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Host-microbe interactions are ubiquitous, and they play important roles in host biology,
ecology, and evolution. Yet, host-microbe research has focused on inland species, whereas
marine hosts and their associated microbes remain largely unexplored, especially in
developing countries located in the Southern Hemisphere. Here, we review current
knowledge of microbial communities associated with marine hosts in the Southern
Hemisphere. There are important biases in marine host species sampled for the studies in
the Southern Hemisphere, where sponges and marine mammals have received the
greatest attention. Sponges associated microbes varied greatly across regions and
species, nevertheless, beside taxonomic heterogeneity, the microbiome has functional
consistency, whereas marine mammals’ microbiome seems to be driven by geography and
aging. Southern Hemisphere seabirds and macroalgae holobiont studies are also common.
Seabirds associated microbes rely on amplicon studies, focused on feces. Seabird fecal
microbiota is influenced by aging, sex, and species’ specific factors, while macroalgae
apparently actively filters the microbes that establish in its surface, in a process known as
“microbial gardening”. In contrast, marine invertebrates and fish microbiomes have
received less attention in the Southern Hemisphere. In general, the marine holobiont in the
Southern Hemisphere is characterized by few systematic and authentic holobiont studies
(i.e., studies that analyze at the same time host traits [e.g., genomics, transcriptomics]
and microbiome traits [e.g, 16S, metagenome]), except for some marine invertebrates and
macroalgae. We believe that our project on the surface microbiome of key species in the
Strait of Magellan will provide valuable information on the points listed above, which will
improve the knowledge of microbial diversity in the region, as well as its current responses
under the Anthropocene.
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Host-microbe interactions are ubiquitous, and they play important roles in host biology, ecology, 

and evolution. Yet, host-microbe research has focused on inland species, whereas marine hosts 

and their associated microbes remain largely unexplored, especially in developing countries 

located in the Southern Hemisphere. Here, we review current knowledge of microbial 

communities associated with marine hosts in the Southern Hemisphere. There are important 

biases in marine host species sampled for the studies in the Southern Hemisphere, where sponges 

and marine mammals have received the greatest attention. Sponges associated microbes varied 

greatly across regions and species, nevertheless, beside taxonomic heterogeneity, the microbiome

has functional consistency, whereas marine mammals’ microbiome seems to be driven by 

geography and aging. Southern Hemisphere seabirds and macroalgae holobiont studies are also 

common. Seabirds associated microbes rely on amplicon studies, focused on feces. Seabird fecal 

microbiota is influenced by aging, sex, and species’ specific factors, while macroalgae apparently

actively filters the microbes that establish in its surface, in a process known as “microbial 

gardening”. In contrast, marine invertebrates and fish microbiomes have received less attention in

the Southern Hemisphere. In general, the marine holobiont in the Southern Hemisphere is 

characterized by few systematic and authentic holobiont studies (i.e., studies that analyze at the 

same time host traits [e.g., genomics, transcriptomics] and microbiome traits [e.g, 16S, 

metagenome]), except for some marine invertebrates and macroalgae. We believe that our project

on the surface microbiome of key species in the Strait of Magellan will provide valuable 

information on the points listed above, which will improve the knowledge of microbial diversity 

in the region, as well as its current responses under the Anthropocene.  

Introduction

The Southern Hemisphere, and particularly the Southern Ocean and its associated ecosystems, is 

characterized by its unique biodiversity (Rogers et al., 2020; Gutt et al., 2021). These important 

ecosystems are facing major abiotic challenges as climate change progresses. These challenges 

are driven primarily by ocean warming and increased UV radiation (Thompson & Salomon, 

2002; Swart et al., 2018). Sea surface warming creates a stronger stratification in the water 

column (Pellichero et al., 2017), as well as higher variability in the duration and extent of sea ice 

sheet and increases in glacier melt rate in the southernmost regions (Gutt et al., 2015; Comiso et 

al., 2017). Additionally, ocean warming increases microplancton metabolic activity, which in 

turn accelerates oxygen depletion in the water column (Schmidtko et al., 2017), and decreases 
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ocean pH (McNeil & Matear 2008). Tragically, recent intense wildfires and volcanic eruptions in 

the Southern Hemisphere have increased the Antarctic ozone hole size in 2020-2021, which is 

expected to worsen ocean warming effects (Yook et al., 2022).  On the other hand, atypical 

glacier melt rate are stimulating marine primary productivity, which creates complex scenarios in

ice dependent species (Piñones & Fedorov 2016). For example, Antarctic krill (Euphasia 

superba), a key species in the Antarctic trophic network, requires ice in their early stages, while 

also forages in areas with high concentration of chlorophyll-a concentration (Kawaguchi et al., 

2006). Current evidence suggests that habitat quality heterogeneity along its Antarctic 

distribution will produce contractions in its distribution (Atkinson et al., 2019; Veytia et al., 2020,

but see Cox et al., 2018) 

However, there are also some surprising results. For example, warmer temperatures 

coupled with low to moderate winds, increase ice melt, which in turn is expected to increase iron 

release (Hodson et al., 2017). Iron is a primary productivity limiting factor, so its increased 

availability triggers diatom growth, which in turn increases krill recruitment (Noble et al., 2013; 

Bertrand et al., 2007, 2015). Ultimately, krill biomass increase provides greater resources for 

predators, which overall increases energy transfer along the trophic network (Saba et al., 2014). 

As climate change progresses, it is expected an intensification in seasonality, which might 

intensify alterations in biological processes (e.g., bottom-up mechanisms). 

For instance, in the Strait of Magellan – the southernmost continental region of South 

America – climate change derived effects have been recorded since the second half of the XX 

and early XXI century. These include, increasing sea surface temperature (Smith & Renynolds, 

2004) and higher glacier melt rate (Aniya, 1999; Dixon and Ambinakudige, 2015). In the 

terrestrial ecosystem, warmer seasonality is expected to increase aridity in the Patagonian region, 

particularly in areas with herbaceous vegetation (Soto-Rogel et al., 2020). Nevertheless, the 

region has not experienced any formal study regarding the effect of climate change in any of its 

ecosystem properties (e.g. trophic network interactions, biogeochemical cycles, environmental 

status). This is unfortunate since the region offers an invaluable geographic position. From the 

marine perspective, the Strait of Magellan is uniquely influenced by the Pacific and Atlantic 

oceans, as well as the Cape Horn current.  Additionally, glacier melt seasonal input creates local 

primary productivity bursts that have bottom-up effects that recruit species from higher trophic 

status, which overall increases the biodiversity of the region.
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Despite all the previous natural history studies and museums filled with macro-organisms’

diversity, eukaryotes live inside a wider microbial world. Eukaryotes’ homeostasis (e.g., 

physiology, immunology, and metabolism) is driven or at least greatly influenced by microbes 

(McFall-Ngai et al., 2013; Cani et al., 2019; Peixoto et al., 2021). As a result, the “hologenome 

evolution theory” and “holobiont theory” emerged (Zilber-Rosenberg & Rosenberg, 2008; 

Bordenstein &Theis, 2015). The holobiont term per se, is not new. It was first introduced by 

Lynn Margulis to describe the biological unit formed between a host and a single inherited 

endosymbiont (Margulis L. 1991). The novelty around the holobiont concept arose as a direct 

consequence of the development and cost decrease of Next Sequencing Technologies, which spur

host microbial communities research. This has revealed that microbes are ubiquitous in every 

single metazoan (Simon et al., 2019). Thus, the current holobiont concept refers to a cohesive 

evolutionary unit formed by the host and its associated microbes (Bordenstein & Theis, 2015; 

Rosenberg & Zilber-Rosenberg, 2018). In other words, a holobiont is a single ecological unit, 

comprised of an intricated network of mutualistic, commensalisms, and parasitic relationships 

between microbes and its host, that are critical for the survival of all organisms involved. 

Nevertheless, microbial influence in the holobiont might vary among hosts (Hammer et al., 

2019), which has been interpreted as flaws in the holobiont concept (Moran & Sloan, 2015; 

Douglas & Werren 2016). Holobionts could be assembled by ecological, evolutive or neutral 

process. Hence, a first objective in holobiont research lies in determining the nature of the 

holobiont assembly (Theis et al., 2016). 

In marine hosts – which are unlikely to be studied under experimental designs – holobiont

research could be focused on the characterization of the host associated microbes in a relevant 

environmental and evolutionary framework (Leray et al., 2021). Up to date, metabarcoding 

approaches have been the most popular methods to tackle this issue. Yet, it only serves as an 

initial step to characterize the microbial composition, as to test the holobiont hypothesis (i.e., host

and associated microbes evolve as a unit) further efforts encompassing host associated microbes’ 

functional characterization (e.g., metagenomic or metatranscriptomic data), coupled with host 

molecular information (e.g., genomic or transcriptomic data), relevant environmental variables 

measurement, as well as seasonal replicates, must be done to test the congruence of holobiont 

response against seasonal fluctuations. 
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Once we have baseline information about bacterial composition associated to marine 

hosts, we should be able to recognize hosts whose microbial communities are far from the 

expected natural variability. Changes in the host’s natural composition of microbial communities 

are collectively termed dysbiosis (Zaneveld et al., 2017). Thus, the microbiome itself could be 

used as a biosensor of host’s status (Zolti et al., 2020; Inda & Lu 2020). In marine species, there 

are several examples of the interplay between host fitness and microbial symbiosis, especially in 

sponges (Pita et al., 2018 and references within) and algae (van der Loos et al., 2019 and 

references within). Dysbiosis is the microbial fingerprint underlying the disruption of the host’s 

health and ecology, a highly relevant topic in the current anthropogenic climate change epoch.

Microbial communities routinely colonize metazoan internal (e.g., gut, oral) or external 

(e.g., skin) tissues (Ross et al., 2019; Diaz et al., 2021; ANID R20F0009). However, they differ 

in the selective pressures that influence their assemble. While internal microbial communities 

assembly is influenced by diet and host physiology, external microbial communities assembly is 

greatly influenced by environmental perturbations that impair host fitness (Byrd et al., 2018; 

Kuziel & Rakoff-Nahoum 2022). Therefore, we think that surface microbial communities of 

eukaryotes could serve as valuable tools to survey environmental status. The epidermis/outer 

surface of eukaryotes is considered a hostile environment, yet it is frequently colonized by 

microbes. These microbes must cope with constant shedding (in epidermis) molt (in feathers), 

intense solar radiation exposure, low temperature, pH changes, as well as antimicrobial molecules

(Percival et al., 2012). Nevertheless, skin microbes play important roles in the host’s health 

(Apprill et al., 2014), since they are the first line defense against pathogens and actively 

participate in the host’s immune system maturation (Ross et al., 2019). 

Marine eukaryotes vary greatly in the nature and complexity of their superficial tissue, so 

the nature of the surface/skin is a critical issue to consider when studying the marine skin 

microbiome of any host. For example, algae and fish both have a mucus layer in its surface/skin, 

but their composition and function are different (Gomez et al., 2013; van der Loos et al., 2019). 

In birds and mammals, the epidermis is covered by feathers and hair, respectively. Importantly 

seabirds and marine mammals have developed different strategies to cope with cold water, 

therefore their epidermis and associated elements (i.e., feathers or hair) is completely different 

from species inhabiting tropical and temperate latitudes (Ross et al., 2019). On the other hand, 

crustaceans’ outer surface is solely its exoskeleton of chitin, so their adaptations to cold 
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temperatures are to be discovered both in their microbiome and their physiology. Even though, 

the unique biodiversity living in the Southern Hemisphere, few holobiont studies have been 

conducted in the region. Biodiversity studies are becoming increasingly important, as climate 

change imposes major threats in ecosystems around the globe, especially in cold environments. 

Up to date, marine holobiont studies have had spatial and phylogenetic biases; on one 

hand, most of them have been realized in the tropics or in the Northern hemisphere (most of 

references within Ross et al., 2019), while, on the other hand, the most studied species have been 

sessile organisms, like sponges (Figure 1). Therefore, Southern Hemisphere marine host 

microbiome research has received less attention across the metazoan spectrum. Moreover, there 

are scarce microbiome studies in marine vertebrate and invertebrates. Here, we review the marine

host-microbiota/microbiome interactions occurring in the Southern Hemisphere. This review will 

aid as a diagnosis of the field progress in the region, as well as to detect knowledge gaps and 

opportunities for further research. Thus, the review is intended for scientists interested in 

eukaryotes associated microbes, as well as anyone interested in using microbiota/microbiomes as 

biosensors of eukaryotes’ health. 

In this review, our main objectives are i) review the current knowledge regarding marine 

holobiont and microbiota/microbiome studies in the Southern Hemisphere, and ii) to describe a 

long-term project that will improve knowledge of microbial communities associated with selected

taxa in the Strait of Magellan, Chile (ANID R20F00009). We start with a brief overview of the 

surface characteristics of several taxa. Later, we review holobiont interactions in a trophic level 

fashion, first with macroalgae, later with primary and secondary animals’ consumers, and finally 

with predators.

Survey methodology

 

We covered all marine microbe-eukaryote interaction reports in the Southern Hemisphere that we

were able to find. For this, we performed a comprehensive analysis of literature of the last two 

decades in the following online databases: PubMed, Science Direct, Scopus and Google Scholar. 

The search spanned the last two decades and was concluded at 1/February/2023. Only studies in 

English were selected for further inspection. Several keywords were used to perform the 

literature search, using the following key words, in combination with the terms, -holobiont-, -
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microbiota- and -microbiome-: seaweed, sponge, invertebrate, crustacean, marine vertebrate, 

whales, seals, seabirds. Articles found to match any of these words were examined to guarantee 

that their sampling was done in hosts inhabiting the Southern Hemisphere. 

Results

Overall, geographical distribution of marine host-microbial research revealed important biases. 

Geographical biases are reflected by sampling effort across the Southern Hemisphere, since 

research has been done predominantly in the Antarctic (above 60° S), especially in the Western 

Antarctic, and template latitudes (between 20 – 40° S), especially in Australia, while tropical 

(between 0 – 20° S) and cold (between 40 – 60° S) latitudes, as well as South America and Africa

have received less attention (Fig. 2). There are also host biases, both in terms of number of 

studies and number of species studied. The most studied groups are marine mammals and 

sponges (Fig. 1), which have been studied across all latitudinal regions and continents in the 

Southern Hemisphere (Fig. 3). Nevertheless, when it comes to the number of species studied the 

pattern has some changes, while sponges remain as the best studied group with 65 studied 

species, the following groups are Macroalgae (24 studied species) and marine invertebrates (23 

studied species) (Table 1). In general, the predominant molecular approach to study host-

associated microbial communities has been with taxonomic markers (i.e., 16S), nevertheless there

have been conducted some microbiome functional approaches (i.e., shotgun metagenomics), 

especially in Australia and Antarctica hosts, whereas South American marine hosts, have had not 

been studied with any functional approach to date (Fig. 4, Table 1). 

Macroalgae as an ecosystem

Marine macroalgae are important ecosystem engineers that play critical roles in primary 

production, biogeochemical cycles, and biodiversity recruitment in marine ecosystems (Tuya et 

al., 2008. Currently, there are 11,017 species of macroalgae species with cosmopolitan 

distribution, therefore there is a vast microbial-algae symbiotic world that remains unexplored 

(Guiry & Guiry 2023). Macroalgae microbiome studies in the Southern Hemisphere have 

received considerable attention with 24 studied species within 13 research articles (Table 1; Fig. 

1). Most studies have been conducted with 16S approaches, yet there are microbiome approaches 

with shotgun metagenomics and DNA holobiont approaches (Table 1). Macroalgae microbiome 
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sampling has been conducted worldwide, but it has been done predominantly in Australia, 

Antarctica, and South America (Fig. 3). 

Algae are an idoneous niche for aerobic and polymer degrading bacteria, since their 

photosynthetic activity, and their rich composition in carbon and nutrients (like agar, 

carrageenan, and cellulose), facilitate the establishment of aerobic and heterotrophic bacteria in 

their surfaces (de Oliveira et al., 2012). Microbial macroalgal epibiotic communities (biofilms) 

have been extensively studied in the tropics and the Northern Hemisphere (Malik et al., 2020 and 

references within). Nevertheless, there have been conducted several macroalgae biofilm studies 

in the Southern Hemisphere which have revealed Cyanobacteria, Proteobacteria, Firmicutes, 

Bacteroidetes and Actinobacteria as prevalent bacterial phyla (de Oliveira et al., 2012; Albakosh 

et al., 2016; Gaitan-Espitia & Schmid, 2020). Fungi are also important players in the macroalgae 

biofilm composition in the Southern Hemisphere, and different species have been documented 

from Antarctic seaweeds, being the most prevalent the filamentous fungus Pseudogymnoascus 

pannorum, and the yeast Metschnikowia australis (Loque et al., 2010; Godinho et al., 2013; 

Furbino et al., 2017; Ogaki et al., 2019).

There has been extensive research in the macroalgae holobiont that gives a rich body of 

evidence to frame the study of macroalgae biofilms. These studies have shown that bacteria and 

fungi inhabiting the macroalgae biofilm actively interact with its host to influence growth, 

development, and immune function (van der Loos et al., 2019). Valuable microbes to the algal 

host appear to be taxonomically restricted among bacteria at higher taxonomic levels, therefore, 

biofilm composition seems to be redundant at phyla or class. Nevertheless, at lower taxonomic 

levels (genus/ASV [Amplicon Sequence Variant]/OTU [Operational Taxonomic Unit]), there is a

rich spectrum of valuable microbes (Egan et al., 2013; Hollants et al., 2013). Despite taxonomic 

variability in bacterial genera inhabiting its biofilms, traits among bacteria are shared, which 

creates biofilms with different taxonomic composition but with apparently similar functions 

(Egan et al., 2013). 

Macroalgae seem to actively recruit its biofilm composition, a process known as 

“microbial gardening” (Saha & Weinberger 2019). Microbial gardening allows the recruitment of

specific beneficial bacteria to the algae. In turn, the recruited microbes release antibiotics, 

quorum sensing inhibitors and digestive vesicles (Wiese et al., 2009; Romero et al., 2010; 
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Richards et al., 2017) that collectively shape the biofilm composition. Although, algal biofilm 

composition varies taxonomically, in space, time and host (Lachnit et al., 2011), it shares 

important traits related with algae morphogenesis (Wiese et al., 2009) and nutrient 

supplementation (Hollants et al., 2013).  Overall, a “correct” microbial gardening, might confer 

an adequate biofilm composition, able to produce a cocktail of metabolites that provide 

protection to the algae from microbial pathogens, like bacteria or diatoms (Saha & Weinberger 

2019), or predators like barnacle larvae or mussels (Saha et al., 2018). Interestingly, the benefit 

conferred to algae by the surface microbiome is not taxonomically restricted, suggesting that 

microbial traits underlying algae defense are shared by several bacterial taxa. 

Besides, some bacteria of the algal biofilm produce antibiotic compounds, which act as a 

microbial filter for the establishment of environmental microbes (Albakosh et al., 2016). For 

example, algae’s thallus produces dimethylsulfoniopropionate (Kessler et al., 2018), which 

recruits Roseovarius bacteria. This bacterium releases specific morphogenetic compounds that 

enable correct algae morphogenesis. Moreover, bacterial metabolites could enhance algal 

performance during stress. Thallusin, a microbial derived metabolite, positively influences algal 

growth, cell differentiation, cell wall development, and rhizoid formation during abiotic stress 

(Alsufyani et al., 2020). Therefore, thallusin production might be an excellent example of a 

holobiont environmental stress response. 

Globally, the algal holobiont will be subject to complex scenarios under climate change. 

Sea surface temperature, and CO2 concentration increase, might have different outcomes in algal 

species and also affect key microbes inhabiting macroalgae biofilms, which in turn, could impair 

the host’s health (Gaitan-Espitia & Schmid, 2020; Marzinelli et al., 2015). Moreover, it is 

imperative to consider the effect on the interactions among microbes and microbe-algae. For 

example, algal hosts sensible to acidification might experience lower photosynthetic rate, which 

might hamper aerobe bacteria proliferation (Van der Loos et al., 2019). Climate change 

environmental driven perturbations might produce common disbiotic biofilm composition in 

stressed macroalgae (Marzinelli et al., 2015). Nevertheless, whether shifts in macroalgae biofilm 

composition associated to environmental perturbation impairs macroalgae fitness remains 

unexplored.

The macroalgae holobiont in the Southern Hemisphere
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To the best of our knowledge the macroalgae microbiome has been addressed in 13 studies in the 

Southern Hemisphere (Fig. 1). Most of these studies have been done in template latitudes, 

particularly in Australia (Fig. 3). There are important gaps in tropical and cold latitudes, as well 

as in selected regions, like South America, Africa and Indonesia (Fig. 3). Yet, we still ignore 

much about South America native macroalgae microbiome, since there is only one study that 

addressed this topic in a native species, Macrocystis pyrifera (Laminariales: Laminariaceae), 

while another explored the biofilm composition of a macroalgae invasive species, Undaria 

pinnitafida (Laminariales: Alariaceae) (Florez et al., 2019; Lozada et al., 2022). From these 

examples, we know that macroalgae biofilm composition is different from seawater and is 

influenced by seasonality and available nutrients. Interesting, invasive macroalgae in the 

Southern Hemisphere, shows signs of microbial gardening, since its biofilm composition is 

dominated by one bacterial taxon, Leucothrix, a gamma-proteobacteria (Florez et al., 2019; 

Lozada et al., 2022). This could give insights about potential adaptation mechanisms of these 

invasive species in the Southern Hemisphere, which might be relevant in the ecosystemic process

of the Patagonian region.

Australia is the region where the macroalgae holobiont is best understood, since it has the 

highest number of studies (5 studies, Table 1), and diversity of molecular approximations (i.e., 

16S, shotgun metagenomics, DNA holobiont, Table 1). Yet, most of its research effort has 

focused only on one species, Ecklonia radiata (Laminariales, Lessoniaceae), so it is unlikely that 

their macroalgae holobiont knowledge is generalizable to all macroalgae hosts in the region 

(Marzinelli et al., 2015, 2018; Qiu et al., 2019; Song et al., 2021; Wood et al., 2022). 

Nevertheless, it provides valuable information that gives insight into the future that might face 

the macroalgae holobiont. Ecklonia radiata biofilm composition has a dysbiotic composition 

during environmental stress (Marzinelli et al., 2015, 2018). Yet, stress microbial signatures are 

not consistent across individuals, which suggest that there are unexplored meaningful covariates 

(e.g., host genetic variability) that determine the final holobiont phenotype (i.e., biofilm 

composition) when the algae face environmental stress (Qiu et al., 2019). Besides, horizontal 

transfer of genes related with the algae niche specific environment, and stress environmental 

responses between biofilm bacterial members, suggest that this process might facilitate biofilm 

adaptation to environmental stress (Song et al., 2021). Interestingly, a DNA holobiont approach 

in the macroalgae Phyllospora comosa (Fucales: Seirococcaceae) revealed that host genetic 
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variability has a weak relationship with microbial composition. Moreover, its biofilm 

composition is driven by local conditions and geography (Wood et al., 2022). Together these 

results suggest a complex interplay in the macroalgae holobiont, where genetic variability, 

biofilm composition, horizontal gene transfer and environmental conditions, are crucial players, 

that create a diverse array of phenotypes. Given the unavoidable environmental changes that we 

will face in the next decades, and the key role macroalgae play as ecosystem engineers, it is 

imperative to detect the factors that could promote resilience in the macroalgae holobiont against 

environmental stress, in order to keep the benefits they provide to marine biodiversity.

Although bacterial partners have received most of the attention in algae biofilm research, 

algae biofilms harbor diverse fungal communities. Fungal biofilm composition has been explored

in Antarctica. Fungal epibiotic communities in Antarctic macroalgae are influenced by abiotic 

(i.e., dissolved oxygen and organic matter) and biotic (i.e., antifungal molecules produced by the 

host) factors (Ogaki et al., 2019). Moreover, macroalgae actively controls these communities, 

since some fungal strains associated to algae biofilms have agarolytic and carrageenolytic 

activity, hence, they can degrade algal biomass (Furbino et al., 2017). However, it remains 

unknown the interactions that might take place between bacteria and fungi inhabiting the 

macroalgae biofilm. Future studies should have more holistic approaches, where bacteria, fungi 

and environmental covariables are simultaneously considered.

In particular, the species Macrocystis pyrifera is a worldwide (i.e., present both in the 

Southern and Northern Hemisphere) distributed algae species, whose epibiotic microbial 

communities have been addressed across several regions in the world (Florez et al., 2019; Lin et 

al 2018; Weigel et al., 2019). These studies will be valuable to do M. pyrifera comparisons across

biogeographic regions. However, little is known from the surface biofilm of Macrocystis pyrifera

in the Strait of Magellan. In the project of the Strait of Magellan microbiome, that we will 

describe at the end of the paper, we are attempting to characterize the bacterial and functional 

traits/responses of M. pyrifera, in association with environmental factors at different dephts. 

These data could improve our understanding in macroalgae microbiome response to climate 

change. 
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Sponges

Currently there are 9542 sponge species around the globe, with at least 8,864 species distributed 

in the Southern Hemisphere (de Voogd et al., 2023; Downey et al., 2012). Sponges are the best 

studied holobionts in the Southern Hemisphere, both in terms of studied species (65) and number 

of studies (16), most likely because sponges associated microbes produce a wide array of 

metabolites that have biotechnological importance (Taylor et al., 2007, Fig. 1, Table 1). The 

predominant approach to study the sponge holobiont is16S, nevertheless there have been 

conducted shotgun metagenomic approaches, which had shed light in sponges’ microbiome 

metabolic potential (Table 1, Yang et al., 2022; Moreno-Pino et al., 2020, 2021). Sampling effort 

has been performed worldwide, mainly in Antarctic latitudes (tropical, template and cold 

latitudes) (Fig. 3).

Sponges are important ecosystem players that participate in several biogeochemical 

cycles, and provide stability to the benthos (Bell, 2008). Sponges are the first evolved metazoan, 

and therefore are the sister group to all animals (Wörheide et al., 2012). Their anatomy is unlike 

any other metazoan, but generally, it consists in several cell layers (Taylor et al., 2007). Most of 

the studies used in this revision use the outermost cell layer, nevertheless whenever a study 

sampled more cell layers, it is explicitly stated in the text. In a recent study in the tropical sponge 

holobiont conducted in the Northern Hemisphere, it was observed a high metabolic redundancy 

within the microbiomes that could help buffer the sponge from chemical and physical changes in 

their environment and from fluctuations in the population sizes of the individual microbial strains

that make up the microbiome (Kelly et al., 2022). This is not surprising, since their early 

evolution occurred in a microbe dominated world in the late Precambrian (Renard et al., 2013). 

Sponge physiology seems to be microbe dependent and had reached different symbiotic-based 

solutions to environmental challenges (Thomas et al., 2016). 

Current evidence suggests that the sponge microbiome is similar at the phylum level 

between species in the Southern Hemisphere and those in the Northern Hemisphere (Taylor et al.,

2007). In the Southern Hemisphere the sponge microbiome is characterized by several phyla that 

construct a core including Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, 

Acidobacteria and Cyanobacteria (Rodríguez-Marconi et al., 2015; Matcher et al., 2017; 

Cárdenas et al., 2018; Savoca et al., 2019; Papale et al., 2020; Happel et al., 2022; Ruocco et al., 

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

PeerJ reviewing PDF | (2023:03:83706:0:0:CHECK 22 Mar 2023)

Manuscript to be reviewed



2021; Yang et al., 2022). Interestingly, there is only one archaea phylum associated with sponges,

Thaumarchaeota, yet its association is consistent across several species (Brochier-Armanet et al., 

2008; Sacristán-Soriano et al., 2020; Moreno-Pino et al., 2020; Steinert et al., 2020). 

Interestingly, some bacterial lineages associated to sponges are phylogenetic novelties, 

that is, their DNA sequences are new, hence, they are unable to be identified with current 

sequences databases knowledge. Antarctic sponges (Papale et al., 2020; Moreno-Pino 2021; 

Happel et al., 2022), Australian sponges (Yang et al., 2022), and South African sponges (Matcher

et al., 2017) are the ones with more “unknown” bacterial partners. Noteworthy, phylogenetic 

novel bacteria vary in their prevalence across sponge taxa. Sponges’ genus Sporosarcina and 

Nesterenkonia have greater phylogenetic novelty in their microbiotas (50 % or more) while 

others, like Cellulophaga algicola tend to harbor fewer unknown microbes, therefore most of its 

associated microbes is recognizable (Moreno-Pino et al., 2021). Considering metabolic evidence 

from Northern Hemisphere tropical sponges, functional redundancy of their microbiomes might 

allow sponges to tolerate environmental fluctuations, which allows them to distribute over wide 

areas (Kelly et al., 2022). Hence, environmental variability could be an important driver of 

microbiota assembly in sponges of the Southern Hemisphere, both at inter- (between different 

species) and intraspecific (within the same species, among individuals) levels (Steinert et al., 

2020). 

Nevertheless, besides environmental heterogeneity, phylogenetic factors (i.e., 

species/genera particular affinities) also play an important role in sponges’ microbiota assembly. 

For example, sponges from the genus Mycale display a strong bacterial core among individuals 

and species distributed over hundreds of kilometers in the Southern Ocean (Cárdenas et al., 2018;

Happel et al., 2022). Similar stable associations have been found in some sponge species from 

Antarctica (Steinert et al., 2019). Mycale magellanica, a common sponge living in the Strait of 

Magellan, shares up to 74% of sequences belonging to Rhodobacteriaceae and Flavobacteriaceae 

with individuals of M. acerata, a common sponge in the Western Antarctic Peninsula (Cárdenas 

et al., 2018). Moreover, in M. acerata, bacterial composition is stable among individuals 

distributed across the entire West Antarctic Peninsula (Happel et al., 2022).

 Similar trends, with similar microbiota composition, are shown in Demospongiae and 

Hexactinellida sponges from Ross Sea, Antarctica. These sponges share the bacterial genera 
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Erwinia, Methylobacterium and Sphingomonas (Papale et al., 2020). In contrast, in the same 

region (Ross Sea), sponges’ microbiotas composition has been found to be heavily influenced by 

environmental microbes (horizontal transmission), both in the cultivable fraction and NGS-

microbiota (Savoca et al., 2019; Sacristán-Soriano et al., 2020). Overall, this highlights the 

differences in bacterial composition variability among sympatric sponges, which might create 

species or genus specific microbiota compositions. 

Factors underlying microbial recruitment in sponges get more complex when we consider 

sponges associated Archaea. For example, in Demospongiae and Hexactinellida sponges, from 

the South Pacific Ocean, bacterial composition is species specific, while the Archaea composition

is individual specific (Steinert et al., 2020). Thus, Archaea composition is sparse among 

individuals, which might suggest that Archaea are opportunistic/contingent players in the sponge 

holobiont, or rather, their functional benefits are widely shared among several archaea taxa. This 

pattern contrasts with the stable microbiota composition reported in Ross Sea sponges (Papale et 

al., 2020). The differentiated trends suggest that environmental fluctuation coupled with species 

specific filters might drive microbial composition associated with sponges. 

The above examples illustrate the complex factors underlying sponge symbiotic 

associations with bacteria, where horizontal transmission and host specific factors appear to have 

a differential role among sponge species. Despite inconsistency among associated microbes’ 

identity, it is likely that sponges associated microbes have similar functional traits. Thus, 

although sponges’ microbiota has complex patterns, their microbiomes might have functional 

convergence (Cristi et al., 2022). 

Nevertheless, whether sponges’ microbiomes taxonomy obey contingent issues (i.e., 

which microbe taxa arrived first or neutral process in microbiota assembly) or indeed have a 

biological basis is an open question. Symbiotic interactions among sponge and its associated 

bacteria dynamically shape the sponge microbiota composition. On one hand, opportunistic 

bacteria that degrade sponge tissues, like Bacillus, Microccoccus and Vibrio, are common 

members of the sponge holobiont. On the other hand, there are antibiotic producing bacteria that 

regulate the former, like Streptomyces, Aquimarina, Pseudovibrio and Pseudoalteromonas 

(Esteves et al., 2017). Variations in quorum sensing, a microbe chemical communication system, 

also might play an important role in microbial recruitment. The genera Pseudomonas, 
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Shewanella and Roseobacter, common bacteria associated to sponges, produce Acyl homoseron 

lacton, an important chemical messenger in quorum sensing (Mangano et al., 2018). The quorum 

sensing activity by these bacteria might alter the community profile, by differential microbial 

recruitment. Quorum sensing might be an important adaptative trait in the sponge holobiont, 

specially under the ongoing climate derived marine changes, yet its prevalence, and more 

important its relevance, among sponges’ microbiomes has not been thoroughly studied.

Metagenomic studies have shed light on the characteristics of the functional repertoire of 

sponges’ microbiomes. Microbe metabolism differs throughout sponge tissue, highlighting a 

tissue specific microbiome metabolism (Yang et al., 2022). Several examples pinpoint to nutrient 

provisioning as an important trait in sponges’ microbiomes. Microbial symbionts encode multiple

genes related to nitrogen fixation and metabolism of nitrogen compounds, sugars derived from 

photosynthesis (Moreno-Pino et al., 2020), as well as vitamin B5 (Moreno-Pino et al., 2021). In 

consonance with antagonistic interactions among members of the sponge microbiome, antibiotic 

resistance, and biopolymer degradation (Moreno-Pino et al., 2021), as well as CRISPR genes, 

transposases, detoxification genes and restriction site modifications (Moreno-Pino et al., 2020) 

are common traits in sponges’ microbiomes. The latter functions highlight the evolution of the 

microbiome within the sponge itself, since several microbes associated with sponges degrade the 

sponge’s tissues and avoid the effect of antimicrobial compounds. 

Furthermore, the high prevalence of CRISPR genes in sponges’ microbiomes, suggest that

their bacterial members are under constant phage attack (Moreno-Pino et al., 2020), which adds 

another complexity layer to the microbial interactions in the sponge microbiome. There is a high 

proportion of genes in the microbial communities with unknown functions, so besides 

phylogenetical novelty described above, there also stands out functional/metabolic microbial 

novelty associated with sponges (Moreno-Pino et al., 2020).

Up to date, few studies have addressed the effects that marine climate change will have on

the sponge holobiont. An interesting exception is given by Kandler et al., (2018), which found 

that microbial communities of the tropical sponges from New Guinea, Coelocarteria 

singaporensis and Stylissa cf. flabelliformi might be tolerant to future marine pH conditions. 

However, it is still an unifactorial experimental approach, that does not represent a reliable test of

the multifactorial climate change process. In contrast, there are other climate change driven 
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effects that might pose a major challenge to sponges in polar environments, like ice scour (seabed

modification caused by floating icebergs), which is predicted to increase as a direct consequence 

of sea surface temperature rise. Ice scour damages benthic communities, specially sponges, like 

Isodictya kerguelenensis. Ice scour injuries produce microbial fingerprints, that are easily 

identified (Rondon et al., 2020). Thus, as climate change progresses and ice scour increases, 

Antarctica sponges’ integrity might be compromised in the next decades.

Non-sponge invertebrates

Marine invertebrates comprise between 35 - 39 recognized phyla (Valentin, JW 2006; Zhang, ZQ

2013). Most iconic marine invertebrates’ phyla are Mollusca (118,061 species), Echinodermata 

(20,550 species), Annelida (17, 426 species), Cnidaria (17,426 species), and Bryozoa (11,474 

species) (Zhang, ZQ 2013). Marine invertebrates’ microbiomes have received few attention, with 

23 species within 10 research articles (Fig. 1, Table 1). However, this group has outstanding 

examples of authentic holobiont approaches (i.e., coupled measurement of host and microbe 

traits) (Table 1). Sampling effort has been conducted mainly in Australia, Antarctica, and Africa 

while there are no studies addressing any marine invertebrate microbiome in South America (Fig.

3). 

Overall, marine invertebrate microbiome is characterized by several bacterial phyla, 

where Proteobacteria, Bacteroidetes, Verrucomicrobia, Tenericutes and Actinobacteria are the 

most abundant (Webster & Bourne, 2007; Murray et al., 2016, 2020; Unzueta-Martínez et al., 

2022) Antarctic corals and snails have stable microbiotas among individuals. The Antarctic soft 

coral, Alcyonium antarcticum, has a core microbiota composed by Proteobacteria, Bacteroidetes, 

Firmicutes, Actinomycetales, Planctomycetes, Chlorobi and sulfate reductor bacteria (Webster 

and Bourne, 2007). A similar trend is observed in the Antarctic snail Synoicum adareanum. This 

invertebrate’s microbiota is characterized by a high prevalence among individuals of 

Proteobacteria, Verrucomicrobia, Actinobacteria, Nitrospirae and Bacteroidetes (Murray et al., 

2020). In other cases, microbes associated to invertebrates display low diversity, like the ice-

adhered anemone Edwardsiella andrillae, an endemic anemone of Ross Sea living in the sea ice-

water interphase, where the main phyla are Proteobacteria and Tenericutes. Interestingly, most of 

its sequences display recent diversification branching, which suggests that its associated bacteria 

are evolutionary recent (phylogenetically new) (Murray et al., 2016). 
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On the other hand, invertebrates with long and complex life cycles, also have a complex 

pattern in their associated microbes along its life stages. In the Sydney rock oyster (Saccostrea 

glomerata), bacterial composition is driven by life history characteristics (Unzueta-Martínez et 

al., 2022). For example, environmental bacteria are a major source of bacterial composition in 

swimming larvae stages, thus, the microbiota of these stages is characterized by common marine 

free-living bacteria. On the contrary, sessile stages, like pre adult stage, adult and gametes have 

distinct microbiota profiles. Overall, the bacterial composition across life stages in the Sydney 

rock oyster is patchy, which suggests that the majority of oyster associated microbes are either 

opportunistic or commensals, with few relevance to the oyster. Nevertheless, the genus Nautella 

(Rhodobacterales) was consistently present across stages, increasing its abundance notably in the 

last stages.

       To the best of our knowledge, the only crustaceans in the Southern Hemisphere studied to 

date are lobsters, krill and copepods. Overall, the bacterial microbiota of crustaceans in the 

Southern Hemisphere is dominated by Campilobacterota, Tenericutes, Actinobacteria, 

Firmicutes, Bacteroidetes and Proteobacteria (Clarke et al., 2019; Ooi et al., 2019; Clarke et al., 

2021; Oh et al., 2021; Zhang et al., 2021).

        Microcrustaceans are important trophic links between primary producers (e.g., diatoms), 

primary, and secondary predators (e.g., seabirds and fish, respectively). Antarctic krill (Euphasia 

superba) is the trophic basis in the Southern Ocean ecosystem. Despite its inherent exposure to 

marine bacteria, Antarctic krill hosts unique bacteria phyla in its body; furthermore, its epibiotic 

associated bacteria differentiates as geographic distance increases. Hence, distance, rather than 

environmental heterogeneity drives epibiotic bacteria composition in krill (Clarke et al., 2019; 

Clarke et al., 2021). The major bacterial players in their chitin surface are Campilobacterota and 

Tenericutes, while in the stomach and intestinal gland were Actinobacteria and Firmicutes 

(Clarke et al., 2019). Interestingly, Colwellia bacteria is a prevalent member of epibiotic 

microbiota in Antarctic krill swarms at local and regional scales (Clarke et al., 2021). Its 

persistent association, through thousands of kilometers, might suggest an important role to krill 

health. 
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        Sea temperature increase might disrupt psychrophilic bacteria associated with Antarctic 

crustaceans. In the Antarctic copepod Tigriopus kingsejongensis, 15 °C temperature treatment 

has profound effects in its fecal microbiome. Temperature increase diminishes abundance of 

psychrophilic bacteria (e.g., Colwellia), whereas it facilitates the increase in opportunistic 

pathogens (e.g., Vibrio) and virulence genes (Oh et al., 2021). As sea surface temperature 

increases, it is probable that the microcrustacean holobiont will face major shifts in its associated 

bacteria, on one hand the increase of bacteria that prefer higher temperatures (e.g., Vibrio), and 

on the other hand, the decrease of psychrophilic bacteria. 

Natural life history events, like molting and temperature, have important effects in 

crustacean’s microbiota composition (Ooi et al., 2019; Zhang et al., 2021). Molting is a critical 

process in crustaceans that allows them growing and sexual maturation. Evidence from the 

chinese mud crab, Scylla paramamosain, suggests that molting represents a bottleneck to most of 

its associated microbes in gills and midgut. Nevertheless, hemolymph bacteria, 

Halomonas and Shewanella, prevail despite molting (Zhang et al., 2021). Noteworthy, the 

abundance of this bacteria, had a high correlation with the expression of crab antimicrobial gene 

expression. These results suggest the presence of highly adapted bacteria to the complex life 

cycle of the mud crabs. Yet, it is uncertain to which degree, molting could alter microbiome traits

in the crab holobiont. Sea temperature increase might impose microbe related burdens to 

crustaceans, as exemplified by the spiny lobster, Panulirus ornatus, in Australia (Ooi et al., 

2019). In the spiny lobster, temperature increase has a direct relationship with juvenile mortality. 

As temperature increases, so does bacteria metabolism, which burdens the lobster immune 

system by bacteria infiltration and subsequent uncontrolled proliferation in the hemolymph. 

Interestingly, there have been conducted holobiont approaches in snails in deep 

hydrothermal vents and several Lucanidae species (Mollusca) across the world, where host DNA 

and microbial DNA have been simultaneously addressed (Lan et al., 2021; Osvatic et al., 2023). 

These results have highlighted the effect of ecological niche and host-microbe metabolic 

complementarity in microbiome assembly. Interestingly, sulfur oxidizing bacteria is present in 

phylogenetical and geographical distant species of Lucanidae Mollusca (Lan et al., 2021; Osvatic 

et al., 2023). The above examples highlight the relevance of coupling holobiont approaches with 

relevant ecological data to address the meaningfulness of the interactions among hosts and its 

associated microbes. 
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In the Strait of Magellan study that we will describe at the end of the article, we are 

including two crustacean species, the centolla, Lithodes santolla and the channel sprawns, 

Munida gregaria. The former, is an economically important species that spend most of its life in 

the sea floor, while the latter is a key species in trophic energy transfer, since it is simultaneously 

an important plankton consumer and is eaten by several predators (e.g., Magellanic penguin and 

sea lion). In our holobiont study in the Magallanes region, we expect that the centolla will present

fewer signals related to the UV light and heat stress than any of the other species that have a more

ample niche in the water column or in the surface as is the case of sea lions and penguins.

Vertebrates

Fish 

There are more than 20,000 species of marine fish around the globe (CML, visited 2023).

Fish are important links between trophic basal levels and higher ones, yet the fish holobiont is the

least studied in the Southern Hemisphere with 9 studied species within 4 research articles (Fig. 

1). All fish studies have been conducted with 16S metabarcoding approaches (Table 1). Fish 

microbiome sampling effort in the Southern Hemisphere has been predominantly done template 

(Australia) and Antarctic latitudes (Antarctica) (Fig 2). Hence, there are important gaps in 

tropical, template and cold latitudes, specifically in South America, Africa, and Indonesia (Fig. 

3). Importantly, we still ignore much about native fish species microbiome, since most studies 

have been done in commercially important species. Most fish microbiome studies have been 

performed with the objective of testing the usefulness of microbial taxa as biosensors of the fish 

health. Fish skin has a mucous layer over its epidermis that serves as an additional barrier 

between the environment and the host’s skin. The mucous layer consists of immunogenic 

compounds that play important roles in innate and adaptive immunity (Gomez et al., 2013). Thus,

bacteria inhabiting fish skin, might be commensals in healthy individuals or 

opportunistic/pathogenic in fish with compromised health. 

Current evidence of fish bacterial microbiota in the Southern Hemisphere, has shown that 

the most prevalent bacteria phyla associated to fish are Actinobacteria, Firmicutes, 

Proteobacteria, Tenericutes, and Bacteroidetes (Song et al., 2016; Minich et al., 2020; Legrand et 
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al., 2018; Heindler et al., 2018). In the southern Bluefin Tuna, in Portland Australia, Thunnus 

maccoyii, captivity and antiparasitic administration (i.e., praziquantel) have important effects in 

fish microbiota composition. Healthy fish microbiota, without praziquantel, is dominated by 

Mycoplasmataceae in its skin, and Pseudomonas, Acinetobacter, Brevundimonas, and Delfita in 

its gut (Minich et al., 2020). In the Yellowtail Kingfish (Seriola lalandi), in temperate and 

southern waters of Australia, early enteritis produces microbial fingerprints in its skin microbiota.

Early enteritis is associated with greater abundance of Loktanella, Marivita, and Planktomarina, 

Simplicispira, and Litoricola, as well as decreased diversity in the microbial community (Legrand

et al., 2018). 

Fish microbiota also has been addressed under a natural history framework. In four 

species of wild Antarctic fish (Trematomus bernacchii (family Notothenioidei), Chionodraco 

hamatus, (family Channichthyidae), Gymnodraco acuticeps (family Bathydraconidae), and 

Pagothenia borchgrevinki (family Notothenioidei), gut microbiota has a stable composition 

among several species (up to 50% sequences are shared among individuals) (Song et al., 2016). 

This suggests the presence of a core intestinal microbiome in Antarctic fish, despite differences in

environment and diet, which might play important roles in fish health. 

Interestingly, fish gut microbiota could serve as a biological prognosis of anthropogenic 

impact in marine environments, when it is possible to compare historical and contemporary 

samples. In the Antarctic fish Trematomus spp. historical samples (museum samples with 100 

years old, fixed with formalin and embedded in paraffin) have revealed notable shifts in gut 

microbiota composition. Contemporary fish gut microbiota was characterized by Chlamydia, 

Firmicutes, Cyanobacteria and Mycoplasma. In contrast, historical fish gut microbiota was 

dominated by Proteobacteria. Despite the richer appearance of phyla in contemporary fish, OTU 

richness and Shannon index diversities were higher in ancient fish (Heindler et al., 2018). These 

results attempt to elucidate the relationship between fishing practices and fish gut microbiota, 

under a historical context. Before global fishing practices, fish were able to have a consistent diet 

that produce redundant gut communities at the phylum level. In contrast, fishing practices 

disrupted prey availability, which forced fish to become more opportunistic in their feeding, 

producing gut communities with wider phylogenetic representation, albeit less diversity (Heindler

et al., 2018). Whether the shift from more diverse gut microbiotas enclosed in one phylum, to less
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diverse communities with members spanning several phyla has impacts in fish (and any marine 

host’s) health, is a deep open question. 

In the Strait of Magallanes project that we describe at the end of the paper, we are 

studying two fish species, the sardine Sprattus fuegensis and the farm salmon, Salmo salar. We 

think that the skin microbiome comparison between a wild native species (i.e., sardine) and an 

introduced species raised in captivity (i.e., salmon) will provide important clues about local 

marine conditions as well as the effect of captivity. 

Seabirds

Seabirds are important components of the Southern Hemisphere (Woehler et al., 2001). 

Currently, there are 350 species around the globe, with at least 61 species endemic to the 

Southern Hemisphere (Croxall et al., 2012). Seabirds’ microbiome has received substantial 

attention in the Southern Hemisphere, with 22 studied species within 16 research articles (Fig. 1, 

Table 1). Nevertheless, most of these studies are restricted to few penguin species (Table 1) and 

in most cases have been done with fecal samples (but see Leclaire et al., 2019). However, this is a

global trend, since there are only two studies in the Northern Hemisphere addressing feather 

bacterial communities, most likely because these are challenging species to sample (Pearce et al., 

2017; Leclaire et al., 2019). Seabird microbiome sampling effort in the Southern Hemisphere has 

been performed in most latitudinal regions, template (Brazil & Australia), cold (Argentina and 

Keguelen) and Antarctic latitudes (Antarctic islands and Western Antarctic Peninsula (Fig. 3). 

Seabird microbiome has been predominantly conducted with taxonomic marker approaches (i.e., 

16S), hence their associated microbes have been predominantly addressed at the bacterial 

community level. Nevertheless, these studies have been conducted with metatranscriptomics and 

RNA viromics surveys (Marcelino et al., 2019; Wille et al., 2020).  

Overall, the main bacterial phyla of penguins’ fecal microbiota in the Southern 

Hemisphere are Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes (Potti et al., 2002; 

Barbosa et al., 2016; Dewar et al., 2013, 2014, 2017; Yew et al., 2017; Lee et al., 2019; Tian et 

al., 2021a, Tian et al., 2021b). Whereas the main bacterial phyla of seabird plumage microbiota in

the Southern Hemisphere, is characterized by Actinobacteria, Proteobacteria, Firmicutes, and 

Acidobacteria (Leclaire et al., 2019).
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Aging is an important driver of fecal microbiota composition, both in wild and captive 

penguins (Barbosa et al., 2016; Dewar et al., 2017; Tian et al., 2021a). In wild chinstrap penguin 

chicks (Pygoscelis antarctica) fecal microbiota is dominated by Firmicutes, specially by 

Clostridiales, Leuconostoc and Fusobacterium. In contrast, adults’ fecal microbiota is dominated 

by Proteobacteria and Bacteroidetes, specially by Neisserales, Fusobacteriales and 

Campylobacteriales, yet there is high variability among individuals (Barbosa et al., 2016; Lee et 

al., 2019). In contrast, in captive chinstrap penguins in the Dalian Sun Asia Aquarium, China, 

aging only changes relative abundances of the main constituents of fecal microbiotas. Chicks’ 

fecal microbiota was dominated by Acinetobacter, while Pasteurella was the dominant bacteria 

in senior penguins (between 22-28 years old); the fecal composition was further completed with 

Clostridium, and Fusobacterium in chicks and adult penguins (Tian et al., 2021a). Furthermore, 

these compositional shifts followed predicted functionality shifts. In general, predicted 

functionality reaches its maximum diversity in adults, while it starts to decline in senior penguins 

(after 22 years old) (Tian et al., 2021a). 

Support for age of the host as an important driver of fecal microbiota composition comes 

from the little blue penguin (Eudyptula minor), at the Phillip Island Nature Parks, Australia, 

where fecal microbiota between chicks and adults differs (Dewar et al., 2017). Differences in 

fecal microbiota composition might be explained by the kind of food that chicks and adults ate. 

Chicks eat regurgitated food, which might not require a robust microbial metabolic repertoire to 

aid in digestion; in contrast, adults eat raw food that might contain recalcitrant chemicals, like 

domoic acid in fish (Lefebvre et al., 2002) or fluoride, from krill (Yoshitomi et al., 2012). 

Besides community compositional comparisons, 16S surveys have been used to 

understand changes in penguins’ fecal microbiome predicted metabolic functions. For example, 

in captive gentoo penguins (Pygoscelis papua) in the Dalian Sun Asia Aquarium, China, sex 

apparently influences fecal microbiome predicted metabolism (Tian et al., 2021b). Males’ fecal 

microbiota is enriched in carbohydrate metabolism, putatively driven by Lachnospiraceae family,

whereas females had a fecal microbiota enriched in protein metabolism, putatively driven by 

Fusobacteriaceae family (Tian et al., 2021b). Microbiome predicted functions from 16S data are 

constrained by the number of available microbial genomes sequenced (Douglas et al., 2020) and 

information on its “optimal performance” is limited to human samples, and decreases sharply in 

environmental samples (Sun et al., 2020). Therefore, functional microbiome studies (i.e., 
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metagenomics or metatranscriptomics) coupled with experimental/culture assays are needed to 

validate the metabolic functions that have been attributed to penguin fecal microbiota.

Fecal microbiota comparisons between several penguin species have shed light about 

penguin species specific factors influencing fecal microbiota composition. For example, Dewar et

al., (2013) compared the fecal microbiota composition of four penguin species: macaroni 

penguins (Eudyptes chrysolophus), king penguins (Aptenodytes patagonicus) and gentoo 

penguins from two sites, Bird Island in South Georgia and Baie du Marine, Possession Island 

Crozet Archipelago, and little blue penguins from Phillip Island, Australia. This study revealed 

interesting patterns in penguin fecal microbiota at phyla level, where the dominant bacterial 

phylum of each penguin species was as follows: Firmicutes in macaroni penguins, Actinobacteria

in king penguins, and Proteobacteria in gentoo and little blue penguins (Dewar et al., 2013). Fecal

microbiota divergence among penguin species might be explained by trophic niche differences. 

Additionally, hormone profiles might also have specific effects in gut microbiota composition. 

However, differences could also be attributed to geographical factors. Systematic studies, where 

multiple colonies of each species with an adequate sample size are needed to verify to what 

extent these results reflect penguin fecal microbiota in these species.

Penguin’s gastrointestinal tract has several differences along its structure. Given that fecal

microbiota represents the last section of the gastrointestinal tract, it is unlikely that it is a 

representative sample of penguins’ gastrointestinal microbial diversity. Indeed, stomach 

microbiota studies conducted in Adélie (Pygoscelis adeliae) and chinstrap penguins in Signy 

Island, South Orkney Islands, Antarctica have revealed bacterial community structure between 

the stomach and fecal microbiota. Stomach microbiota of Adelie and chinstrap penguins is 

characterized at the phyla level by Firmicutes, Proteobacteria, Fusobacteria, and Tenericutes. 

Common genera in both species are: Cetobacterium, Psychrobacter, Chelonobacter, Clostridium 

(family: Clostridiaceae), Mycoplasma and Ornithobacterium (Yew et al., 2017). These stomach 

bacterial communities differed from those reported from the fecal microbiota of these species, 

where Actinobacteria and Firmicutes were the dominant phyla in Adelie penguin fecal microbiota

(Banks et al., 2009), while chinstrap fecal microbiota is characterized by Proteobacteria and 

Bacteroidetes (Barbosa et al., 2016; Tian et al., 2021a). Stomach bacterial differentiation might 

be explained in part, by the presence of sphenicins, special compounds in the penguin stomach 

that prevent bacteria from digesting food (Thouzeau et al., 2003).
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        Fasting is a critical event inherent to penguins’ life history. Penguins experience fast when 

they rear their chicks, and when they molt. Fasting has species-specific compositional changes in 

the fecal microbiota of penguins (Dewar et al., 2014; Lee et al., 2019). This could be explained 

by penguin species differences in fast length and their fecal associated microbes. In king Penguin,

fasting increases the relative abundance of Proteobacteria, Firmicutes, Actinobacteria, 

Fusobacteria and Bacteroidetes. In contrast, in little blue penguin, all phyla but Proteobacteria 

decreased its relative abundance as fasting progressed (Dewar et al., 2014). Fusobacteria is a 

butyrate producer bacterium. Butyrate is a known anti-inflammatory agent (Canani et al., 2011). 

Furthermore, butyrate administration in chickens has immune system functional improvement, 

which improves health and decreases pathogen incidence (Panda et al., 2009). The enrichment of 

Fusobacteria in king penguin fasting, suggest that this bacterium could play an important role in 

metabolic homeostasis. Further evidence supporting the effect of fasting in penguins comes from 

gentoo and chinstrap penguins in different trophic status (i.e., feeding season or fasting). In 

feeding chinstrap and gentoo penguins, Fusobacteria and Proteobacteria were the dominant 

bacteria, while in molting (fasting) birds, these phyla decreased while Firmicutes increased its 

relative abundance. Nevertheless, the magnitude in the compositional changes of its fecal 

microbiota composition differed among species. While shifts in chinstrap penguins were subtle 

(i.e., not supported statistically), shifts in gentoo penguin were major (i.e., statistically supported)

(Lee et al., 2019).

         It is worth mentioning, that penguin and Antarctic birds’ fecal microbiota studies have shed 

light in the widespread occurrence of genera close to known pathogens. Those genera include 

Campylobacter, Yersinia, Salmonella, and Escherichia (Barbosa et al., 2009), yet, it is uncertain 

to which degree they affect penguins’ health, but they might have a parasitic basis. Support of 

this, comes from Magellan penguins from Peninsula Valdez, Argentina where in penguin chicks, 

Corynebacterium, a dominant bacterium in fecal samples appears to divert resources from the 

chick, impairing its growth., but administration of a wide spectrum antibiotic, reduced 

Corynebacterium abundances, reversing growth halting (Potti et al., 2002).

On the other hand, the presence of potential pathogens in Antarctic animals can be a 

misinterpretation of what “is normal” and what is human related (Souza et al., 1999). The same 

may occurs with virus associated with Antarctic fauna. For example, chinstrap, Adélie, and 
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gentoo penguins harbor a great diversity of virus in their cloaca and of their ectoparasitic mites 

(Wille et al., 2020). These results highlight the uniqueness fauna living in the Antarctic biome. 

Moreover, it calls for further microbiome research in these remote places, in order to elucidate 

their relationship with worldwide fauna. 

Seabird plumage microbiota has been poorly studied in the Southern Hemisphere, yet, we have 

some insights from the blue petrel, Halobaena caerulea, whose plumage microbiota composition 

is highly variable among body sites (Leclaire et al., 2019). Furthermore, some bacteria show a 

positive correlation with MHC (Major histocompatibility index), which suggests that plumage 

bacteria are influenced by MHC allele diversity in this seabird. 

        Interestingly, a metatranscriptomic approach revealed a high incidence of antibiotic resistant

genes in several seabirds from Australia with different trophic ecologies (Marcelino et al., 2019). 

Synanthropic (living near human settlement) species with filter eating habits, like several 

Australian ducks (Anas spp. and Tadorna tadornoides) , had the highest diversity of antibiotic 

resistant genes, whereas avocets (Recurvirostra novaehollandiae) and gentoo penguins, which 

live in remote areas and prey invertebrates and fish, respectively, had the fewest. However, the 

presence of antibiotic resistant genes is not a surprise since this seems to be a very ancient 

strategy in microbial communities (Souza et al., 1999). Noteworthy, although the cloacal 

microbiome of gentoo penguins had the less diversity of antibiotic resistant genes, it displayed 

resistance against unique drugs, like Macrolides, Lincosamide, and Streptogramin (Marcelino et 

al., 2019). 

In a similar fashion, kelp gulls (Larus dominicanus) and Magellan penguins from Brazil 

were assessed by qPCR to evaluate the diversity of antibiotic genes they harbor (Ewbank et al., 

2021). Ecological strategies (synanthropic / remote, migratory / non, opportunistic / specialized 

feeding) might have a strong association with antibiotic gene resistance transmission, with those 

related to anthropocentric activities having the greatest diversity in antibiotic resistance genes. As

expected, kelp gull, a synanthropic species, has the greatest diversity in antibiotic resistance 

genes. Its antibiotic resistant gene pool has resistance against eight drugs: tetracycline, 

aminoglycosides, sulfonamides, chloramphenicols, macrolides, quinolones, betalactams, 

polymyxins. On the contrary, in the Magellan penguin, a migratory, non-synanthropic, 

specialized feeder (it preys mainly fish and squid) their antibiotic resistance genes diversity was 
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lower, with specific resistance against two drugs, tetracycline and quinolone (Ewbank et al., 

2021). 

In our project on the surface microbiome of key species in the Strait of Magellan, we are 

planning to study the feather microbiome in Magellan and King penguins. We are interested in 

testing geographical, phenological, and developmental effects in feather microbiome of these 

species. These works will provide original baseline knowledge regarding penguin feather 

associated bacteria.

Marine mammals

Marine mammals comprise several species that collectively are considered as “marine sentinels”, 

since their population trends could give valuable insights about the status of the marine 

ecosystem (Moore, SE, 2008). Currently, there are 115 species distributed around the globe 

(Kaschner et al., 2011). Up to one third of them are cooccur between the template – cold latitudes

(i.e., 20-50) of the Southern Hemisphere. Important hotspots of marine mammals’ biodiversity: 

New Zealand, Sub-Antarctic and Southeastern Pacific islands, and offshore waters along the 

coasts of southern South America (Kaschner et al., 2011). Marine mammals’ microbiome has 

received the greatest attention in the Southern Hemisphere, with 15 studied species within 17 

research articles (Fig. 1, Table 1). Nevertheless, most studies have been conducted in one species 

(humpback whale) (Table 1). In most cases, these studies have been conducted with 16S 

approaches, but there is a pinniped shotgun metagenome (Table 1, Smith et al., 2013). 

Interestingly, marine mammals’ microbiome research has been done worldwide, with sampling 

effort across all latitude regimes (tropical, template, cold and Antarctic), specifically in template 

latitudes (i.e., Australia), followed by Antarctica and South America (Fig. 3).

We still lack a more comprehensive view of cetaceans’ microbiome in the Southern 

Hemisphere, since most of current studies have been done in one species over different 

geographic locations (i.e., humpback whale) (Table 1). In contrast with cetacean microbiome 

knowledge in the Northern Hemisphere where several species have been addressed (Sanders et 

al., 2015; Van Cise et al., 2020; Apprill et al., 2020; Miller et al., 2020). While this gives us depth

in understanding humpback whale microbiome across geographic regions, it also pinpoints to the 
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great void that remains in the rest of cetaceans, like whales and dolphins. Besides humpback 

whale, there have been conducted several studies in pinnipeds (Table 1).

In particular, marine mammals’ microbiome research has been focused in whale skin and 

blow microbiota studies. In the Southern Hemisphere skin microbiological surveys have been 

done in rorquals (Balaenopteridae, species Megaptera novaeangliae [humpback whale], 

Balaenoptera musculus, and B. physalus) as well as killer whales (Orcinus orca). Overall, the 

main bacterial elements in the whale skin microbiota are Proteobacteria, Bacteroidetes, 

Actinobacteria, and Firmicutes (Apprill et al., 2014; Pirotta et al., 2017; Bierlich et al., 2018; 

Hooper et al., 2019; Vendl et al., 2019; Vendl et al., 2020; Toro et al., 2021). 

Humpback whales are the best studied cetaceans in the Southern Hemisphere. Studies 

from humpback whales in the South Pacific (Samoa islands), Chilean coasts and Antarctic 

regions have allowed the detection of a skin core microbiota, characterized by Tenacibaculum 

and Psychrobacter (Apprill et al., 2014; Bierlich et al., 2018; Toro et al., 2021). Rorquals 

(Megaptera novaeangliae, Balaenoptera musculus, and B. physalus) skin microbiota along 

several points in Chilean coasts have idiosyncratic and species-specific trends, that is, whales 

have a unique skin microbial composition at the individual and the interspecific level. However, 

their skin microbiota alpha diversity was similar in compositional terms (i.e., Shannon diversity), 

but was slightly different in phylogenetic terms (i.e. Faith phylogenetic diversity) (Toro et al., 

2021). 

Skin microbiota of humpback whales foraging in Antarctica and the Strait of Magellan are

enriched in Psychrobacter bacteria. Changes in sea surface temperature, as well as shifts towards 

northern areas, are associated with decreases in Psychrobacter relative abundance. This pattern 

suggests that sea temperature is an important driver in humpback whale skin microbiota assembly

(Bierlich et al., 2018; Toro et al., 2021). 

        Blow microbiota of Australian humpback whales has been surveyed to address whales’ 

health. In contrast with skin microbiota, blow microbiota is sparse among individuals, without 

any discernable core. The most abundant microbes in the blow were Tenacibaculum, 

Pseudomonas Leptotrichia and Corynebacteria. Additionally, some individuals had potential 

respiratory pathogens in their blow microbiota, like Balneatrix, Clostridia, Bacilli, 
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Staphylococcus and Streptococcus (Pirotta et al., 2017; Vendl et al., 2019). Furthermore, whale 

blow associated bacteria harbors significant phylogenetic novelty, since half sequences in some 

individuals were only able to identify at class level (Vendl et al., 2019). Whale feeding 

phenology is an important factor that could underlie the sparsity of blow microbiota structure. 

While feeding blow microbiota has a core microbiota composed of Arcobacter, 

Corynebacterium, Enhydrobacter, Helcococcus and Tenacibaculum, albeit in very low 

abundance, 1.5% or less. In contrast, during migration, when whales are fasting, blow microbiota 

among individuals becomes highly variable, with no discernible core (Vendl et al., 2020a). 

Besides phenology or health status, whale blow microbiota is also influenced by the sociality 

degree of the studied species. Whale species with gregarious habits (e.g., humpback whale), have 

higher diversity and a great microbial core in their blow microbiota, in contrast with more 

solitary whales (Vendl et al., 2020b). Likely, this could reflect the horizontal transmission of 

blow microbes among contiguous whales, where the microbes exhaled by one individual are 

inhaled by another, and so on. Nevertheless, more studies are needed to address if this pattern 

emerges because of horizontal transmission or could reflect common health status among whales’

groups.

         In the case of Killer whales, the Antarctic ecotypes have been found to harbor a distinct 

skin microbiota from ecotypes in the northern hemisphere. Differences are driven by 

Tenacibaculum dicentrarchi bacteria, diatoms, and several algae-associated bacteria (Hooper et 

al., 2019). More systematic studies of whales associated bacteria, and ideally of an “authentic” 

holobiont approaches (i.e., describing whale genetic traits, as well as their microbiome and 

trancriptome) to better understand the whale holobiont. 

In our project on the surface microbiome of key species in the Strait of Magellan (ANID 

R20F0009), we are including a holobiont approach to study the humpback whales of the area. In 

particular, we are sampling individuals that migrate to the Strait of Magellan to feed in the austral

summer season.

         Pinnipeds are apex predators whose health might inform about marine ecosystem conditions

(Moore, SE 2008). Sampling pinnipeds is challenging due to the remote location of their colonies

and proclivity to escape from humans, hence, the most feasible samples to study them, are the 

feces they leave in rocks. Seal fecal microbiota apparently is driven by several host factors, 
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including feeding, geographic distribution, ontogeny, trophic niche differences, anatomy, and 

physiology, explaining, at least in part, the great fecal microbiota composition variability among 

species, where there is no detectable fecal core microbiota. Nevertheless, it is uncertain if the 

taxonomic differences are congruent with microbiome metabolic traits. 

        Overall, the main bacterial components of seal fecal microbiota are Firmicutes, 

Fusobacteria, Bacteroidetes, Proteobacteria, and Actinobacteria (Nelson et al., 2013; Delport et 

al., 2016; Grosser et al., 2019; Kim et al., 2020; Toro-Valdivieso et al., 2021).Nevertheless, fecal 

microbiota from pinnipeds has been a challenging task as there seems to be a high proportion of 

phylogenetic novelty that interferes with taxonomic identification (i.e., at the family or genus 

level) and proper analysis of the divergence among communities (Toro-Valdivieso et al., 2021). 

For example, across pinniped species, fecal microbiota composition at phylum level seems to be 

identical (Nelson et al., 2013; Kim et al., 2020) but diverges at lower taxonomic levels. For 

instance, in the southern elephant (Mirounga leonina) and Weddell seals (Leptonychotes 

weddelli) at the phylum level, fecal microbiota is dominated by Firmicutes, yet at the family level

Ruminococcaceae and Acidaminococcaceae, respectively, drive differences in the fecal 

microbiota composition (Kim et al., 2020). Life history characteristics create complex patterns 

that influence fecal microbiota, as shown with the fecal microbiota of southern elephant seals and

leopard seals (Hydrurga leptonyx). In these species, fecal microbiota is shaped by the 

simultaneous effect of species, age and sex, creating complex fecal microbiota patterns with no 

discernable trend (Nelson et al., 2013). In the Australian fur seal (Arctocephalus pusillus) aging 

from pups to adults produces a successional pattern in fecal microbiota composition. Adult fecal 

microbiota had unique bacterial taxa, dominated by Clostridium, Lactobacillus and 

Enteroccoccus. The diet shift from milk with high fat-protein in pups to a marine raw diet in 

adults, is thought to underlie the fecal microbiota diversification (Smith et al., 2013).       

A fecal microbiota survey in the Australian sea lion (Neophoca cinerea) showed a core fecal 

microbiota at family level, composed of Clostridiaceae bacteria. This core arises only in wild 

seals, which suggests that natural diet might represent a cohesive driver in fecal microbiota 

composition. Instead, captive animals lacked Clostridiaceae bacteria in their fecal microbiota. 

Moreover, seals from wild colonies had more fecal microbial diversity than captive colonies, 

especially those with high densities (Delport et al., 2016). At the functional level, the Australian 

sea lion fecal microbiome is enriched in carbohydrate metabolism, nitrogen biosynthetic and 
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nutrient transport pathways, as well as virulence genes. The fecal microbiome composition 

appears to play an important role in fat – nutrient storage, key issues in marine mammals’ 

survival in polar ecosystems (Lavery et al., 2012). This could pinpoint to a fat storage mechanism

driven, or at least with high influence, of gut microbes. Nevertheless, a higher sample and more 

phylogenetic inclusivity (i.e., more seal and sea lion’s species) is needed to validate the 

prevalence of this microbiome traits among populations and pinniped species. Interestingly, 

Clostridiaceae bacteria has a high prevalence among Australian seal species fecal microbiota 

(Lavery et al., 2012; Smith et al., 2013; Delport et al., 2016), which might suggest an important 

role for these bacteria in seals digestion. Nevertheless, it is a cautionary interpretation since gut 

microbiota composition varies along the gastrointestinal tract. Hence, fecal microbiota reflects 

only a portion of the gut microbiome.

In the case of skin microbiota, there is one example from the Antarctic fur seal 

(Arctocephalus gazella) (Grosser et al., 2019). In this fur seal, colony density drives skin 

microbiota structure, rather than genetic similarity. High density colony had fewer alfa diversity 

in its skin microbiota. This suggests that stress associated with overcrowding could scale to skin 

microbiota composition, diminishing the richness and abundance of bacterial taxa. Nevertheless, 

overcrowding, also might facilitate horizontal transmission since fur seals are in close contact. 

This could allow fast transmission of opportunistic microbes, capable of dominating the 

community. Most likely, the combination of both explanations might aid in illuminating the 

pattern; stress produced by overcrowding, coupled with increased transmission of fast 

reproducing microbes, shape the skin microbiota of colonies with high density. (Grosser et al., 

2019). 

In our Strait of Magellan project (ANID R20F0009), we are studying the skin surface 

microbiome of colonies of the South American sea lion (Otaria byronia), a keystone species in 

the sub-Antarctic ecosystem. 

Discussion and perspectives

Microbiomes in the southern ecosystems and climate change context.

In the southern ecosystems, including Antarctica, it has been predicted that higher temperature 

will increase coastal ice-free areas, sea-ice loss, glacial retreat, ocean acidification and ocean 
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warming (Morley et al., 2020), affecting marine biota in all trophic level. Lower trophic levels 

are expected to move south, depending on their tolerance of warming ocean condition and 

productivity, meanwhile, ocean acidification will impact mainly over crustaceans and calcifying 

organisms. Marine animals, mammals, and seabirds are expected to move to alternative locations 

for food and breeding, for survivor and adaptation (Constable et al., 2014). However, the impact 

of climate change over organisms and their associated microbiota as a whole—i.e., the holobiont 

– has been poorly studied across the metazoan spectrum, with notable exceptions in some 

invertebrates and macroalgae (Table 1). Yet, we still lack ecosystem holistic approaches (i.e. 

including abiotic variables or ideally holobiont experimental assays where important abiotic 

parameters, like temperature and pH are controlled), that could give us insight about marine 

holobiont adaptability potential to the environmental changes that soon will face as a 

consequence of anthropogenic climate change. 

We think that the relation between the holobiont and their ecosystems is bidirectional, 

where the environmental changes. will affect the host and their associated microbes, meanwhile 

changes in the host like abundance, behavior, feeding, molting and reproduction; and their 

microbiome like diversity, taxonomic composition, and nutrient recycling, will impact over the 

environment. For example, soils impacted by penguins and pinnipeds presented high amount of 

nutrients such carbon, nitrogen and phosphorous (Ugolini, FC 1972; Tatur et al., 1990). Also, 

marine animals’ impact over greenhouse gases emissions, penguins and pinniped settlement had 

been founded a hotspot of CO2, methane (CH4) and nitrous oxide (N2O) emissions (Zhu et al., 

2008; 2009). In these processes animals had a huge impact over the coastal sediments where they 

colonized through their feces, eggs, prey, carcasses, among others (Guo et al., 2018; Almela et 

al., 2022; Ramírez-Fernández et al., 2019). Feces can directly impact over soil microbiome, 

seeding gut microbes from marine animals, and indirectly because the high amount of nutrients 

that they transport from marine to terrestrial ecosystems (Guo et al., 2018). At functional level, 

marine animals increased soil microbial communities related with denitrification pathways 

(Ramírez-Fernández et al., 2021), and other nitrogen pathways involved in N2O emissions. 

Climate change studies should take in account the impact of environmental changes in the

host and their microbiome. In our project on the surface microbiome of key species in the Strait 

of Magellan, we will measure environmental factors such as water temperature, UV radiation, 

chlorophyll content, oxygen levels, pH, salinity and nutrient content to correlates holobiont 
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abundance, diversity, and distribution, focusing on the skin microbiome due their direct contact 

with the environmental parameters. The equilibrium between the holobiont and the ecosystems 

will allow their protection and conservation (Carthey et al., 2020).

Surface microbiome of key species in the Strait of Magellan, an integrative holobiont 

project

To increase the number of microbial biodiversity studies in the southern hemisphere, emerges our

microbiome project of key species in the Strait of Magellan in Chile (Fig. 5). Our project will 

generate new baseline data for almost all the species that will be sampled (except for humpback 

whale skin, which has been extensively studied). Hence our project, has two stages, first baseline 

data generation for all considered species. Second, microbiome functional data (i.e., 

metagenomics and metatranscriptomics) as well as ecosystem data integration, where host 

microbiome data from multiple years along environmental variables will be integrated. We think 

this approach will give valuable insights about host-microbiome responses to ongoing 

Anthropocene derived climate change. Moreover, it will generate host microbiome data framed 

under an ecosystemic approach, which will be valuable for further comparisons in next years, 

where environmental variables likely would have changed.

 

We consider that microbes are an excellent biodiversity study target, since they can show 

fast evolutionary responses to environmental alterations, and they have enormous metabolic and 

genetic diversity. We are focusing on surface microbes to test their value as biosensors of climate

change effects in key hosts in the Strait of Magellan. Our project attempts to encompass trophic-

level inclusivity, through sampling hosts in different (yet related) trophic levels, and an 

introduced species (i.e., farm salmon). We will sample a primary producer (i.e., Macrocystis 

pyrifera, huiro/kelp), primary consumers (i.e., two crustacean species Lithodes santolla, centolla 

and Munida gregaria, channel prawns), secondary predators (i.e. Sprattus fuegensis, Fuegian 

sprat; Spheniscus magellanicus, Magellan penguin, Aptenodytes patagonicus, king penguin and 

Megaptera novaeangliae, humpback whale) and an apex predator (i.e. Otaria byronia, South 

American sea lion). 

Our project will generate original baseline knowledge of bacterial communities associated

to the surface of some taxa (like penguins’ feathers, sea lion fur, fish scales, or crustacea shell). 
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Furthermore, as we plan to perform multiannual samplings, the project will bring the opportunity 

to dilucidate if there are microbial signatures (both at the community and genomic level) 

associated to seasonal variation and/or to environmental variables. Our main objective is to test if

there is a core surface microbiome among marine hosts sharing the same environment (i.e., in 

particular in Coastal Marine Protected Area “Francisco Coloane”). Alternatively, we are 

interested in testing the existence of a core microbiome at different levels. For example, at host 

complexity (i.e., a core microbiome for invertebrates, another for mammals, etc.); trophic level 

(i.e., a core microbiome for primary consumers, another for primary predators, etc.); or 

alternatively a species-specific surface microbiome. 

In general, the marine holobiont in the Southern Hemisphere is characterized by few 

systematic and authentic holobiont studies (i.e., studies that analyze at the same time host traits 

[e.g., genomics, transcriptomcs] and microbiome traits [e.g, 16S, metagenome], see Table 1 for 

holobiont studies examples). Besides there is a great bias in sampled hosts. For instance, sponges 

have been thoroughly sampled, but there is a great gap in marine invertebrate and vertebrate 

hosts. We highlight the case of marine invertebrates, which although have a relatively high 

number of studied species (23), it remains a tiny fraction of its huge diversity. 

Holobiont studies are dominated by microbiota approaches, where the focus is centered in

taxonomic patterns across ecological/life story conditions. These studies have highlighted the 

prevalence of Proteobacteria among a wide spectrum of hosts, while specific host-phyla 

associations complete the bacterial community. Noteworthy, microbiota approaches have been 

centered in the bacterial fraction, completely ignoring the potential role of fungi, virus and 

archeaea in the marine host holobiont. Notable exceptions where these groups have been 

addressed are macroalgae (fungal communities), penguins (viromics) and sponges (archaea). 

Nevertheless, there is no study that addresses the interactions among all these groups 

simultaneously, likely because technical and economic challenges (i.e., computational resources, 

computational skills).  

Microbiota studies are important and economically feasible explorations, yet detailed 

microbiome studies including metagenomics and metatranscriptomics studies are needed to 

inclusively address the microbe community (fungi, eukaryotes, virus, bacteria, and archaea) as 

well as its functional potential along with its host. Moreover, functional holobiont data (i.e., host 
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genomics & metagenomics/metatranscriptomics) coupled with environmental data, might provide

valuable insights about the influence of ecosystemic status in host associated microbiome, which 

in turn could be tested for the plausibility of the microbiome to reflect host stress.

Microbiome studies might help in elucidating whether patchy/heterogenous distribution in

microbe taxonomic profiles has different functional potential, or rather, if distinct taxonomic 

profiles have convergent/redundant functional profiles. Additionally, microbiome studies might 

help to elucidate if there is a microbiome functional profile associated with eukaryote hosts, or 

even among distinct hosts if there are core functions among their microbiomes. Finally, sampling 

must span as many individuals as possible, as well as geographic and seasonal 

(longitudinal/annual) representability to address whether patchy distributions among associated 

microbes are a natural feature of marine holobionts or a consequence of low sampling. Such a 

systems biology approach might bring further understanding in the complex interplay among 

microbes and its hosts, as well as the impact it might carry for them. We think that our project on 

the surface microbiome of key species in the Strait of Magellan will provide valuable information

on the points mentioned above, which will contribute to the knowledge of microbial diversity in 

the region, as well as their current responses under Anthropocene-derived climate change.
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Table 1. Summary of marine host microbiome research sampling effort in the Southern
hemisphere
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1 Table 1.  Summary of marine host microbiome research sampling effort in the Southern hemisphere

2

Macroalgae

Number 

of 

species 

sampled

Species repetitively studied

(number of studies)

Predominant 

molecular 

approach

Functional 

microbiome/holobiont 

approaches

Regions 

repetitively 

sampled

(number of studies)

24 Ecklonia radiata (4) 16S DNA holobiont

(Wood et al., 2022)

Shotgun metagenomics

(Song et al., 2018)

Antarctica (3)

Australia (5)

Sponges

65 Mycale acerate (4) 16s Shotgun metagenomics

(Moreno-Pino et al., 2020, 

2021, Yang et al., 2022)

Antarctica (13)

Marine invertebrates

23 Euphasia superba (2) 16S Shotgun metagenomics

(Ooh et al., 2022)

DNA & RNA holobiont

(Lan et al., 2021; Osvatic et 

al. 2023)

Antarctica (4)

Australia (3)

Fish

9 NA 16S NA Australia (2)

Seabirds

22 Aptenodytes patagonicus (2)

Eudyptula minor (2)

Pygoscelis adeliae (3)

Pygoscelis antarcticus (4)

Pygoscelis papua (4)

Spheniscus magellanicus (2)

16S Metatranscriptomics

(Marcelino et al., 2019)

Antarctica (5)

Australia (4)

Bird Island, South 

Georgia (2)

Marine mammals
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15 Megaptera novaeanglia (6)

Balaenoptera musculus (2)

Neophoca cinerea (2)

Mirounga leonine (2)

16S Shotgun metagenomics 

(Lavery et al., 2012)

Antarctica (4)

Australia (6)

Chile (2)

3

4

5

6
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Figure 1
Marine microbiome studies in the Southern Hemisphere

Figure 1. Total marine microbiome studies in the Southern Hemisphere reported in this
review (75). The most studied groups are marine mammals (17 studies), followed by sponges
(16), seabirds (15), macroalgae (13), invertebrates (10), and fish (4).
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Figure 2
Latitudinal distribution of microbiome studies in the Southern Hemisphere

Figure 2. Southern Hemisphere map latitudinal distribution of host microbial communities
sampling (A) Worldwide Southern Hemisphere. Insets with highly sampled regions. (B)
Western Antarctic Peninsula. (C) Australia.
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Figure 3
Host microbiome sampling distribution in the Southern Hemisphere

Figure 3. Southern Hemisphere map of studied hosts distribution. (A) worldwide Southern
Hemisphere. Insets with highly sampled regions. (B) Western Antarctic Peninsula. (C)
Australia.
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Figure 4
Southern Hemisphere distribution of molecular approaches to study marine host
microbiomes

Figure 4. Southern Hemisphere map of molecular approaches used to study host microbial
communities. (A) worldwide Southern Hemisphere. Insets with highly sampled regions. (B)
Western Antarctic Peninsula. (C) Australia.
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Figure 5(on next page)

Summary of the Strait of Magellan surface microbiome of key taxa project

Figure 5. Target species and main areas of field sampling of the microbiome project. (A)
Target species of the microbiome project are (from top left to right): kelp / huiro (Macrocystis

pyrifera), Fuegian sprat (Sprattus fuegensis), channel prawns (Munida gregaria), centolla
(Lithodes santolla), Magellanic penguin (Spheniscus magellanicus), King penguin
(Aptenodytes patagonicus), Humpback whale (Megaptera novaeangliae), South american sea
lion (Otaria byronia), Atlantic salmon (Salmo salar). (B) Main areas across the Strait of
Magellan that field work is taking place. The lower right side of Figures 5 (A-B) shows
photographs of Carlos III Island, Contramaestre Island, King Penguin Reserve and Tuckers
Islands.
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South american sea lion (Otaria byronia), Atlantic salmon (Salmo salar). B) Main areas 

across the Strait of Magellan that field work is taking place. The lower right side of Figures 

5 (A-B) shows photographs of Carlos III Island, Contramaestre Island, King Penguin 

Reserve and Tuckers Islands. 
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