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ABSTRACT
The spotted pond turtle (Geoclemys hamiltonii) is a threatened and less explored
species endemic to Bangladesh, India, Nepal, and Pakistan. To infer structural
variation and matrilineal phylogenetic interpretation, the present research decoded
the mitogenome of G. hamiltonii (16,509 bp) using next-generation sequencing
technology. The mitogenome comprises 13 protein-coding genes (PCGs), 22 transfer
RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one AT-rich control region (CR)
with similar strand symmetry in vertebrates. The ATG was identified as a start codon
in most of the PCGs except Cytochrome oxidase subunit 1 (cox1), which started with
the GTG codon. The non-coding CR of G. hamiltonii was determined to have a
unique structure and variation in different domains and stem-loop secondary
structure as compared with other Batagurinae species. The PCGs-based Bayesian
phylogeny inferred strong monophyletic support for all Batagurinae species and
confirmed the sister relationship of G. hamiltonii with Pangshura and Batagur taxa.
We recommend generating more mitogenomic data for other Batagurinae species to
confirm their population structure and evolutionary relationships. In addition, the
present study aims to infer the habitat suitability and habitat quality of G. hamiltonii
in its global distribution, both in the present and future climatic scenarios.
We identify that only 58,542 km2 (7.16%) of the total range extent (817,341 km2) is
suitable for this species, along with the fragmented habitats in both the eastern and
western ranges. Comparative habitat quality assessment suggests the level of patch
shape in the western range is higher (71.3%) compared to the eastern range.
Our results suggest a massive decline of approximately 65.73% to 70.31% and 70.53%
to 75.30% under ssp245 and ssp585 future scenarios, respectively, for the years
between 2021–2040 and 2061–2080 compared with the current distribution.
The present study indicates that proper conservation management requires greater
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attention to the causes and solutions to the fragmented distribution and safeguarding
of this endangered species in the Indus, Ganges, and Brahmaputra (IGB) river basins.

Subjects Biogeography, Conservation Biology, Genomics, Zoology, Freshwater Biology
Keywords Freshwater turtles, Threatened species, Mitochondrial genome, Habitat modelling,
Conservation

INTRODUCTION
Turtles, terrapins, and tortoises (order Testudines, commonly referred to as turtles) have
existed since the Triassic (≈200 million years ago), and approximately 360 extant species
are recognized throughout the world (TTWG (Turtle Taxonomy Working Group), 2021).
Among them, the family Geoemydidae comprises 71 species under three subfamilies
(Batagurinae, Geoemydinae, and Rhinoclemmydinae) and 19 genera. The freshwater
spotted pond turtle (Geoclemys hamiltonii) is medium-sized and classified under the
subfamily Batagurinae and the monotypic genus Geoclemys. This distinct evolutionary
species is distributed in the Indus, Ganges, and Brahmaputra (IGB) river basins in eastern
Pakistan, northern India, Bangladesh, and up to northeast India (Das & Bhupathy, 2010).

The recent assessment by the International Union for Conservation of Nature (IUCN)
Tortoise and Freshwater Turtle Specialist Group (TFTSG) declared G. hamiltonii an
“endangered” species in the IUCN Red List of Threatened Species (Praschag, Ahmed &
Singh, 2019), and in Appendix I in CITES (the Convention on International Trade in
Endangered Species of Wild Fauna and Flora). This species confronts several threats like
habitat destruction, pet trade, and accidental capture by fishing gear throughout its range.
Several studies of G. hamiltonii have been accomplished to unwrap their distribution,
reproduction, and breeding in captivity, conservation status, and systematic revision (Basu
& Singh, 1998; Choudhury, Bhupathy & Hanfee, 2000; Artner, 2006; Ahmed & Das, 2010;
Das & Bhupathy, 2010). The conservation status of endangered G. hamiltonii is
unparalleled throughout its range distribution, demarcated by political boundaries. It is
regarded as a “Schedule I” species in the IndianWildlife (Protection) Act 1972, a “Schedule
III” species in the Bangladesh Wildlife (Preservation) Act 1974, and a “Schedule III”
species in the Pakistan provincial NWFP Wildlife Act 1975 and the Punjab Wildlife Act
1974. However, to settle their conservation assessment, both molecular and distribution
modeling studies across their range can play an important role at this point.

The advancement of molecular tools is unfolding rapidly and has successfully resolved
many questions on Geoemydidae turtle systematics (Praschag, Hundsdörfer & Fritz, 2007).
To date, PCR-based restriction fragment length polymorphism (RFLP) and partial
nucleo-mitochondrial gene sequences have been generated for conservation genetics
(Kundu et al., 2018a; Chang et al., 2018; Rajpoot, Bahuguna & Kumar, 2019; Yadav et al.,
2021) and have clarified the phylogenetic position of this turtle group (Spinks et al., 2004;
Sasaki et al., 2006; Le, McCord & Iverson, 2007; Rohilla & Tiwari, 2008; Reid et al., 2011;
Thomson, Spinks & Shaffer, 2021).
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The mitogenomes and phylogenomic data have been largely utilized to interpret the
deep evolutionary branching of turtles (Zardoya & Meyer, 1998; Kumazawa & Nishida,
1999; Fong et al., 2012; Crawford et al., 2015; Shaffer et al., 2017; Kundu et al., 2018b).
However, complete mitogenomes for representatives of this group, encompassing a large
extent of their distribution, are still lacking. Among the Batagurinae subfamily, seven
mitogenomes (including the previously generated mitogenome for G. hamiltonii) of six
species have been generated so far. The genomic features and phylogeny have been
elaborated for Batagur trivittata (Feng et al., 2017), Pangshura tentoria (Kundu et al.,
2019), and Pangshura sylhetensis (Kundu et al., 2020), and the mitogenomes of two
Batagur turtles (B. kachuga and B. dhongoka) were also recently analyzed (Kumar et al.,
2021). Lastly, the mitogenomes of G. hamiltonii and Batagur affinis have been generated
from China (outside range, vouchered at the Turtle Research and Conservation Center of
Hainan Normal University) and Malaysia, respectively (animal in captivity), but neither
rendered any structural variations or phylogenetic interpretation. Hence, the present study
aimed to generate the complete mitogenome of G. hamiltonii from the known range
distribution in India and perform structural characterization and phylogenetic inferences
relative to other Geoemydidae species to obtain more detailed insights on this species
evolutionary history.

On the other hand, Testudines conservation status faces the highest anthropogenic
pressure among all vertebrates worldwide (Stanford et al., 2020). Among the most
endangered turtles in the world, the subfamily Batagurinae species are at the top of the list
(Rhodin et al., 2018). Habitat destruction and fragmentation are the most critical factors
that have increased the vulnerability of many freshwater turtles and pushed them to the
brink of extinction. Furthermore, many turtle species are vulnerable to climate change
because of their restricted dispersion capacities and extensive temperature-dependent sex
determination, which has increased dramatically over the last decade (Butler, 2019;
Mothes, Howell & Searcy, 2020; Willey et al., 2022).

In this context, species distribution modeling (SDM) has the potential to predict
relevant information regarding the present habitat condition with high precision by using
prior information about the species and associated ecological envelope across space and
time (Guisan & Zimmermann, 2000; Elith & Leathwick, 2009). The SDM remains a key as
it helps in finding ecological and biogeographical relationships for developing conservation
and management strategies (Peterson, 2007; Guisan et al., 2013). In recent years, the
incorporation of ecophysiological models has been critical in SDM projections of many
vertebrate species in order to comprehend range shifts in response to climate change
(McMahon et al., 2011; Bellard et al., 2012; Ceia-Hasse et al., 2014; Murali et al., 2023).
Hence, the present study was further intended to execute a different dimension to visualize
the spatial features of ecological hypervolume as well as the present and future habitat
projections of G. hamiltonii in the IUCN range.

Such a two-dimensional approach with genetic and species distribution modeling
information will help researchers and conservation practitioners develop better-informed
management and action plans for the benefit of G. hamiltonii in India and neighboring
countries. The current study further stimulates long-term monitoring of G. hamiltonii by
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the IUCN-TFTSG and Turtle Survival Alliance (TSA) to protect wild populations in its
native range.

MATERIALS AND METHODS
Species identification and sampling
The unique specimen (adult male) utilized in this study was detected in New Delhi, India
(28.51N, 77.20E), which was used for ornamental commercial purposes and identified as
Geoclemys hamiltonii by the key characters (Das & Bhupathy, 2010) (Fig. 1). The organism
was sedated by using 20–30 mg/kg Alfaxolone SC, and a small amount of blood sample
(100 µl) was collected from the hind limb with sufficient care and preserved in an
EDTA-containing 1.5 ml centrifuge tube at 4 �C. No animals were collected from the wild
or specimen vouchered in the present study. Therefore, this scientific research is not
concerned with animal ethics issues, and does not require ethics committee or institutional
review board approval. The experimental protocols were approved by the host institutions
(Pukyong National University, South Korea; Zoological Survey of India; Indian Statistical
Institute; and University of Delhi, India), and all procedures and representations were
accomplished in accordance with relevant guidelines and regulations of ARRIVE 2.0.
(https://arriveguidelines.org) (Percie du Sert et al., 2020).

Mitochondrial DNA extraction, sequencing, and mitogenome
assembly
The molecular experiments, mitogenome sequencing, and assembly were executed at
Unipath Specialty Laboratory Ltd. (http://www.unipath.in/), India. The mitochondrial
DNA was extracted by using Alexgen DNA kit (Alexius Biosciences, Ahmedabad, Gujarat,
India) followed by the published protocol (Ahmad et al., 2007), and the quantity was
measured using a Qubit�4.0 fluorometer.

The paired-end sequencing library was developed using the QIAseq FX DNA Library
Kit (CAT-180479). DNA was mechanically sheared into smaller fragments by the Covaris
M220 Focused Ultrasonicator (Covaris Inc., San Diego, CA, USA), and illumine-specific
adapters were ligated to both ends of the DNA fragments. To assure maximum yields from
restricted quantities of starting material, the HiFi PCR Master Mix (Takara Bio Inc.,
Kusatsu, Shiga, Japan) was used to perform a high-fidelity amplification step.
The amplified libraries were analyzed on TapeStation 4150 (Agilent Technologies, Santa
Clara, CA, USA) by using High Sensitivity D1000 ScreenTape� as per the manufacturer’s
protocols. The library was loaded onto the Illumina Novaseq 6000 platform for cluster
generation and sequencing (Illumina, San Diego, CA, USA) after getting the qubit
concentration and the mean peak size from the tape station profile. The high-quality
paired-end reads were assembled and annotated using NOVOPlasty v. 4.2 (Dierckxsens,
Mardulyn & Smits, 2017).

Mitogenome characterization and phylogenetic analyses
The boundaries and strand directions of each gene were affirmed by the MITOS v806
online webserver (http://mitos.bioinf.uni-leipzig.de) (Bernt et al., 2013).
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The protein-coding genes (PCGs) were validated after assuring the putative amino acid
sequences of vertebrate mitochondrial genetic code through the ORF Finder web tool
(https://www.ncbi.nlm.nih.gov/orffinder/), and initiation, as well as termination codons,

Figure 1 Map displaying the global range distribution of Geoclemys hamiltonii marked by a blue line. The map was prepared by ArcGIS 10.6
using polygons (.shp file) acquired from the IUCN Red List of Threatened Species (assessed on 20 May 2023). The locations of G. hamiltonii were
obtained from previous literature and GBIF online data repository (assessed on 20 May 2023) and marked by red dots. The embedded mitochondrial
genome of G. hamiltonii with gene boundaries (plotted by GenomeVX webserver). The species photograph was taken by Gaurav Barhadiya. Tanoy
Mukherjee prepared the map using ArcGIS 10.6 and edited it with Adobe Photoshop CS 8.0. Full-size DOI: 10.7717/peerj.15975/fig-1
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were identified by the reference mitochondrial genome (accession number ON243873).
The generated mitogenome was submitted to GenBank through the Sequin submission
tool. The circular illustration of the G. hamiltonii mitogenome was plotted using the
GenomeVX webserver (http://wolfe.ucd.ie/GenomeVx/) (Conant & Wolfe, 2008).
The intergenic spacers and overlapping regions between the neighboring genes were
labeled manually.

The size and nucleotide composition of each gene were estimated using MEGA11
(Tamura, Stecher & Kumar, 2021). The base composition skew was calculated as described:
AT-skew = [A − T]/[A + T]; GC-skew = [G − C]/[G + C] in the previous study (Perna &
Kocher, 1995). The ribosomal RNA gene (rRNA) and transfer RNA gene (tRNA)
boundaries of G. hamiltonii were also affirmed through the MITOS online server.
To determine the structural domains and putative secondary structures, the control region
(CR) of G. hamiltonii was visualized through the Mfold web server (http://unafold.rna.
albany.edu) and Vienna RNA package (https://www.tbi.univie.ac.at/RNA/) (Zuker, 2003;
Hofacker, 2003) and compared with other Batagurinae species manually. The online
Tandem Repeats Finder web tool (https://tandem.bu.edu/trf/trf.html) was used to predict
the tandem repeats in the CR (Benson, 1999).

To assess the evolutionary relationships, a total of 42 Geoemydinae species
mitogenomes were acquired from GenBank (Table S1). The Asian Forest tortoise,
Manouria emys (family Testudinidae), mitogenome was used as an outgroup in the present
analysis. To construct the dataset for phylogenetic analysis, the PCGs were discretely
aligned in TranslatorX with the MAFFT algorithm and the L-INS-i approach with GBlocks
parameters (Abascal, Zardoya & Telford, 2010) and concatenated by SequenceMatrix
v1.7.84537 (Vaidya, Lohman & Meier, 2010). The finest model was computed by
partitioning each PCG using PartitionFinder 2 (Lanfear et al., 2016) at the CIPRES Science
Gateway V. 3.3 (Miller et al., 2015). The Bayesian (BA) tree was constructed with Mr.
Bayes 3.1.2 (Ronquist & Huelsenbeck, 2003) by choosing nst = 6, one cold and three hot
Metropolis-coupled Markov chain Monte Carlo (MCMC), and it was run for 1,000,000
generations with tree sampling at every 100th generation, with 25% of samples rejected as
burn-in. Further, the Maximum-Likelihood (ML) tree was constructed by using theW-IQ-
TREE web server (http://iqtree.cibiv.univie.ac.at/) (Trifinopoulos et al., 2016) with 1,000
bootstrap replications. Both BA and ML topologies were further processed in iTOL v4
(https://itol.embl.de/login.cgi) for better visualization (Letunic & Bork, 2007).

Species occurrence information
The extent range boundary of G. hamiltonii range distribution was downloaded from the
IUCN (https://www.iucnredlist.org/) and the map was built by ArcGIS 10.6 software
(ESRI1, Redlands, CA, USA) (Fig. 1). The occurrence records of G. hamiltonii were
collected from previous literature (Table S2) and the Global Biodiversity Information
Facility (GBIF) online repository system (https://doi.org/10.15468/dl.ce6mmr) (GBIF,
2023). We collected (n = 136) spatially independent occurrence points for G. hamiltonii,
which are adequate for the distribution modeling of the targeted species (Wieczorek, Guo
& Hijmans, 2004; Bloom, Flower & DeChaine, 2018) (Fig. 1). Spatial autocorrelation was
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executed by using the SDM Toolbox on the locality points with a search radius of 1 km
based on the raster resolution of the predictor variables to minimize the overfitting of the
model (Brown, 2014).

Model covariate selection
Considering the ecological requirements of G. hamiltonii, the variables that may play a
substantial role in predicting the suitable habitat were preferred for primary screening
(Peterson et al., 2011). We selected 25 habitat variables and sorted them into four types:
topographic, land cover and land use (LCLU), climatic, and anthropogenic (Table S3).
The climatic conditions corresponded to the standard 19 bioclimatic variables from
Worldclim, Version 2.0 (https://www.worldclim.org/) (Fick & Hijmans, 2017).

To examine the effect of individual LCLU classes, land use and land cover derived from
Copernicus Global Land Service (https://lcviewer.vito.be/download) were used (Buchhorn
et al., 2020). The Global Human Footprint Dataset was used as an anthropogenic
forecaster to provide entropy on the Human Influence Index (HII) to better comprehend
human influence on target species (SEDAC, 2005). We utilized water occurrence intensity
and distance to major water bodies (https://www.diva-gis.org/gdata) to assess the influence
of water availability and aquatic preference on the species (Pekel et al., 2016), which were
calculated by using the Euclidian distance function in ArcGIS 10.6.

The topographic variables, such as slope and elevation, were yielded using the 90-m
Shuttle Radar Topography Mission (SRTM) data (http://srtm.csi.cgiar.org/srtmdata/).
All predictors were resampled at 1 km2 spatial resolution using the spatial analysis tool
within ArcGIS 10.6. The spatial multicollinearity within the predictors was screened using
SDM Toolbox v2.4, and the variables with r > 0.8 Pearson’s correlation were removed from
the final model (Warren, Glor & Turelli, 2010).

Furthermore, for climate change projections in two different SSP (Shared
Socio-economic Pathways), i.e., ssp245 and ssp585, future scenarios for the years between
2021–2040 and 2061–2080, we have used the General Circulation Model (GCM)
developed by the Beijing Climate Centre (BCC) BCC-CSM 2 MR (Xin et al., 2018).
To evaluate the effect of climate change for the present study, we have kept the
non-climatic raster constant.

Model building and evaluation
Due to its high performance in predicting species distribution models, we used MaxEnt
Ver. 3.4.4, which is known to execute well even when the number of covariates exceeds the
number of occurrences for a predictive model (Phillips & Dudık, 2008; Peacock, 2011;
Erinjery, Singh & Kent, 2019). Further, we used the bootstrapping replication approach
and Bernoulli generalized linear model with the ClogLog link function for developing the
present model (Phillips et al., 2017). The model utilized the training data on each
occurrence point as n-1 and examined the model execution with the residual points and 50
runs as replicates (Elith et al., 2011; Peacock, 2011). The results generate a probability
distribution outcome as an uninterrupted probability surface raster of the analysis extent
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ranging from 0–1, with ‘1’ as the most suitable habitat and ‘0’ being the least suitable
habitat for G. hamiltonii.

Variable influence on the occurrences was estimated using the Jackknife test of acquired
regularized training gain (Phillips & Dudık, 2008). For model evaluation, we used the area
under the curve statistics (AUC) of the receiver operating characteristic (ROC) curves
(Halvorsen et al., 2016). The AUC test statistic value ranges from 0 to 1, where values lower
than 0.5 indicate deficient power; minimum discrimination among the predictive presence
and absent areas is considered to be deficient; 0.5 indicates a random prediction; 0.7–0.8 is
regarded as an acceptable model result; 0.8-0.9 is considered to be excellent; and <0.9 is
regarded as an exceptional model (Kamilar & Tecot, 2016; Johnson et al., 2016). The binary
maps were made based on an equal test sensitivity and specificity (SES) threshold for the
predicted suitable habitat for the targeted species and used the raster calculator to evaluate
the zonal statistics using the Zonal Statistics Tool in ArcGIS 10.6.

Assessment of habitat quality
The comparative analyses were performed between the suitable areas of the eastern and
western ranges of G. hamiltonii for both the present and future climatic models. We used
FRAGSTATS version 4.2.1 to estimate the class level metrics, i.e., number of patches (NP),
aggregate index (AI), patch density (PD), largest patch index (LPI), edge density (ED),
total edge (TE), and landscape shape index (LSI), as the indices of the level of habitat
character and level of fragmentation indicators in the modeled area for present and
climatic change scenarios (McGarigal, 2015; Mukherjee et al., 2020; Xia et al., 2020).

RESULTS
Mitogenome characterization and comparison
The mitogenome sequences of 35 Geoemydinae species, six Batagurinae species, and one
Rhinoclemmydinae species have been assembled so far (https://www.ncbi.nlm.nih.gov/
genome/organelle/). The present study characterizes the mitogenome sequence of
Geoclemys hamiltonii to elucidate its evolutionary significance in the Testudines-tree of
life. The mitogenome (16,509 bp) of the spotted pond turtle, G. hamiltonii was determined
(GenBank accession number OP344485). The circular mitogenome consists of 13
protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes
(rRNAs), and a major non-coding AT-rich control region (CR). Among them, nine genes
(nad6 and eight tRNAs) were located on the light strand, while the other 28 genes were
located on the heavy strand (Fig. 1, Table 1). Across the Batagurinae subfamily, the length
of the mitogenomes varied from 16,505 bp (G. hamiltonii, generated from China) to 16,657
bp (P. tentoria). All Batagurinae turtles displayed strand symmetry as detected in typical
vertebrates mitogenomes (Anderson et al., 1982).

The structural features of both mitogenomes (India and China) are almost similar.
The nucleotide composition of the G. hamiltonii mitogenomes generated from India
(OP344485) and China (ON243873) was A+T biased at 59.47% and 59.44%, respectively.
A total of seven base-pair variable sites were identified in both mitogenomes of
G. hamiltonii. The AT skew and GC skew were 0.13 and −0.34 in both mitogenomes of
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G. hamiltonii, respectively. A total of eight overlapping regions (total length of 38 bp)
were identified in both G. hamiltonii mitogenomes, with the longest region (12 bp)
between cytochrome oxidase subunit 1 (cox1) and tRNA-serine (trnS2). Further, a total

Table 1 List of annotated mitochondrial genes of Geoclemys hamiltonii.

Gene Direction Location Size Anti-codon Start codon Stop codon Intergenic nucleotides

trnF + 1–70 70 TTC . . 0

rrnS + 71–1,029 959 . . . 0

trnV + 1,030–1,100 71 GTA . . 0

rrnL + 1,101–2,704 1,604 . . . 0

trnL2 + 2,705–2,780 76 TTA . . 0

nad1 + 2,781–3,748 968 . ATG TAA 0

trnI + 3,749–3,818 70 ATC . . −1

trnQ – 3,818–3,888 71 CAA . . −1

trnM + 3,888–3,956 69 ATG . . 0

nad2 + 3,957–4,995 1,039 . ATG TAA 0

trnW + 4,996–5,071 76 TGA . . 1

trnA – 5,073–5,141 69 GCA . . 1

trnN – 5,143–5,215 73 AAC . . 25

trnC – 5,241–5,306 66 TGC . . 5

trnY – 5,312–5,382 71 TAC . . 1

cox1 + 5,384–6,934 1,551 . GTG AGG −12

trnS2 – 6,923–6,993 71 TCA . . 0

trnD + 6,994–7,063 70 GAC . . 0

cox2 + 7,064–7,750 687 . ATG TAG 0

trnK + 7,751–7,825 75 AAA . . 1

atp8 + 7,827–7,994 168 . ATG TAA −10

atp6 + 7,985–8,668 684 . ATG TAA −1

cox3 + 8,668–9,451 784 . ATG TAA 0

trnG + 9,452–9,519 68 GGA . . 1

nad3 + 9,521–9,853 333 . ATG AGG 17

trnR + 9,871–9,940 70 CGA . . 0

nad4l + 9,941–10,237 297 . ATG TAA −7

nad4 + 10,231–11,607 1,377 . ATG TAA 15

trnH + 11,623–11,692 70 CAC . . 0

trnS1 + 11,693–11,758 66 AGC . . −1

trnL1 + 11,758–11,829 72 CTA . . 0

nad5 + 11,830–13,638 1,809 . ATG TAA −5

nad6 – 13,634–14,161 528 . ATG AGG 0

trnE – 14,162–14,229 68 GAA . . 5

cytb + 14,235–15,378 1,144 . ATG TAA 0

trnT + 15,379–15,450 72 ACA . . 1

trnP – 15,452–15,520 69 CCA . . 0

CR . 15,521–16,509 989 . . . .
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of 11 intergenic spacer regions (total length of 73 bp) were also found in both G. hamiltonii
mitogenomes, with the longest region (25 bp) between tRNA-asparagine (trnN) and
tRNA-cysteine (trnC), which acts as the origin of L-strand replication. The total length of
PCGs was 11,369 bp (68.88%); rRNAs were 2,563 bp (15.53%); tRNAs were 1,588 bp
(9.62%) and 1,553 bp (9.41%); and CR was 989 bp (5.99%) and 985 bp (5.97%) in both
mitogenomes generated from India and China, respectively. Most of the PCGs of
G. hamiltonii mitogenomes started with the ATG codon; however, the GTG initiation
codon was observed in the cox1 gene. The AGG termination codon was used by cox1, nad3,
and nad6; TAG by cox2; and TAA by atp8, atp6, nad4l, and nad5. The incomplete TAA
termination codon was detected in five PCGs (nad1, nad2, cox3, nad4, and cytb). Among
the 22 tRNA genes in both mitogenomes, 14 were found on the majority strand, and the
remaining eight genes were on the light strand with specific anticodons.

The total length of G. hamiltonii CR was 989 bp (India) and 985 bp (China), within the
range of 947 bp (B. trivittata) and 1,151 bp (P. tentoria) in other Batagurinae species.
The CR of G. hamiltonii was also typically constructed with three functional domains: the
termination associated sequence (TAS), the conserved sequence block (CSB), and the
central conserved (CD), as illustrated in other Testunines (Bernacki & Kilpatrick, 2020).
Species-specific structural variations were observed in the TAS, CSB-F, and CSB-2
domains (Fig. 2). The CR of G. hamiltonii is also implied in the initiation of replication and
is placed between tRNA-proline and tRNA-phenylalanine, as depicted in most of the

Figure 2 Structural variation within the different domains ofG. hamiltonii control region compared with other Batagurinae species. The linear
representation and stem-loop structure of the origin of L-strand replication anticipated by the Mfold web server (http://unafold.rna.albany.edu) and
merged manually on the map by Adobe Photoshop CS 8.0. The accession number with a star indicates the sequence generated from India.

Full-size DOI: 10.7717/peerj.15975/fig-2
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Testudines. In G. hamiltonii, 4 bp gaps were present between CSB-1 and the stem loop,
which could be used as species-specific markers. A total of 44.5 times of two base pairs
(TA) tandem repeats were encountered in the VNTRs (variable number tandem repeats)
region in the generated G. hamiltonii non-coding CR, whereas the other mitogenome
generated from China (outside range) revealed 42.5 times of two base pairs (TA), 3.9 times
23 bp, and 3.1 times 24 bp repeats.

Major phylogenetic relationship
The evolutionary relationship, origin, and diversification of turtles and tortoises have been
assessed in the last few decades (Barley et al., 2010; Crawford et al., 2015; Shaffer et al.,
2017), including a comprehensive phylogeny of all extant Testudines species that relates
their diversity with historical climate shifts on the continental margins of the earth
(Thomson, Spinks & Shaffer, 2021). Both conventional and molecular taxonomy have
demonstrated the separate lineage of G. hamiltonii from other Batagurinae species (Spinks
et al., 2004; Le, McCord & Iverson, 2007; Thomson, Spinks & Shaffer, 2021).
The mitogenomic data has been effectively employed to infer the evolutionary
relationships of many Testudines species, adding the members of the Batagurinae
subfamily (Feng et al., 2017; Kundu et al., 2019, 2020; Kumar et al., 2021).

Both BA and ML phylogenies clearly segregated all the Testudines species, including
G. hamiltonii, with high posterior probability support (Figs. 3 and S1). The current
mitogenomic phylogeny with a combination of 13 PCGs infers a robust phylogeny and
supports the sister relationship of G. hamiltonii with Pangshura and Batagur species, as
evidenced in previous studies (Thomson, Spinks & Shaffer, 2021). The species of the
subfamily Geoemydinae displayed paraphyletic clustering in the current mitogenomic
dataset, as shown in the most recent research (Thomson, Spinks & Shaffer, 2021). Further,
the species of the subfamily Rhinoclemmydinae, Rhinoclemmys punctularia showed close
clustering with two Geoemydinae species (Geoemyda spengleri and Geoemyda japonica) in
the present topology (Fig. 3). The authors recommend the addition of mitogenome data
for other Batagurinae species (Hardella, Malayemys, Morenia, and Orlitia) from their
range area to ensure a comprehensive mitogenomic phylogeny.

This reference sequence obtained in this study will be helpful for further population
genetics studies of this endangered species by examining mitochondrial genes. Although
several studies with mitochondrial and nuclear markers have been completed to elucidate
significant effects on the Geoemydidae phylogeny, this is likely incomplete due to lineage
sorting. Thus, the strategy required to address this issue is to add more linked markers
from the nuclear genomes and whole genome data of all extant species to address complete
phylogenetic relationships.

Model execution and habitat suitability
The present model precisely predicted the suitable habitats for G. hamiltonii within the
studied landscape (Fig. 4). The average training AUC for replicate runs for the model
was found to be 0.902 ± 0.016 (SD) (Fig. 5). From the total distribution range extent
(817,341 km2), about 58,542 km2 (7.16%) is suitable for G. hamiltonii (Figs. 4 and S4).
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Figure 3 Unified Bayesian (BA) phylogenetic tree based on the concatenated DNA sequences of 13
PCGs of 42 Geoemydidae species elucidating the evolutionary relationship and placement of
G. hamiltonii. The mitogenome of M. emys (family Testudinidae) was used as an out-group taxon.
The BA posterior probability support of each node was superimposed. The topology was prepared by Mr.
Bayes 3.1.2 software and illustrated by the iTOL v4 online server (https://itol.embl.de/login.cgi).

Full-size DOI: 10.7717/peerj.15975/fig-3
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The present results also depict distinct habitat patches with fragmented habitats in both
the eastern and western ranges. The most suitable areas within the southern range are
situated in the far western part (29,872 km2), covering the southern portion of Pakistan
(Fig. 4). Further, in the eastern range, the most suitable and unfragmented habitat patches

Figure 4 Representing the likelihood of suitable habitats for G. hamiltonii in both the Western and
Eastern ranges. (A) Distribution of suitable areas in the western range. (B) Distribution of Suitable areas
in the eastern range. (C) The suitable binary area in the western range. (D) The suitable binary area in the
eastern range. All the maps were prepared using ArcGIS 10.6 in the present study. The species photo-
graph was acquired from the free repository Wikimedia Commons (photo taken by Rohit Naniwadekar
at Biswanath Ghat, Assam, India) and attributed under Creative Commons Attribution-Share Alike 4.0
International (https://commons.wikimedia.org/wiki/File:Geoclemys_hamiltonii_Biswanath_01.jpg).

Full-size DOI: 10.7717/peerj.15975/fig-4
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(28,670 km2) were demarcated in the far eastern portion of Assam, encompassing the
Brahmaputra River. The model indicates that the distribution of habitat patches for
G. hamiltonii was strongly shaped by precipitation seasonality (coefficient of variation)
(Bio 15) with a relative share of 22.7%, followed by the share of isothermality (Bio 3) of
19% (Fig. 5). Further, distance to water bodies (distance water) and water availability
(water) were also positively determinants of the distribution of G. hamiltonii with
percentage contributions of 11.3% and 10.8%, respectively (Fig. 5 and Fig. S3).

The comparative analysis of present and future models suggests a massive decline of
approximately 65.73% (ssp245) and 70.53% (ssp585) in future scenarios for the years
between 2021 and 2040 (Fig. 6) compared with the current distribution. Furthermore, for
the years between 2061 and 2080, the result suggests a decline of 70.31% (ssp245) and
75.30% (ssp585). The area of the most suitable habitats for G. hamiltonii was found to be
58,542 km2 in the present scenario. In contrast, in a climatic scenario, it may be reduced to
20,059 and 17,249 km2 at ssp245 and ssp585, respectively, for the year 2040, which can be
further reduced up to 14,456 km2 in the year 2080.

Figure 5 Showing model evaluation along with variable influence. (A) The average training ROC (Receiver Operating Characteristics) for the
model. (B) Jackknife test for all the selected variables, where blue bar = shows each variable importance in explaining the data variation when used
separately. Green bar = showing the loss in overall gain after the particular variable was dropped. Red bar = total model gain. (C) The response curves
of the critical predictors governing the habitat suitability ofG. hamiltonii. (D) The contribution percentage represented by column graph (color ramp
represents the %contribution) and permutation importance represented by the circular plot (permutation importance was illustrated by size and
color ramp). Full-size DOI: 10.7717/peerj.15975/fig-5
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Habitat quality assessment
Higher values of NP, PD, and LPI within the western range were detected, suggesting the
presence of multiple larger habitat patches compared to the eastern range (Fig. 7).
However, the comparatively higher scores of TE, ED, and AI showed more dispersed and
fragmented patches of suitability in the western range. Moreover, the higher aggregation
value (86.60) followed by lower values of ED (34,477.52) within the habitat patches in the
east range indicates a higher level of habitat integrity among the suitable patches (Fig. 7).
The level of patch shape complexity denoted by the LPI for the west range (7.90) has
increased by 71.3% compared to the eastern range (4.61), which indicates the level of
structural continuity in G. hamiltonii habitat in the eastern range compared to western
habitat patches (Fig. 7). The current results from the future projections in multiple climate
change scenarios suggest a substantial decline in the overall habitat quality in both the
eastern and western ranges. The major changes have been signified by a sharp decline in
LPI from 7.9 in the western and 4.61 in the eastern ranges to as low as 0.04 in the eastern

Figure 6 The habitat suitability for G. hamiltonii in future climatic projection scenarios of ssp245 and ssp585 future scenarios for the year
2021–2040 and 2061–2080. (A) The projection for the years 2021–2040-SSP-245, (B) the year 2021–2040-SSP-585, (C) years 2061–2080-SSP-
245, and (D) years 2061–2080-SSP-585. All the maps were prepared using ArcGIS 10.6 in the present study.

Full-size DOI: 10.7717/peerj.15975/fig-6
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and 1.29 in the western ranges for the year 2080, ssp585. Furthermore, the patch
aggregation value represented by AI also showed a major reduction in eastern habitat for
G. hamiltonii by 62.41% ssp585 (Fig. 8).

DISCUSSION
Over the past 100 years, species extinction rates have increased dramatically and life on
earth is currently facing a sixth mass extinction driven by anthropogenic activity, climate
change, and ecological collapse (Teixeira & Huber, 2021). Hence, protecting biodiversity is
a priority to support ecosystems and human well-being with a new unifying concept and
the implementation of worthy conservation strategies (Conde et al., 2019).

The present study assembled and characterized the mitogenome of G. hamiltonii from
India and confirmed the evolutionary dynamics in the Geoemydidae family.
The illustrated phylogeny is consistent with previous cladistics and evolutionary patterns,
demonstrating monophyletic grouping of Batagurinae species within the family

Figure 7 The percentage stack of class-level matrices applied for habitat quality assessment of G. hamiltonii in the western range (Green) and
eastern range (Blue). Values represent the score of the indices. (NP, No. of Patches; PD, Patch Density; LPI, Largest Patch Index; TE, Total Edge;
ED, Edge Density; LSI, Landscape Shape Index; AI, Aggregation Index). All the maps were prepared using ArcGIS 10.6 in the present study.
The species photograph was acquired from the free repository Wikimedia Commons (photo taken by Rohit Naniwadekar at Biswanath Ghat, Assam,
India) and attributed under Creative Commons Attribution-Share Alike 4.0 International (https://commons.wikimedia.org/wiki/File:Geoclemys_
hamiltonii_Biswanath_01.jpg). Full-size DOI: 10.7717/peerj.15975/fig-7
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Geoemydidae, as well as divergence of G. hamiltonii prior to Paghshura and Batagur
species (Thomson, Spinks & Shaffer, 2021). However, we believe that further mitogenomic
data are needed to determine the real matrilineal connection of this critically endangered
turtle group. Further, the structure and variation of the G. hamiltonii mitochondrial
genome and comparison with other closely related species allowed us to demonstrate their
evolutionary relationship. Furthermore, relatively less genetic variation was found between
the two mitogenomes of G. hamiltonii generated from India (the native range) and China
(the non-native range). The similarity of G. hamiltonii mitogenomes from two distant
localities suggests that illegal trafficking of the species persists, which may have an impact
on China’s native turtles.

It is evident that the mitogenomic genes (PCGs and CR) have high potential to
demonstrate the genetic diversity, potential gene flow, and/or mitochondrial introgression
among different Geoemydid populations (Suzuki & Hikida, 2011; Vamberger et al., 2014;
Ihlow et al., 2016). Such genetic information is also important for conservation action
plans to avoid inbreeding depression, the founder effect, and demographic stochasticity in
various reptile species populations (Harris, Zhang & Nielsen, 2019; Kolbe et al., 2012;
Kundu et al., 2023). Similarly, the present genetic information will help future population
genetics research on G. hamiltonii by comparing the nucleotide variations in different
mitochondrial genes, particularly PCGs, rRNAs, and CR from different populations.
The large-scale population genetic information will further help to better understand and
manage the possibly inbred populations of endangered G. hamiltonii taxa in India and
other countries by accelerating their genetic diversity. This will enable us to make solid
inferences on extant species diversity and to deduce recommendations for scientific
breeding and reintroduction projects.

The distribution modeling result suggests that the limited species range (7.16%) with
fragmented habitat exists in both the eastern and western parts. As most of the habitat

Figure 8 Habitat quality assessment of G. hamiltonii in the western range and eastern range for future climatic scenarios. Values represent the
score of the indices. (A) The suitable habitat for G. hamiltonii in present and future climatic scenarios. (B) The percentage stack of class-level
matrices applied for habitat quality assessment of G. hamiltonii in ssp245 and ssp585 future scenarios for the year between 2021–2040 and
2061–2080 (NP, No. of Patches; PD, Patch Density; LPI, Largest Patch Index; TE, Total Edge; ED, Edge Density; LSI, Landscape Shape Index; AI,
Aggregation Index). Full-size DOI: 10.7717/peerj.15975/fig-8

Kundu et al. (2023), PeerJ, DOI 10.7717/peerj.15975 17/28

http://dx.doi.org/10.7717/peerj.15975/fig-8
http://dx.doi.org/10.7717/peerj.15975
https://peerj.com/


patches within the western range cover the southeastern portion, we suggest prioritizing
the identified zone as a conservation priority for G. hamiltonii in Pakistan. Further, in the
eastern range, habitat patches ofG. hamiltonii were distributed in the far eastern portion of
Assam state, on both edges of the Brahmaputra River, which is heavily influenced by
accelerated land-use change (Pervez & Henebry, 2015). Thus, we recommend special
attention to the biodiversity management authorities in India and Pakistan.

Furthermore, as distance to water bodies and availability were found to positively
influence the distribution of G. hamiltonii, maintaining the natural environmental flow
within the river Brahmaputra should be prioritized to preserve and protect native
freshwater biodiversity, including turtles (Anantha & Bhadbhade, 2018). Notably, this
region also accommodates the highest number of turtle species worldwide (Buhlmann
et al., 2009). Hence, we suggest that the suitable habitats mapped inside and outside the
protected areas may be prioritized to bring them into the protected area network and
enhance protection in both ranges through spatial planning for protecting the remaining
suitable habitats for this endangered species.

Moreover, the future climate projections help us understand that the massive loss of
G. hamiltonii habitat (>65%) over the next 50 years is reflected in the impact of climate
change on the hydrological regime of the IGB river basins. The IGB river basins are shared
by three major river basins, the Indus, the Ganges, and the Brahmaputra, which originate
from a large number of glaciated areas in the Himalayan range (Eriksson et al., 2009;Miles
et al., 2021). These Himalayan glaciers are receding faster as a result of rising temperatures
induced by greenhouse gas emissions, considerable unpredictability in precipitation
trends, and an increase in glacier melt, which will have catastrophic societal and
geomorphic impacts on IGB river basins (Xu et al., 2009; Kääb et al., 2012; Nepal &
Shrestha, 2015; Azam et al., 2021). Such amplified climate changes and spatio-temporal
variations have greatly affected the snow cover and surface water areas of the IGB river
basins (Siderius et al., 2013; Kiani et al., 2021; Mondal et al., 2021; Nazeer et al., 2022;
Uereyen et al., 2022). In consequence, hydrological extremes, such as floods and droughts,
may endanger both human and wildlife habitats in the IGB river basins throughout the
21st century (Wijngaard et al., 2017; Veh, Korup &Walz, 2020;Dahri et al., 2021). Further,
river bank erosion and sedimentation, as well as other anthropogenic pressures, operated
as significant elements in the changing dynamics of present and future land use and land
cover in the IGB river basins (Collins, Davenport & Stoffel, 2013; Caesar et al., 2015;
Debnath et al., 2022). It has been demonstrated that in addition to climate change,
freshwater megafauna (e.g., the Ganges River dolphin, Platanista gangetica, and the Indus
River dolphin, Platanista minor) are facing increasing pressure from large-scale
hydrological changes such as damming and river diversion in the IGB river basins (Rai
et al., 2023). In this context, ecological pressure should be considered in any hydrological
infrastructure development in the IGB river basins, and specific action plans are required
to ensure the long-term survival of any vulnerable species.

Due to the advantages of genetic and distributional modeling data, more integrated
approaches at the level of different microhabitats levels are needed to design realistic
conservation plans for these critically endangered species. Such unified information will
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help us identify different populations of target species and facilitate their translocation or
reintroduction into preferred wild habitats, reducing interpopulation competition and
hybridization as well as conservation risks from the consequences of climate change.

CONCLUSIONS
Wild populations of spotted pond turtle (G. hamiltonii) in South Asian countries are
seriously threatened by habitat fragmentation and illegal hunting. Molecular systematics
and ecological studies can provide important clues for their proper conservation. Current
mitogenomic analyses delineate the evolutionary relationships of G. hamiltonii within the
family Geoemydidae and recommend the generation of more mitogenomes of Batagurinae
representatives to confirm their complete phylogeny. Furthermore, MaxEnt-based species
distribution modeling suggests that natural habitat has been greatly affected and reduced
by rapidly increasing urbanization. Moreover, the drastic reduction of G. hamiltonii
habitat over the next 50 years highlights the impact of climate change on the IGB river
basins. Therefore, to protect these endangered species in the wild, we highlight the urgent
need of proper conservation action plans across their range distribution in South Asian
countries.
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