left middle frontal gyrus, and left medial superior frontal gyrus (Kang et al., 2021b). On the
other hand, local functional activity presents a decrease in the left cerebellum, left precentral
gyrus, right superior occipital gyrus (Guo et al., 2021), bilateral angular, precuneus, and
medial superior frontal gyrus (Lan et al., 2020).

An increase in the connectivity at the right anterior insula within the cuneus (Cottam
et al., 2018), left anterior insular cortex with the right orbitofrontal cortex and subcallosal
area, and the right anterior insulate cortex with the right orbitofrontal cortex, subcallosal
area, and the bilateral frontal pole (Ushio et al., 2020) was found in people with knee OA
compared to healthy controls. Moreover, an increase in the local functional activity of left
insula and hippocampus (Guo et al., 2021), bilateral amygdaloid nucleus and cerebellum
posterior lobe in people with knee OA was also reported (Lan et al., 2020).

No functional differences in the posterior cingulate cortex (Cottam et al., 2018),
periaqueductal gray and raphe nuclei were reported in one study (Gao et al., 2022) whereas
two studies concluded that there were no brain differences at the functional level between
patients and controls (Cottam et al., 2016; Barroso et al., 2021).
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Table 1 Study characteristics.

Study/Year Journal Country Study design KOA diagnostic
criteria

Sample characteristics Evaluation
tool

Main findings p-value

Alshuft et al.
(2016)

PLoS One United kingdom Case-control Radiological KOA group (n = 40,
52.5% female), age=
66.09± 8.47 years; con-
trol group (n = 30,
56.7% female), age=
62.72± 7.44 years

MRI In KOA compared to control group, a thinner cortex in the right anterior
insula and left precuneus cortex (long pain duration) was observed.

both p< 0.001

Baliki et al.
(2011)

PLoS One United State of
America

Case-control Medical KOA group (n =
20, 20% female), age
= 53.50± 7.4; con-
trol group (n = 46,
56.5% female) age=
38.77± 12.5 years

MRI In KOA compared to control group, decreased GM density in the insula,
middle ACC, hippocampus, paracentral lobule, visual cortex, and regions
of the inferior temporal cortex was observed.

NI

Baliki et al.
(2014)

PLoS One United State of
America

Case-control Medical KOA group (n = 14,
42,9% female), age=
58.29 (42–77) years;
control group (n= 36,
66,7% female), age=
41.36 (21–70) years

MRI and rs-
fMRI

In KOA compared to control group, decreased connectivity (via the aver-
age spatial representation of the DMN) of left SMG region was observed.

p< 0.001

Barroso et al.
(2020)

Pain Portugal Case-control Clinical clas-
sification of
the Ameri-
can College of
Reumatology
and Kellgren-
Lawrence clas-
sification

KOA group (n = 91,
79.1% female), age
= 65.5± 6.5; control
group (n = 36, 55.5%
female), age 59.2± 8
years

MRI and rs-
fMRI

Total neocortical GM volume and GM volume in the right and left ACC
and paracingulate gyri were not significantly different between the KOA
and control group; In KOA compared to control group, decresead volu-
men in left primary motor cortex (precentral cortex), left temporal pole,
and GM volumen in the precuneus cortex was observed; and a increased
GM volume in the medial frontal gyrus was observed.

p< 0.001

Barroso et al.
(2020)

Human Brain
Mapping

Portugal Case-control Clinical clas-
sification of
the Ameri-
can College of
Reumatology
and Kellgren-
Lawrence clas-
sification

KOA group (n = 46,
65.2% female), age=
65.3± 7.41 years; con-
trol group (n = 35,
57.1% female), age=
59.5± 7.91 years

MRI and rs-
fMRI

Global measures of network topology (e.g., clustering coefficient, global
efficiency, betweenness centrality) were no significantly different between
KOA and control groups.

NI

Cheng et al.
(2022)

Frontiers in
Neurology

China Case-control Clinical clas-
sification of
the Ameri-
can College of
Reumatology-
Kellgren-
Lawrence clas-
sification

KOA group (n = 166,
76.8% female), age=
52.87± 5.23 years;
control group (n =
88, 63.3% female), age
53.76± 4.82 years

MRI In KOA compared to control group, increased fractional anisotropy and
decreased axial diffusivity, radial diffusivity, and mean diffusivity* in the
corpus callosum, corona radiata, longitudinal fasciculus, cingulum, and
thalamic radiation were observed.

p< 0.05

Cottam et al.
(2016)

NeuroImage:
Clinical

United kingdom Case-control Radiological KOA group (n = 26,
53.8% female), age=
67.0 (45–84) years; con-
trol group (n = 27,
66.7% female), age 64.5
(43–80) years

rs-fMRI Global GM cerebral blood flow was not significantly different between
KOA and control group.

p> 0.05

(continued on next page)
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Table 1 (continued)
Study/Year Journal Country Study design KOA diagnostic

criteria
Sample characteristics Evaluation

tool
Main findings p-value

Cottam et al.
(2018)

Pain United kingdom Case-control Radiological KOA group (n = 25,
52% female), age= 65.0
(48–84) years; control
group (n = 19, 57.9%
female), age 65.5 (51–
80) years

MRI and rs-
fMRI

In KOA compared to control group, increased in the right anterior insula
functional connectivity within the cuneus and decreased in right anterior
insula functional connectivity in areas associated with the DMN includ-
ing the posterior cingulate cortex, bilateral parietal areas, and the superior
frontal gyrus were observed; In KOA compared to control group, reduced
CEN functional connectivity in a single cluster that extended superiorly
from the right temporal pole into the inferior frontal gyrus was observed;
posterior cingulate cortex functional connectivity displayed a similar ex-
tent of the DMN between KOA and control group.

p< 0.05

Gao et al. (2022) Frontiers in
Neurology

China Pre-
experimental

Chinese Guide-
line for Di-
agnosis and
Treatment of
Osteoarthritis
(2021 edition)

KOA group (n = 15,
53.3% female), age=
59.13± 10.27 years;
control group (n= 15,
73.3% female), age=
58.53± 8.15 years

rs-fMRI Periaqueductal gray and raphe nuclei were not significantly different be-
tween KOA and control groups at pre-acupuncture.

NI

Guo et al. (2021) Frontiers in Hu-
man Neuro-
science

China Case-control Radiological KOA group (n = 13,
100% female), age=
55.5± 5.5 years; control
group (n= 13, 100% fe-
male), age= 53.9± 5.6
years

MRI and rs-
fMRI

In KOA compared to control group, reduced GM volume in the bilateral
insula and bilateral hippocampus was observed; In KOA compared to con-
trol group, reduced fractional ALFF in the left cerebellum, left precentral
gyrus, and right superior occipital gyrus increased was observed; and in-
creased fractional ALFF in the left insula and bilateral hippocampus was
observed.

p< 0.001

Kang et al.
(2021b)

Brain and be-
havior

China Case-control Kellgren-
Lawrence clas-
sification

KOA group (n = 37,
91.9% female), age
= 71.6± 5.6; control
group (n= 37, 81.1% fe-
male), age= 69.5± 5.1

MRI and rs-
fMRI

In KOA compared to control group, decreased GM volume in the left mid-
dle TG and left inferior TG was observed; In KOA compared to control
group, decreased resting state-functional connectivity in the left middle
TG to the superior FG, left middle FG, and left medial superior FG was
observed.

p< 0.05

Lan et al. (2020) Frontiers in
Neurology

China Pre-
experimental

Medical and
radiological

KOA group (n = 23,
65.2% female), age=
71.2± 4.2 years; control
group (n= 23, 60.9% fe-
male), age= 71.4± 4.1
years

rs-fMRI In KOA compared to control group, decreased ALFF in the bilateral angu-
lar, precuneus, and medial superior frontal gyrus was observed; In KOA
compared to control group, increased ALFF in the bilateral amygdaloid
nucleus and cerebellum posterior lobe was observed.

p< 0.001

Lewis et al.
(2018)

Pain Medicine New Zealand Pre-
experimental

NI KOA group (n = 29,
51.7% female), age=
68.0± 10.0 years; con-
trol group (n = 18,
38.9% female), age=
71.0± 8.0 years

MRI In KOA compared to control group, an increase in the GM volume bilat-
erally in the nucleus accumbens (NAc) and amygdala, and in the ipsilateral
primary somatosensory cortex (S1) was observed.

p< 0.01

(continued on next page)
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Table 1 (continued)
Study/Year Journal Country Study design KOA diagnostic

criteria
Sample characteristics Evaluation

tool
Main findings p-value

Liao et al.
(2018)

Medicine China Case-control Clinical classi-
fication of the
American Col-
lege of Reuma-
tology

KOA group (n = 30,
86.7% female), age=
56.5± 6.8 years; control
group (n= 30, 86.7% fe-
male), age= 55.2± 5.7
years

MRI In KOA compared to control group, a decrease in GM volumne in several
cortical structures including the bilateral orbital frontal cortex, the right
lateral prefrontal cortex, the precentral and part of postcentral cortex was
observed.

p< 0.05

Mao et al.
(2016)

Frontiers in
Aging Neuro-
science

China Case-control Clinical classi-
fication of the
American Col-
lege of Reuma-
tology

KOA group (n = 26,
84.6% female), age
= 55.5± 9.1; control
group (n= 31, 83.9% fe-
male), age= 53.1± 6.4
years

MRI In KOA compared to control group, smaller volumes of caudate nucleus
and hippocampus were observed.

P = 0.004

Ushio et al.
(2020)

Journal of Pain
Research

Japan Case-control Kellgren-
Lawrence clas-
sification

KOA group (n = 19,
100% female), age=
73.2± 5.1 years; control
group (n= 15, 100% fe-
male), age= 74.9± 4.6
years

rs-fMRI In female volunteers with chronic severe KOA compared to control group,
the left anterior insular cortex showed stronger resting state-functional
connectivity with the right orbitofrontal cortex and the subcallosal area,
and the right anterior insulate cortex showed stronger resting state-
functional connectivity with the right orbitofrontal cortex, subcallosal
area, and the bilateral frontal pole.

p< 0.005

Notes.
KOA, Knee Osteoarthritis; MRI, Magnetic Resonance Imaging; ACC, Anterior Cingulate Cortex; NI, no informed; DMN, Default Mode Network; SMG, Supramarginal Gyrus; rs-fMRI, Rest State-
Functional MRI; GM, Gray Matter; CEN, Central Executive Network; ALFF, Amplitude of Low-Frequency Fluctuation; TG, Temporal Gyrus; FG, Frontal Gyrus; NAc, Nucleus Accumbens.

Salazar-M
éndez

etal.(2023),PeerJ,D
O

I10.7717/peerj.16003
9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.16003


Table 2 Quality assessment of studies using Newcastle-Ottawa scale for case-control studies.

Study ID Selection Comparability Exposure Total
(max= 9 ?)

Case definition
(?)

Representativeness of
the cases (?)

Selection of
Controls (?)

Definition of
Controls (?)

(? ?) Ascertainment of
exposure (?)

Samemethod of
ascertainment for
cases and controls (?)

Non-Response
rate (?)

Alshuft et al. (2016) ? – – ? – ? ? ? 5

Baliki et al. (2011) – – – – ? ? ? ? – 4

Baliki et al. (2014) – – – – – ? ? ? 3

Barroso et al. (2020) ? – ? ? – ? – ? 5

Barroso et al. (2020) ? – ? ? ? ? ? – – 6

Cheng et al. (2022) ? – − ? ? ? ? – – 5

Cottam et al. (2016) ? – – – – ? ? – 3

Cottam et al. (2018) ? – – – ** ? – – 5

Gao et al. (2022) ? − ? – – ? – ? 4

Guo et al. (2021) ? − – ? ? ? ? – ? 6

Kang et al. (2021b) ? – – – ? ? ? – ? 5

Lan et al. (2020) ? – ? ? ? ? ? – ? 7

Lewis et al. (2018) – ? – ? ? ? ? – ? 6

Liao et al. (2018) ? – – ? ? ? ? – ? 6

Mao et al. (2016) ? – ? – – ? – ? 4

Ushio et al. (2020) ? – – ? ? ? ? – ? 6
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Finally, grouping the studies by diagnostic criteria (radiological, clinical, mixed) revealed
that those studies that applied radiological criteria presented great heterogeneity in
their findings since a decrease, increase, combined changes, and no changes in brain
functionality were identified, while those studies with clinical selection criteria presented
less heterogeneity, identifying either a decrease or no changes in brain function. On the
other hand, when using both diagnostic criteria (i.e., radiological and clinical), an increase
in functionality was identified.

DISCUSSION
The objective of this review was to examine the available evidence on the structural and
functional brain changes occurring in people with knee OA in comparison with healthy
controls. Several structural changes in the gray and white matter and functional changes
in brain connectivity and activation were in people with knee OA identified by MRI
and functional by rs-fMRI, while no study used EEG or PET for assessment. However,
these findings must be interpreted with caution due to the heterogeneity of the diagnostic
criteria used in the included studies, for example, studies using a single criterion have
a tendency to identify a decrease in gray matter volume, while those studies using both
criteria radiological and clinical criteria for participant selection report both an increase
and decrease in gray matter volume, which may impact comparability due to differences
between the criteria used (Schiphof et al., 2008). Furthermore, the direction of these changes
varied between studies, but most appear to reflect alterations in the pain matrix in this
population. In particular, two studies did not identify any differences between individuals
with knee OA and controls (Cottam et al., 2016; Gao et al., 2022). This may be because
one study compared the global cerebral blood flow between the two groups and not the
local changes, so could not identify areas in which flow increased and others in which it
decreased (Cottam et al., 2016), while the other used a small sample, which may not have
been sufficient to identify differences between groups (Gao et al., 2022).

It has been shown that the presence of chronic pain can inducemorphological changes in
the brain (Woolf & Salter, 2000; May, 2008; May, 2011; Farmer, Baliki & Apkarian, 2012).
Furthermore, it is widely accepted that brain regions work in synergy and that their activity
can be grouped into several large-scale neural networks (Fox et al., 2005; Mesmoudi et al.,
2013). Therefore, determining what are the changes that occur at the brain level, both in
its morphology and in its functioning, in patients with knee OA, allows us to understand
the underlying neural mechanisms of the persistence of pain in this condition. The results
of this review showed that multiple brain areas can present structural changes in people
with knee OA. These findings are in line with similar reviews conducted in other chronic
pain populations. In particular, a reduction of gray matter at the cingulate cortex, inferior
temporal cortex, hippocampus, nucleus accumbens, amygdala and primary somatosensory
ipsilateral ipsilateral was found in people with OA (Cauda et al., 2014; Pedersini et al.,
2022). Similarly, a reduction in gray matter was reported at the somatosensory areas,
pre and post central gyrus, hippocampus, insula, and dorsolateral prefrontal cortex in
individuals with chronic low back pain (CLBP) (Cauda et al., 2014; Kregel et al., 2015).
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Regarding functional brain changes, our review showed a disparity in behavior between
different brain areas. That is, some regions (e.g., right anterior insula within the cuneus,
and left anterior insular cortex with the right orbitofrontal cortex) presented a greater
connectivity, while others (e.g., SMG, and right anterior insula associated with posterior
cingulate cortex) showed the opposite. In people with CLBP, an increased activation of
the PFC, amygdala, cingulate cortex, and insula has been reported (Kregel et al., 2015)
whereas a higher default mode network (DMN) connectivity with the insula has been
found in people with fibromyalgia (Napadow et al., 2010). On the other hand, a decrease
in connectivity between the left insula and the fronto-orbital cortex has been shown in
individuals with chronic pain, which worsens the functions of the attention network
(Yoshino et al., 2021).

Many of the included studies in this review agree that knee OA pain produces structural
and functional alterations at the neural (DMN) components (Baliki et al., 2014; Alshuft
et al., 2016; Lan et al., 2020; Barroso et al., 2021; Kang et al., 2021b) such as the precuneus,
median temporal gyrus and medial prefrontal cortex (mPFC), as demonstrated in other
chronic pain conditions (e.g., CLBP and complex regional pain syndrome (Baliki et al.,
2014). In addition, several neural networks related to the generation, perception, and
regulation of emotions and behavior have been identified. These networks involve areas
such as the prefrontal cortex, insula, cingulate gyrus, temporal gyrus, supplementary motor
area, amygdala, and periaqueductal gray (Simons, Elman & Borsook, 2014; Morawetz et al.,
2020). In the present study, alterations were identified in these areas, indicating that the
neural networks of emotions and behavior are affected in individuals with knee OA.

Furthermore, the large number of affected areas and the behavior of these changes may
indicate that knee OA not only generates local changes in functional connectivity, but
may also cause a global reorganization of brain networks, demonstrated by the changes
obtained from studies including EEG (Ta Dinh et al., 2019).

From the aforementioned findings, it is evident that chronic pain can generate both
common and specific structural and functional changes in the brain neural networks,
dependent on the pathology that affects the person (Cauda et al., 2014) and denote the
complexity of the neural mechanisms underlying chronic pain (Baliki et al., 2014). The
results of this review also demonstrated that knee OA pain affects brain areas responsible of
the sensory-discriminative, cognitive and affective dimensions of pain (Hazra et al., 2022).
Concretely, structural and functional alterations in different somatosensory and motor
brain regions, such as the precentral and postcentral gyrys, paracentral gyrus (where the
primary somatosensory and motor areas from the lower limb are located), cerebellum,
and basal ganglia were found and were related to the perception-motor response of pain
(Fenton, Shih & Zolton, 2015; Hazra et al., 2022). Therefore, the frontal cortex also has an
important role in the integration of pain sensation, since it is responsible for behaviours
related to pain after receiving information from other areas of the brain responsible for
processing pain information (Fenton, Shih & Zolton, 2015).

Other regions, such as the ACC, thalamus, insular cortex, and amygdala are responsible
for the sensory-discriminative components of pain given their specific function and
reciprocal connections (Fenton, Shih & Zolton, 2015; Kang et al., 2021a; Hazra et al., 2022;
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Hoskin & Talmi, 2023). These three regions are also connected to the thalamus, through
the paleospinothalamic nociceptive pathway, which is involved in aspects such as attention
and mood related to pain (Horn et al., 2014).

In addition, the prefrontal and temporal regions, the amygdala, hippocampus, and the
basal ganglia are responsible for cognitive domains such as memory, attention, knowledge,
and understanding (Kuner & Kuner, 2021; Hazra et al., 2022). On the other hand, the
cingulate cortex, the orbitofrontal cortex, the amygdala, the insular cortex, and the basal
ganglia are also involved in the affective aspects of pain perception (Borsook et al., 2010;
Hazra et al., 2022). Furthermore, with respect to the regions involved in the modulatory
aspect of the brain matrix of pain (Hazra et al., 2022), the current review identified that
the prefrontal cortex and cingulate cortex regions are affected in people with knee OA.

The results from the studies included in this review reveal that patients with chronic
pain due to knee OA experience alterations in brain structure and function, particularly
in areas related to the neuromatrix of pain. These findings suggest that the persistent pain
experienced by this population may lead to a distinctive brain signature characterized
by structural and/or functional reorganization across multiple areas and connections.
Determining precisely the multiple changes in this chronic condition that affects millions
of people around the world is relevant since it would allow for more precise objective
diagnoses (Baliki et al., 2011) and guide the most appropriate treatments for individual
needs.

It is important to note that the current review did not yield studies using EEG or PET in
patients with knee OA. Specifically, it may be useful to implement EEG together with MRI
(Ta Dinh et al., 2019) since the former has high temporal resolution (Levitt & Saab, 2019),
while the latter allows a greater understanding of the spatial structural aspects of the brain
(spatial resolution) (Nunez, Srinivasan & Fields, 2015; Lenoir et al., 2020). Moreover, EEG
may represent a brain-based marker of pain given its safety, cost-effectiveness, availability,
and potential mobility (Ta Dinh et al., 2019) thus allowing to recognize abnormal patterns
in brain electrical activity that could be targeted with novel therapeutic strategies (Accou
et al., 2023) such as non-invasive brain stimulation techniques (Polanía, Nitsche & Ruff,
2018). On the other hand, PET studies would enable us to understand the anatomical
distribution of physiological processes involved in the perception and modulation of pain
(Dasilva, Zubieta & Dossantos, 2019). Therefore, this technique could serve as a valuable
complement in the study of chronic pain in knee OA, aiding in the determination of the
dynamic functioning of the brain systems involved.

Research implications
Although changes in the structure and function of the brain (neuroplastic changes) have
been identified in people with osteoarthritis of the knee, studies have not looked at these
changes by subclassifying them by severity, so future research could integrate subgroup
analyses according to the severity of the osteoarthritis of the knee. In addition, most of
the studies have a moderate methodological quality, so the findings should be taken with
caution; therefore, future studies should be more rigorous, especially in representativeness
of cases, using the same precision method for cases and controls, and control selection. On
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the other hand, EEG has not been included as a tool to assess brain function, as measured by
electrical activity, specifically in people with knee osteoarthritis. Therefore, future studies
should assess brain electrical behaviour and changes using EEG, as this technique has
advantages in its feasibility of use and the data may represent a brain-based marker of pain.

Strengths and limitations
A strength of this scoping review is that it was performed systematically; each stage was
conducted independently by two reviewers, and a broad and sensitive search strategy was
implemented to find studies that reported differences in brain structure and functionality
between individuals with knee OA and healthy subjects. In addition, this review identifies
an important gap in the literature regarding tools to assess brain functionality, since it was
identified that EEG has not been used in patients with knee OA, a technique with excellent
temporal resolution. Some limitations should be acknowledged. First, only five databases
were integrated, so potential studies from other databases may not have been included.
Second, subgroups were not made according to the duration of knee arthritis that allow
identifying the evolution of the brain changes of the pathology.

CONCLUSIONS
Our findings indicate that people with knee OA, compared to healthy subjects, present
structural differences in specific areas of the brain responsible for comprehensive pain
processing, as assessed by MRI. Furthermore, people with knee OA showed changes in
functionality (activity and connectivity) of brain areas comprising the pain matrix as
evaluated with rs-fMRI. Future research should consider evaluating brain functionality in
people with knee OAwith EEG due to the economic and safety advantages that it presents.
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