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ABSTRACT
Body mass is arguably the most important characteristic of an organism, yet it is
often not available in biological samples that have been skeletonized, liquid-
preserved, or fossilized. The lack of information is especially problematic for fossil
species, for which individuals with body mass information are not available
anywhere. Multiple methods are available for estimating the body mass of fossil
terrestrial vertebrates but those for their marine counterparts are limited. Paleomass
is a software tool for estimating the body mass of marine vertebrates from their
orthogonal silhouettes through bracketing. It generates a set of two 3D models from
these silhouettes, assuming superelliptical body cross-sections with different
exponent values. By setting the exponents appropriately, it is possible to bracket the
true volume of the animal between those of the two models. The original version
phased out together with the language platform it used. A new version is reported
here as an open-source package based on the R scripting language. It inherits the
underlying principles of the original version but has been completely rewritten with a
new architecture. For example, it first produces 3D mesh models of the animal and
then measures their volumes and areas with the VCG library, unlike the original
version that did not produce a 3D model but instead computed the volume and area
segment by segment using parametric equations. The new version also exports 3D
models in polygon meshes, allowing later tests by other software. Other
improvements include the use of NACA foil sections for hydrofoils such as flippers,
and optional interpolation with local regression. The software has a high accuracy,
with the mean absolute errors of 1.33% when the silhouettes of the animals are
known.
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INTRODUCTION
Body mass is an essential metric to describe aspects of the biology of individual organisms
(Schmidt-Nielsen, 1984). Despite the importance, a body mass record is not always
available—preserved specimens in museum collections often lack body mass information,
and fossil organisms are never found with body mass data. The lack of information is not
overly problematic for extant species for which conspecific individuals are available
elsewhere, but poses a critical hurdle to biological studies of fossil species. Accordingly,
paleontologists have been exploring the possibility of body mass estimation based on what
is preserved in fossils.
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Methods for body mass estimation based on fossils are largely divided into two
categories depending on the underlying principle—one may be called the length-based and
the other volumetric approaches (Hurlburt, 1999; Smith, 2002; Sellers et al., 2012; Brassey,
2016; Campione & Evans, 2020). The length-based approach first establishes a correlation
between the length(s) of one or more morphological character(s) of the animals in
question and their body mass through a linear regression, based on extant samples for
which the body mass is known, and then uses the regression equation to estimate the body
mass of extinct animals for which the length character(s) are available. Multiple regression
with more than one length characters tends to be preferred in clades in which fossils
species are nested among abundant extant members, such as mammals (e.g., Smith, 2002;
Mendoza, Janis & Palmqvist, 2006), whereas bivariate regression is almost exclusively used
in clades that have long been extinct with only distantly related descendants surviving, e.g.,
non-avialan dinosaur clades (Anderson, Hall-Martin & Russell, 1985; Campione & Evans,
2012), probably to avoid overfitting of the model to particular extant clades that would
mislead the outcome.

The volumetric approach first estimates the volume of the animal in question and then
converts the value to body mass by assuming an average body density. This approach dates
back at least to 1905, when the body mass of Brontosaurus was estimated by measuring the
volume of a cast of a scaled physical model with water displacement and then converting
the volume to mass by assuming the freshwater density (Gregory, 1905). A similar method
was used by Colbert (1962) for body mass estimation of a wider range of dinosaurs.
As mathematical models became common, a parametric approach to model the body as a
collection of cylinders based on a limited number of measurements, called Graphic Double
Integration, was developed (Jerison, 1973). What may be considered an extension of this
approach, where the body is straightened in a parametric space and modeled by many
cylindrical disks, was later proposed (Seebacher, 2001). With the arrival of 3D computer
technology, methods of incorporating complex 3D computer models emerged. Such
methods include a partly parametric approach as in Paleomass based on superelliptical
cross-sections (Motani, 2001), as well as the minimum convex hull method based on
completely empirical data from laser scanning of mounted skeletons (Sellers et al., 2012).

These methods aim to arrive at the best mean estimate of body mass, except Paleomass
which tried to bracket the mass between two values (Fig. 1D bracketed by 1C and 1E).
The method was also unique for specifically addressing marine vertebrates, for which a
limb-based regression approach is not suitable because they do not support the body mass
with the limbs. Despite the uniqueness that would allow cross-checking of other methods,
the software is no longer available because its language platform was discontinued.
The purpose of the present paper is to report a completely rewritten and open-source
version of Paleomass with a new architecture and enhancements over the original version.

MATERIALS AND METHODS
Platform
The new Paleomass was written in the R scripting language and run on the R platform (R
Core Team, 2020). Apart from the default R packages, it relies on the following packages
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for parts of computation: imager (Barthelmé & Tschumperlé, 2019), locfit (Loader, 1999),
Morpho (Schlager, 2017), plot3D (Soetaert, 2022), rgl (Murdoch, 2001), and Rvcg (Schlager,
2017). It is open-source and provided under GNU General Public License v3.0. A
repository for the package, including the code and a tutorial, is found at: https://github.
com/rmotani/paleomass.

Aim
Paleomass aims to estimate the body volume of a marine vertebrate with a straight body
axis. The volume is converted to a mass by assuming the average body density that can be
specified by the user. The body surface area is also estimated simultaneously.

Principle
Paleomass aims to bracket the true body volume of a marine vertebrate between those of
two 3D models (Fig. 1). Each of the two models is not the best mean estimate of the true
body shape, but one is expected to have a volume slightly larger than the true body volume
(Figs. 1E vs 1D), and the other slightly smaller (Fig. 1C). The models are based on the same
set of orthogonal body silhouette images and therefore appear identical in completely
dorso-ventral or lateral views, but have different cross-sectional shapes and differs in
coronal view.

The cross-sectional shape is based on superellipses (Fig. 1A), which are mathematical
expansions of ellipses. Whereas ellipses are defined as:

ðx=aÞ2 þ ðy=bÞ2 ¼ 1

where x and y are the major and minor axes and a and b are the major and minor radii,
respectively, superellipses are defined by an equation:

jx=ajn þ jy=bjn ¼ 1 (1)

0 0.5 1.5 2 2.5 3 101

BB CC DD

AA

E  E  FF

Figure 1 How superellipses of different exponent values are used to bracket the true volume of a
marine vertebrate. (A) Variations of superelliptical shapes, with numbers being the exponents used to
produce respective shapes. (B) A skinny dolphin model with an n value of 1.5 based on the silhouettes
from D. (C) Same with an exponent of 2.0. (D) 3D model of Tursiops truncatus (model 61 from
digitallife3d.org). (E) A fat model with an exponent of2.5. (F) Same with an exponent of 3.0.

Full-size DOI: 10.7717/peerj.15957/fig-1
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where n > 0. When n = 2, a superellipse becomes an ellipse (Fig. 1). As n decreases from 2,
the superellipse approaches a diamond shape as n approaches 1 and then a cross shape as it
approaches 0. If n increases beyond 2, the superellipse approaches a rectangle.

It is known that a typical body cross-section of a vertebrate can be approximated by a
superellipse or a combination of two halves of different superellipses (Motani, 2001;
Snively et al., 2019). The true body cross-sections of marine tetrapods are usually found to
be bracketed by two superellipses, one with n = 2 and the other with n = 3 (but see
Validation below for a narrower range). For fish, the two exponents are n = 1.5 and 2.5.
Therefore, the true volume of a marine vertebrate can be bracketed by making two 3D
models with these two boundary superelliptical shapes, depending on the clade (Fig. 1).

Overall workflow
Paleomass first reads in the data from raster images and command line options, based on
which it computes 3D mesh models for the main body and each of the fins and flippers
separately. Two mesh models are made for the main body, with different superelliptical
exponents of choice. The volume and surface area of each mesh model are computed and
summed to give two total estimates, with different main body models. Optionally, these
meshes are assembled to make a complete 3D mesh model. The assembled models and
each part model can be saved as 3D polygon meshes, respectively.

Coordinate system
Modeling and computation take place in a three-dimensional Euclidean coordinate
system. The x axis is set as the bilateral axis with the right side of the body being the
positive side. The y axis is the dorsoventral axis with the dorsal direction being positive,
while the z axis is the antero-posterior axis, which may also be called the body axis
hereafter, with the tip of the snout being the origin and the posterior direction being
positive.

User supplied data
The users need to supply the shape and size of the animal to be modeled. First, the shape is
supplied as a set of silhouette raster images, such as JPEG or PNG, one for each
fin/flipper/cephalofoil and a pair for the body (e.g., Fig. 2C)—cephalofoil refers to the
“hammer” structure of the hammerhead sharks. These images need to have the same pixel
size, e.g., if each side of pixel is 0.001 m in one image, then this pixel side length should be
the same in all other images. It is recommended to have at least 3,000 pixels along the body
axis of these images (see Validation below), rather than 1,000 as originally suggested
(Motani, 2001). The body images are in lateral and ventral views, respectively, with all fins,
flippers and cephalofoils removed. For each fin, flipper, and cephalofoil, a planar view is
required. Second, the length of the body axis as represented in the body images after the
removal of the fin/flipper/cephalofoil is supplied through a command line option, in
meters.
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Paleomass accepts the following types of fins and flippers: pectoral fin/flipper, pelvic
fin/flipper, caudal fin, dorsal fin, second dorsal fin, and anal fin. Not all fins/flippers have to
be present. This versatility allows for different body architectures to be modelled (Fig. 3).

Computation steps for main body
The computation of a 3D model and its volume for the main body follows the steps below.

(1) The lateral and dorso-ventral silhouettes of the main body of the animal in question
are read from raster image files (Figs. 4A and 4B).

(2) The outlines of these silhouettes are digitized as coordinates (Figs. 4C and 4D),
which are then optionally smoothed through interpolation with local regression using the
locfit() function (Loader, 1999). By default, a nearest neighbor parameter of 0.1 and a
constant component of 0 is used for local regression but the former value is user adjustable.
The smoothing allows coordinates to take non-integer values and therefore prevents
step-like appearance of the final 3D model (Figs. 4G and 4H) that often gives rise to
non-manifold edges and triangles that cause errors later on.

(3) The transverse and dorsoventral diameters of the main body are calculated from the
coordinates for each pixel position along the body axis (Figs. 4C and 4D). There are much
less than 3,000 lines in Figs. 4C and 4D for visualization purposes but the actual
calculations are done for each pixel point along the body axis, i.e., there would be 3,000
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Figure 2 Shape input images from Sphyrna lewini. (A) Orthogonal views of the target animal, with the
overall outlines traced in red. (B) Planar views of fins that are angled in A, with fins in question outlined
in red. (C) Input images for Paleomass based on A and B, where fins are separated from the main body.
Scale bar in 10 cm. A resulting Paleomass mode is found in Fig. 3E. Image source: A and B are ortho-
graphic projections of a 3D model from FFish.asia (Kano et al., 2013; https://sketchfab.com/3d-models/
scalloped-hammerhead-shark-s-lewini-5de0eec2e8e0462f9a856124761e0ed8; CC BY 4.0, https://
creativecommons.org/licenses/by/4.0/). Full-size DOI: 10.7717/peerj.15957/fig-2
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pairs of transverse and dorsoventral diameters in the input body images have 3,000 pixels
along the body axis.

(4) Based on these coordinates and diameters, a superellipse is drawn per segment
(Figs. 4E and 4F), i.e., body mages with 3,000 pixels along the body axis will result in 3,000
superellipses. Each superellipse has 181 vertices around its perimeter so that there is one
vertex per every 2� of angular displacement around the center, with the first and last
vertices overlapping—these two vertices will be merged later to make the model watertight,
reducing the number of vertices per segment to 180. The number of vertices per segment is
user adjustable. The exponent for the superellipse (n in Eq. 1) is also set by the user, e.g., 2
for one model (e.g., Fig. 4E) and 2.4 for the other (Fig. 4F) for marine tetrapods.

(5) A tip is added at each of the anterior and posterior ends of the body to help make the
model watertight at a later stage. These tips are small superelliptical disks with a tiny radius
of 10−4 pixels. They do not affect the computation of volume and surface area. The radius
of the tip is user adjustable.

(6) Superellipses from steps 4 and 5 are connected as a 3D mesh (Figs. 4G–4J).
(7) Small holes at the tips of the body are closed by merging closely located vertices

within distances of 10−4 pixels or less, and then the whole mesh is cleaned for duplicate
faces and non-manifold faces and vertices by vcgClean() function (Schlager, 2017).
Cleaning may fail if smoothing is skipped at step two, leaving non-manifold edges that
would prevent accurate volume calculation. Also, sticky non-manifold edges may result
from having low-resolution input images—having 3,000 rather than 1,000 pixels are
necessary along the body axis would help prevent this unintended error.
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Figure 3 Range of body morphologies modelled by Paleomass. (A) Tursiops truncatus. (B) Ste-
nopterygius quadriscissus. (C) Chaohusaurus chaoxianensis. (D) Rhincodon typus. (E) Sphyrna lewini. (F)
Plesiopterys guilelmiimperatoris. (G) Anguilla marmorata. (H) Eopsetta grigorjewi. (I) Latolabrax japo-
nicus. (J) Caranx sexfasciatus. Full-size DOI: 10.7717/peerj.15957/fig-3
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Figure 4 Computation process of main body and fin/flipper 3D meshes with examples from
Cephalorhynchus heavisidii. (A) Lateral silhouette image input. (B) Dorso-ventral silhouette image
input. (C) Coordinates around A in dots, with dorso-ventral diameters in lines, down-sampled to one in
every ten coordinates for visualization purposes. (D) Same as C but based on B. (E) Serial superelliptical
sections based on diameters from C and D, with an exponent of 2, downsampled at the same rate as in C.
(F) Same as E but with an exponent of 3. (G) 3D mesh combining all superelliptical slices as in E but
without downsampling. (H) Same as G but based on F. (I) Same as G but with interpolation with local
regression with a nearest neighbor parameter of 0.1. (J) Same as H but with interpolation with local
regression. (K) Planar silhouette image input. (L) Coordinates around A in dots, with chords in lines.
Downsampled to one in every five slices for visualization purposes. (M) Serial foil section based on
NACA 0020, downsampled at the same rate as in L. (N) 3D mesh that connected serial foil sections as in
C but without downsampling. (O) Same as C but with interpolation with a nearest neighbor parameter of
0.05. (M)–(O) are slightly tilted for visualization purposes and thus appear narrower anteroposteriorly
than K–L. Full-size DOI: 10.7717/peerj.15957/fig-4
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(8) The volume and surface area of the model are measured by vcgVolume() and
vcgArea(), respectively (Schlager, 2017). These functions use the open source vcglib
(https://github.com/cnr-isti-vclab/vcglib), which cites Mirtich (1996) for volume
calculation algorithm. Initially, Paleomass calculates the volume and surface in cubic pixels
and square pixels, respectively, where pixel size is as in the input images. These values are
then converted to m3 and m2s using the body axis length provided by the user, in
combination with the number of pixels along the body axis in the input images.

Computation steps for fins and flippers
The computation of a 3D model and its volume for a fin or flipper follows the steps below.

(1) The planar image of a fin is read from a raster image (Fig. 4K).
(2) The outline of the image is digitized as coordinates (Fig. 4L), and smoothing through

local regression is applied as in the main body outline. The default nearest neighbor
parameter for local regression is 0.1 but Fig. 4O was produced with a value of 0.05.

(3) NACA 4-digit foil section is drawn at each pixel point along the span of the fin
(Fig. 4M). Symmetrical sections without a camber are used. The equation for such a section
is given by:

y ¼ 5t½0:2969x0:5 � 0:126x� 0:3516x2 þ 0:2843x3 � 0:1015x4�
where x is the position along the chord given as a fraction between 0 and 1, and t is the
thickness of the foil relative to the chord in percentages (Ladson & Brooks, 1975). The base
value of t is set at 10 for the anal and second dorsal fins and 20 for the rest—these values are
user adjustable.

When using the base thickness to construct a fin, the thickness distribution along the
span becomes proportional to the chord length distribution and thus results in a strange
shape. Most importantly, the part of the fin that is supposed to be thickest along the fin
span, e.g., proximal end of the pectoral fin/flipper, is not always reconstructed with the
maximum thickness. To avoid this, the base thickness is scaled by a thickness envelope
calculated with the following steps. First, the point along the span where the maximum
thickness is expected is specified as a fraction between 0 and 1. For example, this point
would be 0 for pectoral fin/flipper and 0.5 for a symmetric caudal fin. Second, the axis from
the thickest point to an end of the fin span is given new coordinates of 1 to 0, with 1 at the
thickest point 0 at the distal tip. Lastly, the square roots of these values are calculated to
form the thickness envelope to scale the raw thickness based on the chord lengths.
For example, at the midpoint between the thickest point and a fin tip, the raw thickness is
multiplied by 0.50.5 to give a scaled thickness. This scaling was not present in the original
Paleomass.

(4) Foil sections from the previous step are connected to produce a 3D mesh (Figs. 4N
and 4O), which are then cleaned as in the body mesh.

(5) The volume and surface areas are measured as in the body mesh.
(6) The processes above are repeated for all fins/flippers.
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Computation of cephalofoil
A simple cephalofoil model is implemented to accommodate hammerhead sharks. A
cephalofoil mesh is built in the same manner as fins and flippers, in that a series of NACA
foil sections as in Fig. 4M are used. However, unlike fins and flippers that gradually thin
out toward the tip, the two ends of the cephalofoil, where the eye sockets are located, are
thickened.

Body and fin integration
This process is for visualization purposes only at present and does not affect the
volume/area estimation. Paleomass allows adjustment of the position and angle of each
fin/flipper relative to the main body through command line options. Specifically,
positioning along the x, y, and z axes, as well as rotation around these three axes can be
adjusted. Rotations are called pitch, yaw, and roll, around the x, y, and z axes, respectively.
Roll is applied first, followed by pitch, and then yaw.

Mass calculation
Once the volume of each component is estimated, they are summed to give a total volume.
If there is overlap among components, then the overlapping part is counted twice.
However, such overlap is usually limited compared to the body volume and would not
cause a significant error as evident from the validation results given later. It is ideal to find a
Boolean union of 3D meshes, which comprises only those surfaces that are visible from
outside, but such a function is not yet stably available in R. Future development may allow
addition of a Boolean union procedure.

With the total volume estimated, body mass is calculated from the volume by assuming
a mean density of the total body. For marine vertebrates with buoyancy control through an
air bladder or lungs, it is expected that neutral buoyancy is experienced in at least a part of
daily life. The neutral buoyancy near the sea surface would suggest a mean body density of
1.027 g/cm3, and that in pure water is approximately 1 g/cm3 (Stewart, 2008). By default,
Paleomass uses these two values, although one of them is user adjustable.

The total body density of vertebrates has been controversial—see Larramendi, Paul &
Hsu (2021) for a recent review, which advocated a value close to 1 for fish, reptiles, and
mammals. I make only one point to augment their arguments against unusually small
values suggested by previous authors. Sellers et al. (2012) used a value of 0.896 g/cm3,
which they calculated based on a dataset from a frozen horse reported by Buchner et al.
(1997). However, a reexamination of this dataset suggests that the value should be
0.915 g/cm3–0.896 would be derived instead if the limbs from only one side of the body are
included in calculation. This last value of 0.915 is almost identical to the density of ice, so
freezing of the specimen may have biased the data, i.e., the true value may be close to 1
without freezing.

VALIDATION
The accuracy of the software was tested in two ways. First, its accuracy under the best
condition was tested by geometric objects of known volume and area, a sphere and prolate
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spheroid. Second, its ability to bracket the true volume and surface area of actual aquatic
vertebrates was tested. In both tests, Paleomass was used with interpolation with local
regression enabled.

Geometric objects
The first test followed the steps below. A circle and an ellipse were drawn in CorelDraw
and exported as raster images, respectively, so that the long axis of the object varies from
100 to 10,000 pixels, with an increment of 100 between 100 and 1,000 and 1,000 between
1,000 and 10,000. Then, the volumes of spheres and prolate spheroids based on these
images were estimated by using each image as both the lateral and dorso-ventral views for
the body in Paleomass, per run. The estimated values were then compared to the true
values from parametric equations describing the volume and surface area of spheres and
prolate spheroids. The result shows that the error is less than 0.5% in both volume and
surface area estimation as long as the resolution of the input image is high, with at least
about 800 pixels along the long axis (Fig. 5). However, to stably obtain best results, it is
recommended to have 3,000 or more pixels along the body axis (Fig. 5B). Such a high
resolution is also beneficial in minimizing unintended production of non-manifold edges
as mentioned earlier.

3D models of actual animals
The second test is based on 3Dmesh models of 25 marine vertebrate species, digitized from
actual animals. Only those 3D models that were produced in association with universities
(Kano et al., 2013; Irschick et al., 2021) were used. The species include 20 osteichthyes,
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Figure 5 Errors from volume and surface area estimates for a sphere and prolate spheroid depending
on the input image resolution. (A) Errors from the sphere. (B) Errors from a prolate spheroid whose
major axis is five times the minor axis. Blue lines are for the surface area and black for the volume.
The independent is the number of pixels along the long axis of the geometry, i.e., pixels per diameter.

Full-size DOI: 10.7717/peerj.15957/fig-5
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three chondrichthyes, and two cetaceans—the list of species used is given in Supplemental
Information. The uneven distribution across clades reflects biased data availability that
cannot be easily amended.

First, the true volume and surface area of each animal were recorded, after making its
3D model watertight in Meshlab (Cignoni et al., 2008). This involved removal of duplicate
vertices and faces, followed by an iteration of a sequence comprising deletion of
non-manifold edges and self-intersections and filling of the resulting holes. If error-causing
borders remained after the iteration, the borders were removed and the iteration sequence
was reinitiated. Second, Paleomass estimates of the volume and surface area were
calculated based on the lateral and dorso-ventral images of the model, which were captured
under orthographic projection in Meshlab (Fig. 2A), together with images from angles that
reveal the planar views of individual fins/flippers (Fig. 2B). Attention was paid to not
change the magnification between image captures. These images were edited in CorelDraw
to separate fins/flippers from the body and then each part was saved as a raster image
(Fig. 2C). The image resolution was set so that there are 3,000 pixels along the long axis of

n
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Figure 6 Optimal superelliptical exponents for 25 species of extant marine vertebrates, with coronal
views of five species. Horizontal bars indicate the range of optimal superelliptical exponents for indi-
vidual species. Coronal views are given for the following species. (A) Mustelus manazo. (B) Phocoena
phocoena. (C) Clupea pallasii. (D) Auxis thazad. (E) Salvelinus leucomaenis. Species with V-shaped
ventral halves of the coronal views, e.g., C, tend to have lower exponent values than those with U-shaped
ventral halves, such as E. Squares associated with coronal views are each 1 cm.
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the main body. Paleomass estimates were made for superelliptical exponents (n in Eq. 1)
from 1.5 to 3.0 by an increment of 0.1. Finally, the Paleomass estimates were compared to
the true values to test if the latter were bracketed by any pair of the Paleomass estimates.

The results are summarized in Fig. 6 and Table 1. In all cases, the true volumes of the
marine vertebrates were found to be bracketed between Paleomass estimates with
superelliptical exponent values of 1.6 and 2.4. Within this range, cohorts are recognized
based on how round the ventral half of the body transverse sections are—some species
have rounded ventral halves that appear U-shaped (e.g., Fig. 6E) and found toward the
right side of the plot, whereas others have sharper ventral halves appearing closer to a
V-shape (e.g., Fig. 6C) and located toward the left side. In sharks, this is upside down, i.e., it
is the shape of the dorsal halves that may be rounded or Λ-shaped (Fig. 6A). Most
osteichthyes in the data have intermediate ventral halves between V- and U-shape (e.g.,
Fig. 6D) and consequently found in a moderate exponent range of 1.8 to 2.1. However,

Table 1 Observed vs estimated volume and surface area (SA), together with body axis (BA) length in selected marine vertebrates.

Species BA length Superellliptical n Volume (m3) SA (m2)

(m) Low High Estimated Observed Error % Estimated Observed Error %

Anguilla marmorata 0.759 2.2 2.4 7.86E−04 7.75E−04 −1.51% 9.58E−02 9.75E−02 1.75%

Conger myriaster 0.749 2.2 2.4 7.60E−04 7.56E−04 −0.60% 9.83E−02 1.01E−01 2.33%

Salvelinus leucomaenis 0.339 2.2 2.4 4.93E−04 4.90E−04 −0.73% 6.47E−02 6.30E−02 −2.86%

Takifugu snyderi 0.127 2.2 2.4 4.85E−05 4.85E−05 −0.06% 1.12E−02 1.08E−02 −4.03%

Phocoena phocoena 1.436 2 2.3 5.15E−02 5.09E−02 −1.14% 1.18E+00 1.04E+00 −13.24%

Tursiops truncatus 2.369 2 2.3 1.63E−01 1.67E−01 2.31% 2.47E+00 2.42E+00 −1.77%

Lateolabrax japonicus 0.433 1.8 2.1 1.03E−03 1.00E−03 −2.35% 1.01E−01 9.83E−02 −2.28%

Seriola quinqueradiata 0.528 1.8 2.1 1.99E−03 1.95E−03 −1.99% 1.30E−01 1.32E−01 1.52%

Katsuwonus pelamis 0.437 1.8 2.1 1.72E−03 1.72E−03 0.32% 1.08E−01 1.09E−01 0.60%

Parapristipoma trilineatum 0.198 1.8 2.1 1.49E−04 1.48E−04 −0.74% 2.68E−02 2.74E−02 2.14%

Auxis thazard 0.332 1.8 2.1 6.00E−04 5.96E−04 −0.76% 5.33E−02 5.35E−02 0.37%

Euthynnus affinis 0.351 1.8 2.1 7.31E−04 7.25E−04 −0.89% 6.66E−02 6.63E−02 −0.55%

Caranx sexfasciatus 0.228 1.8 2.1 2.27E−04 2.34E−04 2.84% 3.58E−02 3.42E−02 −4.54%

Oncorhynchus masou 0.422 1.8 2.1 9.32E−04 9.58E−04 2.70% 9.07E−02 9.18E−02 1.16%

Thunnus albacares 0.395 1.8 2.1 1.03E−03 1.06E−03 2.66% 8.47E−02 8.40E−02 −0.85%

Acanthopagrus schlegelii 0.209 1.8 2.1 2.41E−04 2.47E−04 2.26% 3.99E−02 3.98E−02 −0.32%

Cololabis saira 0.318 1.8 2.1 1.31E−04 1.34E−04 1.70% 2.64E−02 2.65E−02 0.46%

Girella punctata 0.220 1.8 2.1 3.18E−04 3.22E−04 1.32% 4.64E−02 5.02E−02 7.49%

Sardinops melanostictus 0.177 1.8 2.1 7.64E−05 7.70E−05 0.73% 1.49E−02 1.48E−02 −0.51%

Scomber japonicus 0.280 1.8 2.1 2.36E−04 2.39E−04 1.18% 3.24E−02 3.29E−02 1.35%

Eopsetta grigorjewi 0.275 1.6 1.7 2.80E−04 2.81E−04 0.07% 6.06E−02 5.95E−02 −1.96%

Clupea pallasii 0.221 1.6 1.7 1.33E−04 1.31E−04 −1.34% 2.37E−02 2.42E−02 2.22%

Sphyrna lewini 0.565 1.8 2 9.41E−04 9.39E−04 −0.24% 1.14E−01 1.26E−01 8.96%

Mustelus manazo 0.380 1.8 2 1.96E−04 1.94E−04 −1.11% 3.72E−02 3.81E−02 2.25%

Squalus mitsukurii 0.654 1.8 2 1.74E−03 1.76E−03 0.80% 1.46E−01 1.46E−01 0.53%
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unusual forms are found outside of this typical range—those with flattened ventral sides,
such as pufferfish and eels, are in the range of 2.2 to 2.4, whereas those with exceptionally
compressed cross-sections with V-shaped ventral halves, such as flatfish and a small
herring, are in the range of 1.6 to 1.7. Cetaceans, with their transverse sections rounded
ventrally, have a high optimal exponent range of 2.0 to 2.3. Sharks tend to have Λ-shaped
dorsal halves but this is partly compensated for by the flat ventral halves, resulting in a
moderate exponent range of 1.8 to 2.0. The optimal exponent range for the surface area
was between 1.6 and 2, when excluding unusual forms such as flatfish and pufferfish. These
optimal ranges mostly overlap the previously suggested ranges (Motani, 2001) while being
narrower and better defined.

The accuracy of Paleomass estimates was computed in the following manner. Paleomass
provides a range of estimates rather than a single mean estimate, while the latter would be
required to compute accuracy. Therefore, the mean of the upper and lower bounds of the
estimated volume range was used as a single estimate of the volume to facilitate error
calculation. With this treatment, the mean and maximum absolute estimation errors are
1.33 and 3.15% across 25 species, using the cohort-specific superelliptical exponent ranges
of 2.0–2.3 for cetaceans, 1.8–2.0 for sharks, 1.8–2.1 for typical fish, 2.2–2.4 for U-shaped
fish, and 1.6–1.7 for V-shaped fish. When applying the more inclusive exponent range of
1.6–2.4 to all species, the errors increase to 4.61 and 7.21%, respectively. For the surface
area, the mean and maximum absolute error are 2.64 and 10.5%, respectively, when using
the same inclusive range of 1.6–2.4.

DISCUSSION
The validation results suggest that Paleomass successfully brackets the true volume and
surface area of marine vertebrates when the body silhouettes are known—the software has
high accuracy, with a mean absolute error of 1.33%. At the same time, there are limitations
to the software package. Paleomass is designed for marine vertebrates with straight body
axis and cannot manage lateral concavities in body shape or dorso-ventral concavities in
fins/flippers. Also, as stated earlier, the software lacks the capability for Boolean union of
body part meshes until such becomes stably available in R. Finally, the accuracy of body
mass estimates depends on that of the body outline images, as well as the choice of
superelliptical exponent and mean body density.

The accuracy of body outline information merits a discussion. There is a paucity of body
outline information in the fossil record in general: some fossil species, such as the
ichthyosaur Stenopterygius and Aegirosaurus (Motani, 2005; Delsett et al., 2022), are
occasionally preserved with body outlines but the majority of species lack such
information. For species without body outlines preserved, outlines are often drawn around
the skeleton, usually without strict accuracy control. Therefore, the accuracy of body mass
estimation for those fossil vertebrates would be lower than that of the software itself
because of additional errors introduced while body outlines are reconstructed around the
skeleton. One way to remedy this problem may be to employ the minimum hull approach

Motani (2023), PeerJ, DOI 10.7717/peerj.15957 13/17

http://dx.doi.org/10.7717/peerj.15957
https://peerj.com/


of Sellers et al. (2012), where the body mass is estimated by multiplying the minimum
skeletal hull volume by an empirical ratio between such volumes and the actual volumes in
extant mammals. In the present case, the volume of an animal may be estimated from a set
of orthogonal minimum skeletal hull silhouettes, provided that the ratio between
Paleomass estimates from such silhouettes and the true volume is known. However,
derivation of such a ratio would require a broad taxonomic sample of CT scan data that
records both the skeletons and body surface of individuals. At present, most publicly
available CT scans of marine vertebrates are based on liquid preserved and sometimes
eviscerated individuals that do not retain the original body outlines (e.g., MorphoSource.
org, Kamminga et al., 2017), making it difficult to obtain sufficient data. This possibility
may be pursued in the future as more data are added to public data repositories.

At present, it is difficult to assess how much loss of accuracy would result from body
outline reconstruction errors based on fossils. However, even if the error level increases by
ten- to twenty-fold compared to that from the Paleomass software alone, the total error
level would still be comparable to those of other body mass estimation methods for fossil
vertebrates. For example, the minimum hull approach had 11–20% errors when applied to
primates (Brassey & Sellers, 2014), whereas the mean absolute error is 26.35% in the
regression-based body mass estimation of terrestrial vertebrates, with the maximum
absolute error being about 300% based on the data in Campione & Evans (2012).

Paleomass fills the niche left by other body mass estimation methods. It is applicable to
animals for which limb-based regression methods are not suitable, as noted earlier for
marine vertebrates. It also enables body mass estimation from flattened fossils, which
would supply the body outline images but not a 3D skeletal model necessary for minimum
hull construction—again, marine vertebrate fossils tend to be flattened. Application to
flattened fossils would depend on the availability of two conspecific individuals with
almost identical sizes, exposing the body from two different angles, as in Stenopterygius
reconstructed byMotani (2001). Overall, Paleomass is a viable alternative to existing body
mass estimation methods for fossil vertebrates.

CONCLUSIONS
Paleomass allows estimation of body volume and surface areas of marine vertebrates with
straight body axis through bracketing with 3D models with superelliptical cross-sections.
The 3D models are built based on orthogonal silhouettes of the animal in question, which
are supplied by the user as raster images. The volumes are converted to body mass by
assuming a total body density, which may be the seawater density (1.027 g/cm3) for forms
that use the lungs or air bladders to control buoyancy. Optimal superelliptical values for
bracketing are 2.0 and 2.4 for cetaceans, 1.8 and 2.0 for sharks, and 1.8 and 2.1 for most
bony fish, although the values may be higher or lower for unusual forms, such as pufferfish
and flatfish. When using proper exponent ranges, the errors in volume estimation are
about 1.33% on average. The software is open access under GNU General Public License
v3.0. at https://github.com/rmotani/paleomass.
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