Lanspora dorisauae, a new marine fungus from rocky shores in Taiwan (#83298)

First submission

Guidance from your Editor

Please submit by 22 May 2023 for the benefit of the authors (and your token reward).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 2 Figure file(s)
- 1 Table file(s)
- 2 Raw data file(s)

DNA data checks

- Have you checked the authors <u>data deposition statement</u>?
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

New species checks

- Have you checked our <u>new species policies</u>?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Lanspora dorisauae, a new marine fungus from rocky shores in Taiwan

Ka-Lai Pang $^{\text{Corresp.},1}$, Sheng-Yu Guo 1 , Ami Shaumi 1 , Satinee Suetrong 2 , Anupong Klaysuban 2 , Michael W.L. Chiang 3 , E.B. Gareth Jones 4

Corresponding Author: Ka-Lai Pang Email address: klpang@mail.ntou.edu.tw

Background. This paper reports a new marine fungus, *Lanspora dorisauae* (Sordariomycetes, Ascomycota), on trapped wood collected in coastal sites of Taiwan. *Lanspo Indivisauae* is characterized by dark-coloured ascomata with a short neck, periphysate ostioles, subclavate, deliquescing asci without an apical ring, presence of wide paraphyses, striated wall ascospores with crown-like appendages on one pole of the ascospores. **Methods.** Phylogenetically, *L. dorisauae* grouped with *L. comata* (type species) with strong support based on a combined analysis of the 18S, 28S, ITS rDNA, TEF1-α and RPB2 genes. **Results.** *Lanspora ronata* lacks paraphyses and ascospore appendages occur on both ends of the ascospores, which differs from *L. dorisauae*. *Lanspora cylindrospora* formed a sister clade with *L. coronata* and *L. dorisauae*, but it significantly differs in morphology with the latter two species in having cylindrical asci with an apical J- ring, smooth ascospore wall and no ascospore appendages, and may be better referred to a new genus. *Lanspora* belongs to the Phomatosporaceae, Phomatosporales with *Phomatospora* and *Tenuimurus*, while *Phomatospora berkeleyi* should be sequenced to test the validity of the order Phomatosporales and the family Phomatosporaceae.

¹ Institute of Marine Biology, National Taiwan Ocean University, keelung, Taiwan, Taiwan

² 2Mycology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumtani, Thailand

³ City University of Hong Kong, Hong Kong, Hong Kong

⁴ King Saud University, Riyadh, Saudi Arabia

1	Lanspora dorisauae, a new marine fungus from rocky shores in Taiwan
2	
3	
4	Ka-Lai Pang ¹ , Sheng-Yu Guo ¹ , Ami Shaumi ¹ , Satinee Suetrong ² , Anupong Klaysuban ² , Michael
5	W.L. Chiang ³ and E.B. Gareth Jones ⁴
6	
7	¹ Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean
8	University, Keelung, Taiwan (ROC)
9	² Mycology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering
LO	and Biotechnology (BIOTEC), Khlong Luang, Pathumthani, Thailand
l1	³ Department of Chemistry, City University of Hong Kong, Hong Kong SAR
12	⁴ Department of Botany and Microbiology, College of Science, King Saud University, Riyadh,
13	Kingdom of Saudi Arabia
L4	
15	Corresponding author:
16	Ka-Lai Pang ¹
17	2 Pei-Ning Road, Keelung 20224, Taiwan (ROC)
18	Email address:klpang@mail.ntou.edu.tw
19	
20	Abstract
21	Background. This paper reports a new marine fungus, Lanspora dorisauae (Sordariomycetes,
22	Ascomycota), on trapped wood collected in coastal sites of Taiwan. Lanspora dorisauae is
23	characterized by dark-coloured ascomata with a short neck, periphysate ostioles, subclavate,
24	deliquescing asci without an apical ring, presence of wide paraphyses, striated wall ascospores
25	with crown-like appendages on one pole of the ascospores.
26	Methods. Phylogenetically, L. dorisauae grouped with L. coronata (type species) with strong
27	support based on a combined analysis of the 18S, 28S, ITS rDNA, TEF1- α and RPB2 genes.
28	Results. Lanspora coronata lacks paraphyses and ascospore appendages occur on both ends of
29	the ascospores, which differs from L. dorisauae. Lanspora cylindrospora formed a sister clade
30	with L. coronata and L. dorisauae, but it significantly differs in morphology with the latter two
31	species in having cylindrical asci with an apical J- ring, smooth ascospore wall and no ascospore

32	appendages, and may be better referred to a new genus. Lanspora belongs to the			
33	Phomatosporaceae, Phomatosporales with <i>Phomatospora</i> and <i>Tenuimurus</i> , while <i>Phomatospora</i>			
34	berkeleyi should be sequenced to test the validity of the order Phomatosporales and the family			
35	Phomatosporaceae.			
36				
37	Introduction			
38	The genus Lanspora was created to accommodate a marine fungus found on driftwood collected			
39	from rocky beaches in Seychelles (Hyde and Jones 1986). Originally placed in the			
40	Halosphaeriaceae (Microascales, Ascomycota) due to its perithecial ascomata, deliquescing asci			
41	and ascospores with crown-like appendages formed by fragmentation of the exosporium (Hyde			
42	and Jones 1986). Spatafora et al. (2006), in a phylogenetic analysis based on five genes (18S,			
43	28S rDNA, EF1α, RPB1, RPB2), showed that <i>L. coronata</i> grouped with <i>Ophiostoma piliferum</i>			
44	(Ophiostomataceae, Ophiostomatales), rather than in the Halosphaeriaceae as proposed by Hyde			
45	and Jones (1986). Lanspora coronata differs in having cylindrical or oblong-ventricose asci and			
46	periphyses from taxa of the Ophiostomatales which are characterize by globose to ovoid asci and			
47	the absence of periphyses (Alexopoulos et al. 1996)			
48	In a 18S, 28S and ITS rDNA phylogeny, Lanspora (L. coronata) formed a generally			
49	well-supported clade with <i>Phomatospora</i> and <i>Tenuimurus</i> (<i>T. clematidis</i>), and consequently, a			
50	new order Phomatosporales and a new family Phomatosporaceae were establish to accommodate			
51	these three genera (Senanayake et al. 2016). Hyde et al. (2020) described a new species			
52	Lanspora cylindrospora with a clypeus, presence of periphyses, cylindrical asci with a J- ring			
53	and cylindrical ascospores lacking appendages, characteristics not found in L. coronata.			
54	However, L. cylindrospora grouped with L. coronata in a phylogenetic tree based on sequences			
55	of the 18S, 28S, ITS rDNA, TEF1α and RPB2 (Hyde et al. 2020)			
56	Taiwan has a tropical/subtropical climate, but marine fungi of the temperate zone can be			
57	commonly found in northern Taiwan (Fryar et al. 2020, Tibell et al. 2020, Jones and Pang 2022),			
58	with many new marine fungi (e.g., Pileomyces formosanus, Pang and Jheng 2012; Sclerococcum			
59	vrijmoediae (as Dactylospora vrijmoediae), Pang et al. 2014). Recently, we discovered a marine			
60	fungus on driftwood/trapped wood in various rocky shores in Taiwan that is morphologically			
61	similar to L. coronata, and phylogenetically related to it using five different genes. In this paper,			
62	this new marine fungus is describe			

63	Materials an & Methods
64	Sample collection
65	The fungi from the dead wood were collected according to methods used in Pang et al. (2023).
66	Trapped wood was collected at a rocky shore in Jin-shan, New Taipei City, Taiwan on 1 June
67	2022, placed on Ziplock plastic bag and transported to the laboratory at National Taiwan Ocean
68	University, Keelung. The wood was cleaned briefly in running water, incubated on a tray and
69	kept in a Ziplock plastic bathe wood was checked periodically for the growth of marine fungi
70	
71	Morphological characterization
72	Fruiting bodies were observed using an Olympus SZ61 stereomicroscope (Tokyo, Japan),
73	sectioned with a razor blade, grasped with fine forceps, and mounted on a slide in sterile
74	seawater. Morphology of the asci and ascospores was observed using an Olympus BX51
75	microscope (Tokyo, Japan). Photographs were taken with an Olympus DP20 Microscope
76	Camera (Tokyo, Japan).
77	
78	Molecular analysis
79	For the molecular identification, single spore isolates were made and subsequently maintained or
80	cornmeal seawater agar (CMAS; 17g cornmeal agar, 1L natural seawater). Aerial mycelia were
81	collected from the agar plate, and ground into powder in a mortar and pestle, pre-cooled in a -
82	80°C freezer overnight. DNeasy Plant Mini Kit (Qiagen, California, USA) was used for total
83	DNA extraction according to the manufacturer's instructions. Extracted DNA (1 μL) was used
84	directly for PCR reactions with the following ingredients: $0.2~\mu M$ of each primer (18S
85	rDNA-NS1/NS2, ITS rDNA-ITS5/ITS4: White et al. 1990, 28S rDNA-LROR/LR6: Vilgalys
86	and Hester 1990, Bunyard et al. 1994, EF1 α –EF1-983F/EF1-2218R: Rehner and Buckley 2005,
87	RPB2-fRPB2-5F/fRPB2-7cR: Liu et al. 1999), 0.5 volume of Gran Turismo PreMix (Ten Giga
88	BioTech, Taiwan) and topped up to 25 μL with PCR water. The amplification cycle consisted of
89	an initial denaturation step of 94°C for 5 min followed by 35 cycles of (i) denaturation (94°C for
90	0.5 min), (ii) annealing (55°C for 0.5 min) and (iii) elongation (72°C for 0.5 min) and a final 11
91	min elongation step at 72°C. The PCR products were shipped to Tri-I Biotech, Inc., Taiwan, for
92	purification and direct sequencing with the same primers described abov

93	Returned sequences were checked for ambiguity, assembled and deposited in GenBank
94	(accession nos. in Table 1). These sequences were aligned with the 18S, 28S, ITS, TEF1a and
95	RPB2 genes of the taxa in the Phomatosporales and Ophiostoma piliferum and O. stenoceras
96	(outgroup taxa) in the program MUSCLE (Edgar 2004) in MEGA11 (Tamura et al. 2021). The
97	final dataset contained 16 sequences and a total of 7623 nucleotide positions. A maximum
98	likelihood analysis including bootstrapping was performed in MEGA11 (Tamura et al. 2021)
99	with the following settings: 500 bootstrap, General Time Reversible model (GTR), gamma
100	distributed (G), number of discrete gamma categories set at 5, heuristic search with Nearest-
101	Neigbor-Interchange, initial tree from NJ/BioNJ method, branch swapping strong. A maximum
102	parsimony (MP) analysis including bootstrapping was also run in MEGA11 with the following
103	settings: 500 bootstrap, Tree-Bisection-Reconnection (TBR), number of initial trees (random
104	addition) = 5, MP search level = 1, maximum number of trees to retain = 100.
105	For Bayesian analysis, the alignment was entered into BEAUti v1.10.4 for prior settings
106	and generation of XML files for Bayesian analysis in BEAST v1.10.4 and analyzed
107	simultaneously (Suchard et al. 2018) with the following analytical settings: GTR, estimated base
108	frequency, gamma distribution, number of gamma categories set at 5, a strict clock, Coalescent:
109	Constant Size as the speciation model, running 10 million generations with parameters and trees
110	sampled every 1000 generations. The first 10% of the trees were treated as the burn-in and
111	discarded based on the effective sample size (ESS) of the parameter statistics in Tracer v1.7.2
112	(Rambaut et al. 2018). A summary tree was produced using TreeAnnotator v1.10.4 (Suchard et
113	al. 2018) and viewed and edited in FigTree v1.4.4 (available at
114	https://github.com/rambaut/figtree/releases).
115	
116	Results
117	Based on the phylogenetic analysis of five genes (18S, 28S, ITS rDNA, EF1- α and RPB2), the
118	new species L . $dorisauae$ formed a strongly supported clade with L . $coronata$ while L .
119	cylindrospora formed a sister relationship with these two species (Figure 1). Lanspora dorisauae
120	is similar to L. coronata in having dark-coloured, coriaceous ascomata, subclavate asci, elongate-
121	ellipsoidal ascospores with striated wall and crown-like ascospore appendages (Hyde and Jones
122	1986). However, L. dorisauae differs from L. coronata in the striated ascospore wall and crown-
123	like appendages at one end of the ascospores in the former species. Also, paraphyses are present

- in L. dorisauae. Lanspora dorisauae was collected at several coastal locations in Taiwan, 124 suggesting that it is a common marine fungus. 125 **Taxonomy** 126 Lanspora dorisauae K.L. Pang, Suetrong, M.W.L. Chiang and E.B.G. Jones, sp. nov. 127 Figure 2 128 **Mycobank (MB#847455)** 129 GeneBank (LSU=OQ130043, ITS=OQ130045, SSU=OQ130044, TEF1α=OQ570968, RPB2= 130 OO570969) 131 132 Saprobic on trapped wood on a rocky shore. **Sexual morph** Ascomata 148–213 µm high, 240– 133 347 µm diam. ($\bar{x} = 174 \times 277$ µm, n = 4), immersed, subglobose to ellipsoidal in side-view, 134 solitary to gregarious, coriaceous, brown to black, papillate (Fig. 2a). Necks short, 44–55 μm 135 long, 80-109 µm diam. ($\bar{x} = 48 \times 99$ µm, n = 4), cylindrical, brown to black (Figure 2a). 136 Periphyses not observed. Peridium 13–24 µm (\bar{x} = 19 µm, n = 4), equal in thickness, comprising 137 one stratum of multilayers (over 5 layers) of brown cells of textura angularis with large lumina 138 (Figure 2b). Paraphyses $74 \times 9 \mu m$ (Figure 2c). Asci $41-51 \times 16 \mu m$ ($\overline{x} = 44 \times 16 \mu m$, n = 4), 8-139 spored, unitunicate, thin-walled, clavate, pedunculated (Figure 2d). Ascospores 8–13 × 5–7 μm 140 $(\bar{x} = 11 \times 6 \mu m, n = 35)$, biseriate, overlapping, unicellular, broadly ellipsoidal with one half 141 broader than the other, with longitudinal wall striations, guttulate, appendaged (Figures 2e-f). 142 Appendages at one end of ascospores, five to seven in number, crown-like, sheet-like irregular 143 and radiating, delicate and subgelatinous (Figure 2g). Asexual morph Undetermined. 144 145 **Culture characteristics:** 146 147 Holotype: TAIWAN: Jinshan. On a piece of unidentified trapped wood, 1 June 2022, S.Y. Guo and K.L. Pang, F26641 (National Museum of Natural Science Herbarium, Taichung, Taiwan), 148 149 dried wood. Ex-type culture: BCRC FU30316 (Bioresource Collection and Research Center, Hsinchu, 150 Taiwan) 151
- Etymology: In memory of Dr. Doris Wai-Ting Au, a marine zoologist/mycologist who taught 152
- me (K.L. Pang) the right way to do scientific research. 153
- **Distribution**: Jin-shan, Li-lao, Ying-ke-shih (New Taipei City), Shih-Ti-Ping (Hualien County) 154
- (Taiwan). 155

120	
157	Discussion
158	Hyde and Jones (1986) described Lanspora coronata from driftwood collected in the Seychelles.
159	Lanspora coronata has perithecial ascomata, deliquescing asci and fusiform ascospores with
160	crown-like appendages at both poles and was placed in the Halosphaeriaceae. However,
161	Spatafora et al. (2006), based on the phylogenetic analysis of the 18S and 28S rDNA, found that
162	L. coronata grouped with Ophiostoma puliferum. Senanayake et al. (2016) found that L.
163	coronata grouped with Phomatospora based on 18S, 28S and ITS rDNA, and established a new
164	order Phomatosporales and a new family Phomatosporaceae. Three genera are included in the
165	Phomatosporaceae: Lanspora, Tenuimurus and Phomatospora, and they were monophyletic
166	phylogenetically based on the 18S, 28S and ITS rDNA (Senanayake et al. 2016). Hyde et al.
167	(2020) confirmed the placement of L. coronata in the Phomatosporaceae in a phylogenetic
168	analysis of 18S, 28S, ITS, TEF1-α and RPB2, and described a new species <i>L. cylindrospora</i> .
169	Morphologically, Phomatospora (type species: P. berkeleyi) and Tenuimurus (type
170	species: T. clematidis) are similar: with cylindrical, persistent asci with an apical J- ring, smooth-
171	walled, ellipsoidal ascospores (Fallah and Shearer 1998, Senanayake et al. 2016). Lanspora (L.
172	coronata and L. dorisauae) differs from these two genera in having subclavate, deliquescing asci
173	and striated ascospores with crown-like appendages (Hyde and Jones 1986). Although L .
174	cylindrospora phylogenetically is related to L. coronata, the former species morphologically
175	differs significantly from the latter with cylindrical asci with a J- apical ring and ascospores
176	without appendages (Hyde et al. 2020). In contrast, L. coronata and L. dorisauae both have
177	clavate, deliquescing asci without an apical ring and ascospores with crown-like appendages
178	(Hyde and Jones 1986, this study). Lanspora cylindrospora may be better referred to a new
179	genus. More genes of the isolates of L. cylindrospora should be sequenced to provide a robust
180	phylogeny to suggest this taxonomic change.
181	There are no sequences of P. berkeleyi in the GenBank and thus were not included in the
182	phylogenetic analysis by Senanayake et al. (2016) when they introduced the Phomatosporales
183	and Phomatosporaceae to include Lanspora, Tenuimurus and Phomatospora. It would be
184	essential to isolate and sequence P. berkeleyi to evaluate the validity of Phomatosporales and
185	Phomatosporaceae. 5
106	

PeerJ

18/	
188	References
189	Alexopoulos CJ, Blackwell M. 1996. Introductory Mycology, 4th ed.; John Wiley & Sons: New
190	York
191	Bunyard BA, Nicholson MS, Royse DJ. 1994. A systematic assessment of Morchella using RFLP
192	analysis of the 28S ribosomal RNA gene. Mycologia 86:762-772
193	Fallah PM, Shearer CA. 1998. Freshwater ascomycetes: new or noteworthy species from north
194	temperate lakes in Wisconsin. Mycologia 93:566-602
195	Fryar SC, Hyde KD, Catcheside, DEA. 2020. A survey of marine fungi on wood in South
196	Australia. Botanica Marina 63:469-478
197	Hyde KD, Jones EBG. 1986. Marine fungi from Seychelles. II. Lanspora coronata gen. et sp. nov.
198	from driftwood. Canadian Journal of Botany 64:1581-1585
199	Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, Jones EGB, Liu NG, Abeywickrama PD,
200	Mapook A, Wei D, Perera RH, Manawasinghe IS, Dhandevi Pem, Digvijayini Bundhun,
201	Anuruddha Karunarathna, Anusha H. Ekanayaka, Dan-Feng Bao, Junfu Li, Milan CS,
202	Napalai C, Chuan-Gen Lin, Kunthida P, Sheng-Nan Zhang, Indunil C, Senanayake, Ishani
203	D, Goonasekara, Kasun M, Thambugala, Chayanard P, Danushka S, Tennakoon, Hong-Bo
204	Jiang, Jing Yang, Ming Zeng, Naruemon H, Jian-Kui (Jack) Liu, Subodini N, Wijesinghe,
205	Qing Tian, Saowaluck T, Rashika S, Brahmanage, Saranyaphat Boonmee, Shi-Ke H,
206	Vinodhini T, Yong-Zhong L, Ruvishika SJ, Wei D, Er-Fu Y, Sanjay KS, Shiv MS, Shiwali
207	R, Sneha SL, Garima A, Bandarupalli DM, Niranjan V. Venkateswara S, Kare L, Begoña
208	AH, Tuula N, Andy O, Renato LMA, Tatiana BG, Walter PP, Enikő H, Alexandra I, Amanda
209	LA, Ana Carla da Silva S, Patricia VT, Timur SB, Dhanushaka N, Wanasinghe AH, Bahkali
210	MD, Abdallah ME, Sajeewa SN, Maharachchikumbura, Kunhiraman CR, Danny H, Peter
211	EM, Qi Z, Saisamorn L, Xu J, Sheng J. 2020. Fungal diversity notes 1151-1276: taxonomic
212	and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity
213	100:5–277
214	Jones EBG, Pang KL. 2020. Observation of Danish marine fungi: in memoriam of Dr. Jorgen
215	Koch. Botanica Marina 65:13-21
216	Liu YJ, Whelen S, Hall BD. 1999. Phylogenetic relationships among ascomycetes: evidence from
217	an RNA polymerase II subunit. <i>Molecular Biology and Evolution</i> 16:1799-1808

- Pang KL, Chen I-A, Chiang WL, Shaumi A, Guo SY, Hsieh SY, Jones EBG. 2023. Arenicolous
- marine fungi of sandy beaches of Taiwan. *Botanica Marina* 66:99-112
- Pang KL, Guo SY, Alias SA, Hafellner J, Jones EBG. 2014. A new species of marine Dactylospora
- and its phylogenetic affinities within the Eurotiomycetes, Ascomycota. *Botanica Marina*
- 222 57:315-321
- Pang KL, Jheng JS. 2012. Pileomyces formosanus gen. et sp. nov. (Halosphaeriaceae,
- Ascomycota) from a rocky shore of Taiwan. *Botanical Studies* 53:535-539
- Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarisation in
- Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67:901–904
- 227 Rehner SA, Buckley E. 2005. A Beauveria phylogeny inferred from nuclear ITS and EF1-α
- sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs.
- 229 *Mycologia* 97:84-98
- 230 Senanayake IC, Al-Sadi AM, Bhat JD, Camporesi E, Dissanayake AJ, Lumyong S,
- Maharachchikumbura SSN, Hyde KD. 2016. Phomatosporales ord. nov. and
- Phomatosporaceae fam. nov., to accommodate *Lanspora*, *Phomatospora* and *Tenuimurus*,
- 233 gen. nov. *Mycosphere* 7:628–641
- Spatafora JW, Sung GH, Johnson D, Hesse C, O'Rourke B, Serdani M, Spotts R, Lutdzoni F,
- Hofstetter V, Miadlikowska J, Reeb V, Gueidan C, Fraker E, Lumbsch T, Lücking R,
- Schmitt I, Hosaka K, Aptroot A, Roux C, Miller AN, Geiser DM, Hafellner J, Hestmark G,
- Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole MS, Scheidegger C, Schultz
- M, Sipman H, Schoch CL. 2006. A five-gene phylogeny of Pezizomycotina. *Mycologia*
- 239 98:1018–1028
- 240 Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian
- phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evolution* 4 4(1):
- 242 vey016
- Tamura K, Stecher, G, Kumar, S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis
- Version 11. *Molecular Biology and Evol*ution 38:3022–3027
- 245 Tibell S, Tibell L, Pang KL, Jones EBG. 2020. A conspectus of the filamentous marine fungi of
- Sweden. Botanica Marina 63:141-153
- Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified
- ribosomal DNA from several Cryptococcus species. *Journal of Bacteriology* 172:4239-4246

PeerJ

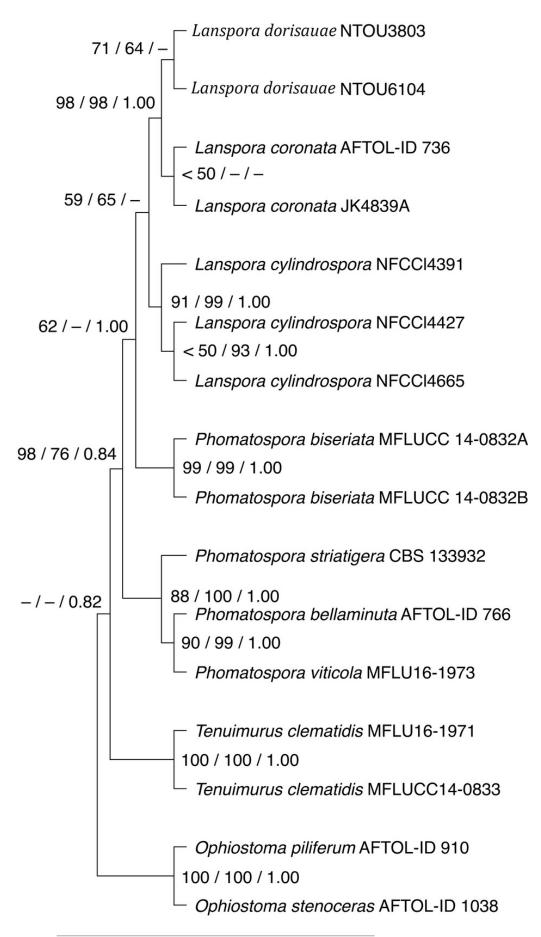

249	White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA
250	genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Innis MA,
251	Gelfand DH, Sninsky JJ, White TJ. Academic Press: San Diego, pp. 315–322

Figure 1

The parsimonious tree produced from maximum parsimony analysis of a combined dataset of five genes (18S, 28S, ITS rDNA, EF1a, RPB2). The numbers at the nodes represent maximum parsimony bootstrap, maximum likelihood bootstrap and posterior probability

Figure 2

Figure 2. Lanspora dorisauae. a. Section of ascoma. b. Peridium made of rows of cells of textura angularis with large lumina. c. Paraphyses. d. Clavate ascus. e. Broadly ellipsoid

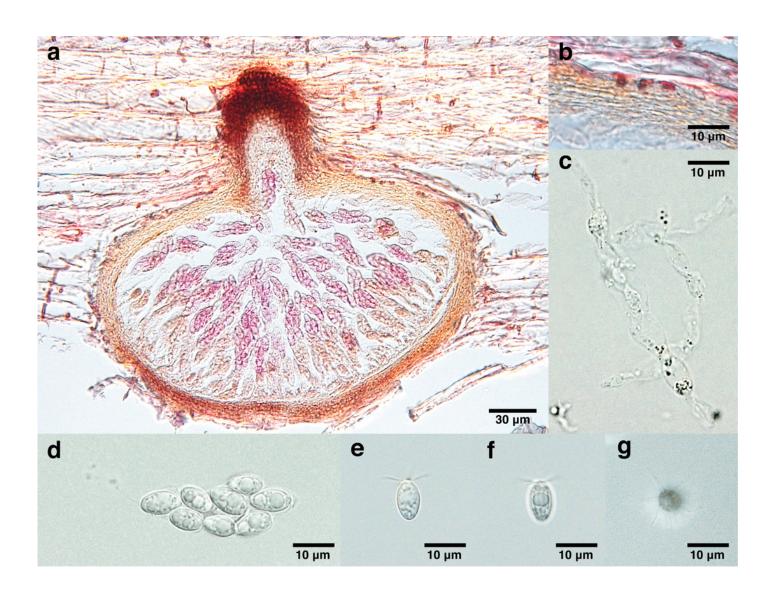


Table 1(on next page)

Table 1

Table 1.

Species	Culture number		GenBank accession number			
Species	Culture number	18S rDNA	28S rDNA	ITS rDNA	EF1α	RPB2
Lanspora audorisa sp. nov.	NTOU3803					
Lanspora audorisa sp. nov.	NTOU6104					
Lanspora coronata	AFTOL-ID 736	DQ470996			DQ471067	DQ470899
Lanspora coronata	JK4839A	U48424	U46889			
Lanspora cylindrospora	NFCCI4391				MN795088	MN795090
Lanspora cylindrospora	NFCCI4427		MN168892	MN168890	MN795089	
Lanspora cylindrospora	NFCCI4665	MN169053	MN168891	MN168889		
Ophiostoma piliferum	AFTOL-ID 910	DQ471003	DQ470955		DQ471074	DQ470905
Ophiostoma stenoceras	AFTOL-ID 1038	DQ836897	DQ836904		FJ190618	DQ836891
Phomatospora bellaminuta	AFTOL-ID 766	FJ176803	FJ176857			FJ238345
Phomatospora biseriata	MFLUCC 14-0832A	KX549458	KX549448	KX549453		
Phomatospora biseriata	MFLUCC 14-0832B	KX549459	KX549449	KX549454		
Phomatospora striatigera	CBS 133932		KM213618	KM213617		
Phomatospora viticola	MFLU16-1973		KX549452	KX549457		
Tenuimurus clematidis	MFLU16-1971		KX549451	KX549456	_	
Tenuimurus clematidis	MFLUCC14-0833		KX549450	KX549455		<u>—</u>