Description of a stauromedusa commonly seen on the Pacific Coast of the United States and Canada, Haliclystus sanjuanensis new species (Cnidaria: Staurozoa) (#85426)

First submission

Guidance from your Editor

Please submit by 10 Jun 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 13 Figure file(s)
- 3 Table file(s)
- 1 Other file(s)

Custom checks

Field study

- Have you checked the authors <u>field study permits</u>?
- Are the field study permits appropriate?

New species checks

- Have you checked our <u>new species policies</u>?
- Do you agree that it is a new species?
- Is it correctly described e.g. meets ICZN standard?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Description of a stauromedusa commonly seen on the Pacific Coast of the United States and Canada, *Haliclystus* sanjuanensis new species (Cnidaria: Staurozoa)

Claudia E Mills ¹, Hannah Westlake ², Yayoi M Hirano ³, Lucília S Miranda ^{Corresp. 4}

Corresponding Author: Lucília S Miranda Email address: mirandals@ufmg.br

Haliclystus "sanjuanensis" nomem nudum is the most common staurozoan on the west coast of the United States and Canada. This species was described in an unpublished M.S. Thesis by Gellermann (1926) and although that name has been in use nearly continuously since that time, no published description exists. Furthermore, the most popular operative name for this species has wandered over several related species names over time, leaving much confusion in the literature. We provide here a detailed description and synonymy of Haliclystus sanjuanensis n. sp., whose distribution is verified from Unalaska Island in the Aleutians (53.4° N, 166.8° W), in the northwest, to Santa Barbara County, California, just north of Point Conception (34.5° N), in the south. Haliclystus sanjuanensis n. sp. is compared with the twelve other described species of Haliclystus and illustrations of both macroscopic and microscopic anatomy are provided. Haliclystus sanjuanensis n. sp. is unique among all species of Haliclystus in the arrangement of the bright-white nematocysts spots in its calyx and the pattern of dark stripes running the length of the stalk and up the outside of the calyx.

¹ Fridav Harbor Laboratories and the Department of Biology, University of Washington, Friday Harbor, Washington, United States

² Department of Biology, University of Victoria, Victoria, British Columbia, Canada

³ Coastal Branch of Natural History Museum and Institute, Chiba, Katsuura, Chiba, Japan

 $^{^{4}}$ Department of Zoology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

1 Description of a stauromedusa commonly seen on the Pacific Coast of the United States and 2 Canada, Haliclystus sanjuanensis new species (Cnidaria: Staurozoa) 3 Claudia E. Mills¹, Hannah E. Westlake², Yayoi M. Hirano³, & Lucília S. Miranda⁴ 4 5 6 ¹Friday Harbor Laboratories and the Department of Biology, University of Washington, Friday 7 Harbor, Washington, USA. 8 ²Department of Biology, University of Victoria, Victoria, British Columbia, Canada. 9 ³Coastal Branch of Natural History Museum and Institute, Chiba, Katsuura, Chiba, Japan. 10 ⁴Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 11 Belo Horizonte, Minas Gerais, Brazil. 12 13 Corresponding Author 14 Lucília Souza Miranda 15 Av. Pres. Antônio Carlos, 6627. Pampulha, Belo Horizonte, Minas Gerais, Brazil, 31270-901. 16 E-mail address: miranda.ufmg@gmail.com 17 ORCID of the authors: CEM: 0000-0002-7084-2559; LSM: 0000-0003-4121-8340. 18 19 **ABSTRACT**

20

- 21 Haliclystus "sanjuanensis" nomem nudum is the most common staurozoan on the west coast of the
- 22 United States and Canada. This species was described in an unpublished M.S. Thesis by Gellermann
- 23 (1926) and although that name has been in use nearly continuously since that time, no published

description exists. Furthermore, the most popular operative name for this species has wandered over several related species names over time, leaving much confusion in the literature. We provide here a detailed description and synonymy of *Haliclystus sanjuanensis* n. sp., whose distribution is verified from Unalaska Island in the Aleutians (53.4° N, 166.8° W), in the northwest, to Santa Barbara County, California, just north of Point Conception (34.5° N), in the south. *Haliclystus sanjuanensis* n. sp. is compared with the twelve other described species of *Haliclystus* and illustrations of both macroscopic and microscopic anatomy are provided. *Haliclystus sanjuanensis* n. sp. is unique among all species of *Haliclystus* in the arrangement of the bright-white nematocysts spots in its calyx and the pattern of dark stripes running the length of the stalk and up the outside of the calyx.

Keywords: Stauromedusae, Haliclystidae, *H. antarcticus*, *H. auricula*, *H. stejnegeri*, *H. octoradiatus*, stalked jellyfish, taxonomy, diversity.

INTRODUCTION

Staurozoa is a cnidarian class with about 50 valid species (Miranda *et al.* 2018). They are a rare group of marine animals, which are generally found attached to algae or rocks in intertidal pools or in the shallow subtidal (Miranda *et al.* 2018), occasionally in great numbers. *Haliclystus* James-Clark, 1863 is currently the most diverse genus of the class, with 12 valid species and one additional species assigned as a *nomen nudum* (i.e., a Latin term referring to a species name that was not described in conformance with the International Code of Zoological Nomenclature; ICZN, 1999), *Haliclystus* "sanjuanensis" (see Miranda *et al.* 2018).

The reader will discover that this little animal has been known by naturalists and scientists since at least the 1920s and has appeared in most guidebooks to the NE Pacific coastal fauna for the

47	last nearly one hundred years. The synonymy that we present here for this species is both impressively
48	long and indicative of the confusion over what to call this stalked jellyfish that has persisted nearly as
49	long as it has been known.
50	This animal was first described in an unpublished Master's Thesis by Gellermann (1926), a
51	student at the University of Washington Friday Harbor Laboratories in Friday Harbor, Washington,
52	USA. That species name was subsequently used by other visitors to the Friday Harbor Laboratories
53	including Guberlet (1936, 1949) and Hyman (1940a, b) as if it had been formally described, sneaking
54	its way into the literature. In fact, Hyman (1940b) has sometimes been indicated as the
55	author/descriptor of H. "sanjuanensis" (e.g., Kramp 1961; Hirano 1997; Collins & Daly 2005),
56	although Hyman was apparently unaware of the necessity to formally describe <i>H. "sanjuanensis"</i> and
57	her work did not address the requirements for species descriptions (e.g., a complete description and the
58	designation of a type, see also ICZN, 1999, Article 13).
59	At some point in the literature, H. "sanjuanensis" was synonymized with Haliclystus auricula
60	James-Clark, 1863, increasing the misunderstanding. After morphological considerations, Gwilliam
61	(1956) synonymized <i>H. "sanjuanensis"</i> (which he had studied in False Bay on San Juan Island,
62	Washington, USA) with <i>H. auricula</i> in his unpublished Ph.D. dissertation. Gwilliam never published
63	his taxonomic conclusions, but he used the same identification in an article derived from that
64	dissertation on the neuromuscular physiology (Gwilliam 1960) of H. "sanjuanensis" (as H. auricula)
65	collected on San Juan Island, Washington. Kramp (1961) followed Gwilliam's conclusions and
66	included H. "sanjuanensis", mentioned by Hyman (1940b), in the synonym list of H. auricula, and
67	that species name was also selected for the much-used keys for identification of Pacific Northwest
68	invertebrates by Kozloff (1974).

69	Meanwhile, on another front, many authors misidentified specimens of H. "sanjuanensis"
70	collected between British Columbia (Canada) and California (USA) as Haliclystus stejnegeri
71	Kishinouye, 1899 (e.g., Ricketts et al. 1968; Otto 1976, 1978; and a number of guidebooks written for
72	the Pacific coast of mainland USA from the 1920s into the 1960s, see synonymies below), perhaps
73	based on stauromedusae (correctly?) identified as <i>H. stejnegeri</i> by Bigelow (1920) from 2–3 fathoms
74	deep at Port Clarence, Alaska (USA, near the Bering Strait).
75	Contributing to this chaotic scenario, H. "sanjuanensis" has also been called Haliclystus
76	octoradiatus James-Clark, 1863 (e.g., Eckelbarger & Larson 1993) and there is at least one other not
77	formally described species of Haliclystus in the same region (partially sympatric), also proposed by
78	Gellermann (1926) in her unpublished Master's Thesis (this species later referred to as Haliclystus
79	salpinx James-Clark, 1863 in many publications including Otto 1976, 1978; Mills 1987; Strathmann
80	1987; Wrobel & Mills 1998, 2003; Mills & Larson 2007; but this synonymy is yet to be tested and is
81	to be dealt with in a future publication).
82	On the other hand, there is information in the literature supporting the validity of H .
83	"sanjuanensis". Hirano (1997) morphologically revalidated H. "sanjuanensis" as different from H.
84	auricula based on the presence of prominent white spots (sacs) composed of masses of nematocysts in
85	H. "sanjuanensis"; these nematocyst-filled structures are absent in H. auricula. Hirano (1997) also
86	distinguished H. "sanjuanensis" from H. stejnegeri and H. octoradiatus based on the distribution of
87	the white nematocyst spots in the subumbrella.
88	Phylogenetic analyses based on ribosomal and mitochondrial genes corroborate that <i>H</i> .
89	"sanjuanensis" is clearly distinct from H. stejnegeri and H. octoradiatus and closely related to
90	Haliclystus antarcticus Pfeffer, 1889 and H. auricula (Miranda et al. 2010, 2016a; Holst & Laakmann
91	2019; Holst et al. 2019).

Based on this evidence, and since "nomina nuda" and other unavailable names can be made available if they are published again in a way that meets the criteria of availability (ICZN, 1999; see http://iczn.org/content/what-nomen-nudum), our aim in this study is to formally describe Gellerman's Haliclystus "sanjuanensis" using the species name that she originally applied. We also here provide a table comparing Haliclystus sanjuanensis n. sp. with the other twelve described-species in the genus Haliclystus.

MATERIAL AND METHODS

Animal collection

We hand-collected hundreds of live specimens of *Haliclystus sanjuanensis* n. sp. at low tides on the south end and west side of San Juan Island and the south end of Lopez Island, San Juan County, Washington State, USA and along the southern shore of Victoria, British Columbia, Canada (approximately 30 km to the west of San Juan Island) for study over a period of many years. Our primary collection locations were the type locality at Cattle Point on San Juan Island, Washington (48.452131 N, –122.961750 W) from the late 1970s–2019 and on the shoreline of the Chinese Cemetery in Victoria, British Columbia (48.406356 N, –123.323467 W) between May and September of 2013–2015. The waters of San Juan County and Cypress Island [the San Juan Archipelago], Washington, are a designated Marine Biological Preserve, with the University of Washington Friday Harbor Laboratories as the managing agency (Washington State House Bill 68, 1923; R.C.W.28.77.230,1969; Revision R.C.W.28B.20.320, 2023); since 1923, the Director of the Friday Harbor Laboratories FHL grants approval of scientific collection of marine plants and animals within the Marine Biological Preserve and C.E.M. has been granted such permission for collection of the marine animals reported in this study. Staurozoa were collected in Victoria, British Columbia, Canada,

under Scientific License XR 30 2013-15 issued by the Department of Fisheries and Oceans Canada to Professor Louise Page, academic advisor of H.E.W during those years.

A type series of *H. sanjuanensis* n. sp. specimens including holotype and paratypes was collected on July 3, July 15, and July 29, 2019 on low tides at Cattle Point, San Juan Island. Animals were hand-collected from surfgrass or algae around the –50 cm (–1.5 foot) level in shallow water. The animals were transported back to the laboratory and preserved either in formalin or ethanol. Formalin-preserved animals were first relaxed in 50% seawater:50% isotonic magnesium chloride for 30–60 minutes, and then formalin was gradually added to a final concentration of 10% formalin. Animals preserved in ethanol for future molecular genetic studies were left in clean cold seawater for six hours; each animal was then lifted out individually with forceps, blotted briefly on a tissue, and dropped directly into 95% ethanol.

The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org:pub:BF343A8D-DB31-4150-840C-6CDA5A5B121E. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central SCIE and CLOCKSS.

Morphology and cnidome

Many animals were studied live in small bowls under a dissecting microscope. In general, they
did not survive well in the laboratory, remaining in good condition for only a few days, even when fee
daily with Artemia nauplii.

Photos of live animals were taken with an Olympus SZX9 dissecting microscope with Olympus DP72 camera attachment and DP2-BSW software (Version 2.2, Build 6212) and under a Nikon stereomicroscope using a Q Imaging digital camera and Q Capture software.

Observations and measurements of nematocysts from secondary tentacles, white nematocyst spots, gastric filaments, and exumbrellar surface were made on tissues preserved in 10 % formalin in seawater solution, squashed in a drop of fresh water on a microscope slide, covered by a cover slip, and gently compressed to further dissociate the cells (Gwilliam 1956; Mejía-Sánchez & Marques 2013). Undischarged capsules of each type of nematocyst were isolated and photographed using brightfield (Zeiss Axioskop, Zeiss Primo Star with Zeiss AxioCam ERc5s) and Nomarski differential interference contrast (DIC) (Leitz Aristoplan) microscopy. Measurements were made using ImageJ software (Version 1.48). Nematocyst terminology follows Östman (2000).

Histology

Animals for histological analyses were preserved in 10% formalin solution in seawater. We followed the resin technique, described in Miranda *et al.* (2017). The samples were dehydrated and embedded in glycol methacrylate following the instructions provided with the kit ("Leica Historesin Embedding Kit", Leica Microsystems Nussloch GmbH, Germany). Thin transversal sections (3.0–5.0 µm) were cut with a Leica RM2255 microtome and stained with hematoxylin-eosin and toluidine blue (see Miranda *et al.* 2017). Slides were observed and photographed under a Zeiss microscope Primo Star (AxioCam ERc5s). The slides are deposited

161	in the collection of the Laboratory of Biology and Evolution of Cnidaria (catalog number
162	LABEC 001, voucher deposited at the Taxonomic Collections Center of the Federal University
163	of Minas Gerais, Brazil, UFMG-INV 2000003; Table 1), Department of Zoology, Institute of
164	Biological Sciences, Federal University of Minas Gerais, Brazil.
165	
166	Distribution
167	In addition to searching the scientific literature, the geographic range of <i>H. sanjuanensis</i> n. sp.
168	has been determined by contacting many colleagues who work in the intertidal in British Columbia,
169	Washington, Oregon, and California and by searching the web for images posted online and
170	subsequently contacting and discussing the images with the photographers. Images posted on
171	iNaturalist.org were useful in verifying some field locations (Table S1). All locations were verified
172	with photographs or specimens. The distributional map was constructed using Q-GIS 3.28. Geographic
173	data were georeferenced mostly by our colleagues who provided images which we examined, and
174	occasionally from site names described in the literature (Table S1) using Google TM Earth (Pro, v7) or
175	Google Maps using satellite view so that shoreline locations could be precisely determined.
176	
177	SYSTEMATIC ACCOUNT
178	Phylum Cnidaria Verrill, 1865
179	Subphylum Medusozoa Petersen, 1979
180	Class Staurozoa Marques & Collins, 2004
181	Order Stauromedusae Haeckel, 1879
182	Suborder Myostaurida Miranda, Hirano, Mills, Falconer, Fenwick, Marques & Collins, 2016a
183	Family Haliclystidae Haeckel, 1879

- 184 Genus *Haliclystus* James-Clark, 1863
- 185 Haliclystus sanjuanensis new species
- 186 Synonymy.
- 187 "Haliclystus sanjuanensis n. sp." in Gellermann 1926 (pp. 80–84, Plate XX figures 20, 20a, Plate
- 188 XXXVI figures 49, 50, 51) San Juan Island, Washington.
- 189 "Haliclystus stejnegeri" in Ricketts 1929 (p. 20).
- 190 "Haliclystus" in Ricketts & Calvin 1939 (p. 87).
- 191 "Haliclystus (probably stejnegeri)" in Ricketts & Calvin 1939 (p. 195) Port Townsend and Friday
- Harbor, Washington, and from Point Joe, Monterey, and Carmel Bay, California.
- 193 "Haliclystus stejnegeri" in Ricketts & Calvin 1939 (Figure 86 and p. 261).
- "Haliclystus" in Hyman 1940a (Figure 165E and caption on p. 510, pp. 534, 535) Puget Sound (San
- Juan Island), Washington.
- 196 "Haliclystus" in Hyman 1940b (Figure 8 caption and text on p. 292, pp. 282, 293, 295) San Juan
- 197 Island, Washington.
- 198 "Haliclystus sanjuanensis" in Hyman 1940b (p. 292) San Juan Island, Washington.
- "Stalked Jelly Fish *Haliclystus sanjuanensis*" in Guberlet 1936, 1949 (pp. 46, 47, 409).
- 200 "Haliclystus" in Ricketts & Calvin 1948 (p. 87).
- 201 "Haliclystus (probably stejnegeri)" in Ricketts & Calvin 1948 (p. 195) Port Townsend and Friday
- Harbor, Washington, and from Point Joe, Monterey, and Carmel Bay, California.
- 203 "Haliclystus stejnegeri" in Ricketts & Calvin 1948 (Figure 86 and p. 296).
- 204 "Haliclystus stejnegeri" in MacGinitie & MacGinitie 1949 (Figure 19 on p. 120, p. 121) found in great
- numbers in Puget Sound and occasionally in Monterey Bay.
- 206 "Haliclystus sanjuanensis" in Knapp 1950, Neptune State Park, Oregon.

- 207 "*Haliclystus*" in Ricketts *et al.* 1952 (p. 85).
- 208 "Haliclystus (probably stejnegeri)" in Ricketts et al. 1952 (p. 249) Port Townsend and Friday Harbor,
- Washington, and from Point Joe, Monterey, and Carmel Bay, California.
- 210 "Haliclystus stejnegeri" in Ricketts et al. 1952 (Figure 86 on p. 284, p. 416).
- "Two species of *Haliclystus* are found in the Friday Harbor region" in Smith et al. 1954 (p. 41) San
- Juan Islands, Washington.
- 213 "Haliclystus auricula" in Smith 1955, Field Notebook #3, June 24, 1955, Davis Bay, Lopez Island,
- Washington.
- 215 "Haliclystus auricula (Rathke)" in Gwilliam 1956 (pp. 2, 8, 17, 20, 21, 43–55, 56, 57, 61–66, 79, 80,
- 216 94–97, 110–180) San Juan Island, Washington.
- 217 "Haliclystus sanjuanensis" in Gwilliam 1956 (pp. 13, 14, 20) San Juan Island, Washington.
- 218 "Haliclystus auricula" in Anonymous 1958 (p. 2) San Juan County, Washington.
- 219 "Haliclystus auricula (Rathke)" in Gwilliam 1960 (pp. 454–473) San Juan Island, Washington.
- 220 "*Haliclystus auricula* (Rathke, 1806)" [in part] in Kramp 1961 (pp. 292–293).
- 221 "Haliclystus sp." in McLean 1962 (p. 106) scarce on rock walls along the open coast of the Monterey
- Peninsula, nine miles south of Carmel near Granite Creek, California.
- 223 *"Haliclystus"* in Ricketts *et al.* 1962 (p. 85).
- 224 "Haliclystus (probably stejnegeri)" in Ricketts et al. 1962 (p. 249) Port Townsend and Friday Harbor,
- Washington, and from Point Joe, Monterey, and Carmel Bay, California.
- 226 "Haliclystus stejnegeri" in Ricketts et al. 1962 (Figure 86 on p. 284, p. 416).
- 227 "Haliclystus sp." in MacGinitie & MacGinitie 1968 (Figure 19 on p. 120, p. 123) abundant in Puget
- Sound waters.
- 229 "*Haliclystus*" in Ricketts *et al.* 1968 (p. 130).

- 230 "Haliclystus (probably H. stejnegeri)" in Ricketts et al. 1968 (pp. 299–300) Port Townsend and Friday
- Harbor, Washington, and from Point Joe, Monterey, and Carmel Bay, California.
- 232 "Haliclystus stejnegeri" in Ricketts et al. 1968 (Figure 221 on p. 299, p. 462).
- 233 "Haliclystus" in Westfall 1968 (p. 803), San Juan Island, Washington.
- 234 "Haliclystus auricula" in Westfall 1968 (p. 804), San Juan Island, Washington.
- 235 "Two species of *Haliclystus* are found in the Friday Harbor region" in Smith 1970 (p. 41) San Juan
- Islands, Washington.
- 237 "Haliclystus auricula" in Westfall et al. 1970 (p. 545), San Juan Island, Washington.
- 238 "Haliclystus auricula" in Westfall 1973 (pp. 239–243), San Juan Island, Washington.
- 239 "Haliclystus auricula" in Kozloff 1973 (Figure 206 and text, p. 247).
- 240 "Haliclystus auricula" in the Bodega Marine Lab Synoptic Collection, collected in 1973 at Shell
- 241 Beach, Sonoma County, California.
- 242 "*Haliclystus auricula* (Rathke, 1806)" in Kozloff 1974 (pp. 22, 219).
- 243 "Haliclystus auricula" in Smith 1975 (Figure 21 on p. 88, p. 96).
- 244 "21, *Haliclystus*, from False Bay near Friday Harbor, Wash." in Smith 1975 (caption on p. 89).
- 245 "Haliclystus auricula (Rathke, 1806) (= H. sanjuanensis of several authors)" in Smith 1975 (p. 96)
- Friday Harbor, Washington.
- 247 "Haliclystus auricula" in Smith 1976 (Figure 121 on p. 115) Pacific Northwest.
- 248 "Haliclystus stejnegeri" in Otto 1976 (pp. 319–322, 328) San Juan Island, Washington.
- 249 "Haliclystus stejnegeri" in Singla 1976 (pp. 533–539) on eelgrass, Victoria, British Columbia.
- 250 "Haliclystus auricula" in Flora & Fairbanks 1977 (Figure 48 on p. 56) on kelp and eelgrass in
- protected bays in Puget Sound.
- 252 "Haliclystus stejnegeri" in Otto 1978 (p. 22) San Juan Island, Washington.

- 253 "Haliclystus auricula" in Snively 1978 (p. 162).
- **not** "Haliclystus auricula" = Manania handi in Snively 1978 (Figure 79 on p. 43).
- 255 "Haliclystus" in Brusca & Brusca 1978 (pp. 52–54, Figure 24 on p. 53) in Northern California
- attached to seaweeds in quiet tidepools, or to eelgrass in Humboldt Bay.
- 257 "Haliclystus auricula" in Caine 1980 (p. 162) San Juan Island, Washington.
- 258 "Haliclystus sp." in Barr & Barr 1983 (Figure 32 on p. 9, pp. 81–82) Yakobi Island, Southeast Alaska.
- 259 "Haliclystus stejnegeri and H. auricula" in Phillips 1984 (p. 40) Pacific Northwest.
- 260 "Haliclystus auricula (Rathke, 1806)", in part, in Austin 1985 (p. 70).
- 261 "Haliclystus steinegeri Kishinouye, 1899", in part, in Austin 1985 (p. 70).
- 262 "Haliclystus" in Ricketts et al. 1985 (pp. 154–155) common "in the north" and rare to occasional at
- Monterey.
- 264 "Haliclystus auricula" in Ricketts et al. 1985 (pp. 343–344, Figure 267 on p. 344, p. 513) on eelgrass
- in Puget Sound and northern California.
- 266 "*H. stejnegeri*" in Ricketts *et al.* 1985 (p. 513).
- 267 "H. sanjuanensis" = Haliclystus auricula (Rathke, 1806) in Hirano 1986 (p. 183).
- 268 "Haliclystus" in Westfall 1987 (pp. 9, 11, 12), San Juan Island, Washington.
- 269 "Haliclystus stejnegeri Kishinouye, 1899" in Mills 1987 (p. 67).
- 270 "Haliclystus stejnegeri Kishinouye (= H. sanjuanensis and H. auricula, E. Kozloff pers. comm.)" in
- 271 Strathmann 1987 (p. 79) San Juan Island, Washington.
- 272 "Manania (?)" in Abbott 1987 (p. 22) July 2, 1974, 15–20 feet deep on Plocamium, off Malpaso
- 273 Creek, Monterey County, California.
- 274 "Haliclystus octoradiatus (Lamarck, 1816)" in Larson 1990 (pp. 546–550, Figure 1A on p. 551)
- 275 Alaska to central California.

- 276 "Haliclystus stejnegeri Kishinouye, 1899" in Cairns et al. 1991 (p. 11 [in part], Figure 1 on p. 77).
- 277 "Haliclystus octoradiatus" in Eckelbarger & Larson 1993 (pp. 225–236) Victoria, British Columbia,
- Canada.
- 279 "Haliclystus salpinx" in Eckelbarger 1994 (p. 16, Figure 2.3.d on p. 19, pp. 20, 26) Victoria, British
- 280 Columbia, Canada.
- 281 "Haliclystus" in Kozloff 1996 (pp. 322, 323).
- 282 "Haliclystus stejnegeri" in Kozloff 1996 (p. 323, Figure 345 on p. 324).
- 283 "Haliclystus stejnegeri Kishinouye, 1899" in Mills 1996 (pp. 67, 489).
- 284 "*H. sanjuanensis* Hyman, 1940" in Hirano 1997 (pp. 247, 249–251).
- 285 "Haliclystus stejnegeri" in Heeger 1998 (p. 74).
- 286 "Haliclystus stejnegeri" in O'Clair & O'Clair 1998 (Figure 13 on p. 15, pp. 15–16) Bertha Bay, west
- side of Chichagof Island, Southeast Alaska.
- 288 "Haliclystus sanjuanensis" in Wrobel & Mills 1998 and 2003 (p. 49).
- 289 "Haliclystus "sanjuanensis" Gellermann, 1926 or Hyman, 1940 or Hirano, 1997 or undescribed?" in
- Mills 1999–present accompanied by C.E. Mills photograph of two stauromedusae on one piece of
- 291 eelgrass (accessed March 2023).
- 292 "*Haliclystus sanjuanensis*" in Collins 2000 (pp. 10, 11, 14–16).
- 293 "Haliclystus sp. undescribed "sanjuanensis" in Cairns et al. 2002 (pp. 9, 47).
- 294 "Haliclystus stejnegeri" in Cairns et al. 2002 (Figure 3 on p. 109).
- 295 "Haliclystus sanjuanensis" in Collins 2002 (p. 420).
- 296 "Haliclystus sanjuanensis Hyman, 1940" in Zagal 2004 (table 2 on p. 339).
- 297 "Haliclystus sanjuanensis Hyman, 1940" in Collins & Daly 2005 (pp. 221, 222, 225, 226, 229).
- 298 "Haliclystus sanjuanensis" in Collins et al. 2006a (p. 3).

- 299 "Haliclystus sanjuanensis" in Collins et al. 2006b (Figure 2 on p. 101, Figure 3 on p. 102, Figure 4 on
- 300 p. 103, Figure 6 on p. 106, p. 115).
- "Oval-anchored stalked jelly *Haliclystus stejnegeri*" in Lamb & Hanby 2005, 2015 (p. 111 photo and
- text) intertidal to 10 m, Sekiu, Olympic Peninsula, Washington.
- 303 "Haliclystus sp." in Mills & Hirano 2007 (Figure 1 on p. 541).
- 304 "Haliclystus sp. (undescribed species)" in Mills & Larson 2007 (p. 170).
- 305 "Haliclystus sp. ("sanjuanensis")" in Mills & Larson 2007 (Plate 63A on p. 171).
- 306 "Haliclystus sp. (=H. "sanjuanensis," nomen nudum)" in Mills & Larson 2007 (p. 172).
- 307 "Haliclystus "sanjuanensis" (nomen nudum)" in Miranda et al. 2009 (pp. 1507, 1508, 1513–1515).
- 308 "Haliclystus "sanjuanensis" (nomen nudum)" in Miranda et al. 2010 (pp. 3–5, 7).
- 309 *"H. sanjuanensis"* in Miranda *et al.* 2010 (p. 4).
- 310 "Haliclystus "sanjuanensis" nomen nudum" in Kahn et al. 2010 (pp. 49, 52, 54–57).
- "Oval-anchored stalked jelly (*Haliclystus stejneger*i)" in Brewer *et al.* 2011 (p. 40 photo and text)
- Cape Prominence, Unalaska Island in the Aleutians.
- 313 "Haliclystus "sanjuanensis" in Kayal et al. 2012 (pp. 2–4, 11).
- "Haliclystus sanjuanensis" in Kayal et al. 2013 (Figure 2 on p. 5, table 3 on p. 13).
- 315 "H. "sanjuanensis" in Miranda et al. 2013 (p. 1381).
- 316 "Haliclystus sanjuanensis" in Zapata et al. 2015 (pp. 5, 9, Figure 4 on p. 7) San Juan Island,
- 317 Washington.
- 318 "Haliclystus 'sanjuanensis' nomen nudum" in Westlake 2015 (185 pp.) Victoria, British Columbia,
- Canada.
- 320 "H. "sanjuanensis" nomen nudum" in Miranda et al. 2016a (pp. 6, 13–15, 17, 19, 37).
- 321 "H. "sanjuanensis" (nomen nudum)" in Miranda et al. 2016b (pp. 3, 72, 73).

- 322 "*Haliclystus sanjuanensis*" in Li *et al.* 2016 (pp. 113–114).
- 323 "Haliclystus 'sanjuanensis' nomen nudum" in Westlake & Page 2017 (pp. 29–49) Victoria British
- 324 Columbia, Canada.
- 325 "Haliclystus "sanjuanensis" in Kayal et al. 2018 (pp. 4, 13, 15, Figures 1b on p. 2, Figure 5 on p. 7,
- Figure 6 on p. 9) from Cattle Point, San Juan Island, Washington.
- 327 "H. "sanjuanensis" nomen nudum" in Miranda et al. 2018 (pp. 1697, 1699, 1703, 1706, 1707, 1709).
- 328 "Haliclystus sp." in Jensen et al. 2018 (p. 28) British Columbia to central California.
- 329 "Haliclystus sanjuanensis" in Nicosia et al. 2018 (Table 2 on p. 5, Figure 6 on p. 13).
- 330 "Haliclystus "sanjuanensis" and "Haliclystus sanjuanensis" in Holst & Laakmann 2019 (Table
- 331 1 on p. 1062, Figure 2 on p. 1064).
- 332 "Haliclystus "sanjuanensis" in Holst et al. 2019 (Figure 6 on p. 1787, Table 4 on p. 1788, pp.
- 333 1789, 1793, 1794).
- "Haliclystus "sanjuanensis" (nomen nudum)" in Miranda & Collins 2019 (p. 8).
- 335 "Haliclystus sanjuanensis" in Koch & Grimmelikhuijzen 2019 (Table 1 on p. 3, Table 3 on p. 5,
- Figure 3 on p. 9, Figure 4 on p. 10).
- 337 "Haliclystus sanjuanensis" in Lewandowska et al. 2020 (p. 11).
- 338 "Haliclystus sanjuanensis" in Gornik et al. 2021 (p. 1755).
- 339 "Haliclystus sanjuanensis" in Hartigan et al. 2021 (Figure 4 on p. 11).
- 340 "Haliclystus "sanjuanensis" (nomen nudum)" in Holst et al. 2021 (p. 249)
- 341 "Haliclystus sanjuanensis" in Adriansyah et al. 2022 (Figure 8A on p. 265, Table 2 on p. 269).
- 342 "Haliclystus sanjuanensis" in Santander et al. 2022 (Figure 1C on p. 2).
- 343 "Haliclystus sanjuanensis" in Vöcking et al. 2022 (p. 11).
- "Haliclystus sanjuanensis" in Zhang & Jacob 2022 (Table 1 on p. 5, Figure 4 on p. 8).

345	Haliclystus sanjuanensis in Steinworth et al. 2023 (Table 2 and text on p. 3, p. 9).
846	
847	WE REMAIN UNSURE whether the following records refer to H. sanjuanensis:
848	"Haliclystus stejnegeri Kishinouye" in Bigelow 1920 (p. 12H and Plate 2 figure 4 on p. 20H) Port
349	Clarence, Alaska, 2–3 fathoms. There is insufficient information to distinguish if this was <i>H</i> .
350	stejnegeri or H. sanjuanensis.
851	"Haliclystus" in 1946 field notes by Ed Ricketts (Transcript of the 1946 trip to West Vancouver Island
352	and to the Queen Charlotte Islands), Massett, Queen Charlotte Islands, June 27, 1946 and July 2,
353	1946, "lots of Haliclystus" on eelgrass in two locations near Massett in the very low intertidal, in
854	Steinbeck et al. 1978 (pp. 115, 118), and Rodger 2006 (pp. 306, 310).
355	"Haliclystus auricula (Rathke, 1806)" in Anonymous, Pacific Gas & Electric Environmental Report
356	~2001, table 2.3-5, Sheet 7 of 23, p. 173 of 202, from coastline near Diablo Canyon, California
857	(confirmed by personal communication from David Behrens, who did much of the collecting and
858	identifying for that report, but since he could not locate a photograph of the specimen for us in
359	2019, we cannot be positive of this material, which would otherwise represent one of the
860	southernmost collection locations of <i>H. sanjuanensis</i>).
861	"Haliclystus stejnegeri" Royal British Columbia Museum (RBCM) #015-00395-001. Single animal
862	collected from Egeria Bay, Langara Island, Haida Gwaai, British Columbia May 22, 2015 by Heidi
363	Gartner, Melissa Frey, Gavin Hanke, Tommy Norgard, Leslie Barton and Vanessa Hodes is too
864	young to determine whether it is <i>H. sanjuanensis</i> or <i>H. stejnegeri</i> . Claudia Mills notes upon
865	inspection of the specimen, April 26, 2019.
866	

367	Holotype. Smithsonian Institution, National Museum of Natural History, USNM 1522349 (Table 1).
368	Northeast Pacific, collected July 15, 2019 at Cattle Point, San Juan Island, San Juan County,
369	Washington, USA (48.452131 N, -122.961750 W) on a blade of algae at approximately - 0.5 m deep.
370	Preserved in 10% formalin in seawater. Collector Claudia E. Mills.
371	
372	Other material examined. Paratypes and additional specimens (Table 1) were collected July 3,
373	July 15 and July 29, 2019 on low tides at Cattle Point, San Juan Island, San Juan County,
374	Washington, USA (48.452131 N, -122.961750 W) on red or green algae or surfgrass
375	Phyllospadix at approximately -0.5 m deep, collector Claudia E. Mills. The animals were
376	preserved in 10% formalin in seawater or preserved directly into 95% ethanol. Both formalin and
377	ethanol preserved paratypes and additional specimens were deposited at the Smithsonian
378	Institution, National Museum of Natural History in DC; the Florida Museum at the University of
379	Florida in Gainesville; the Royal British Columbia Museum in Victoria, British Columbia; the
380	California Academy of Sciences in San Francisco, California; and the Synoptic Collection of the
381	University of Washington Friday Harbor Laboratories in Friday Harbor, Washington (Table 1).
382	
383	Further evidence. Photographs (mainly from https://www.inaturalist.org/), specimens in public and
384	particular collections, and personal communications, not otherwise published, South to North, are
385	available in Table S1.
386	
387	Diagnosis. <i>Haliclystus</i> with broadly conical calyx, wider than high (Figs 1, 2). Calyx well demarcated
388	from the stalk, where the profile goes from conical to cylindrical (Figs $1_{\overline{a}}$ 2). Stalk length variable,
389	from as long as the calyx is tall to about 1/2 length of calyx. Gonads extending from base of the calyx

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

to tips of each of eight arms (Figs 1, 2); 200 to 300 tightly-packed gonadal vesicles comprising each gonad, with 10 to 22 abreast at the widest (Figs 1, 2). The gonads are broadly leaf-shaped, filling much of the available subumbrellar surface, and slightly folded over upon themselves in larger animals; the proximal half of each gonad may be turned over upon itself in the perradii and the distal half turned over in a similar manner in the interradii (Figs 1₃2). Each arm tipped with a cluster of usually up to 130 (but may be more than 200 in larger specimens) capitate secondary tentacles (Figs 1–3). Eight anchors along the calyx margin on interradial and perradial axes, alternating with the eight adradial arms — the anchors are roughly oval in outline and vary from fairly spherical to elongate, sometimes with a remnant of the primary tentacle in the center, usually disappearing in older animals (Figs $1_{\overline{a}} 2_{\overline{a}}$ 3A–E). The eight marginal notches between arms are all approximately equal in size (Figs 1_{3} 2). Bright-white nematocyst spots about the same size as the gonadal vesicles (Fig. 4E–G), closely grouped in a single row along the distal perradial edges of the gonads from the tips of the arms to the widest point of the gonads or a little further down, but also rarely seen along the perradial calyx margin (Figs 1–4). Often, but not always, with four dark pigment stripes running up the perradii of the stalk and bifurcating (into eight stripes) at the stalk-calyx junction, extending halfway up the calyx on the exumbrella along the interradial edge of each gonad, and sometimes also with lighter stripes running along both upper edges of the gonads near the calyx margin (Fig. 2). **Description.** (General description using Gellermann 1926; Gwilliam 1956; Westlake 2015; photographs by the authors and online, and observation of living and preserved individuals.)

407

408

409

410

411

412

Description. (General description using Gellermann 1926; Gwilliam 1956; Westlake 2015; photographs by the authors and online, and observation of living and preserved individuals.)

Calyx broadly conical, with eight arms; arms sometimes recurved toward the stalk in life; calyx usually up to about 30 mm wide (rarely to 40 mm wide) and clearly demarcated from the stalk, wider than high (Figs 1, 2). Stalk narrow and varies from about 1/2 the length of calyx to as long as the calyx

is tall, rarely a little longer than the calyx is tall (Figs $1_{\frac{1}{4}}2_{\frac{1}{4}}5$). Well-developed basal pedal disc at base
of stalk (Fig. 5B, C). Stalk quadratic in cross section, with four usually darkly-pigmented perradial
gastric chambers (delimited by gastrodermis) and four interradial longitudinal muscle bands,
embedded in mesoglea (Figs 5, 6A). Perradial chambers fusing into one single chamber at stalk-calyx
connection, with four interradial septa associated with the four interradial longitudinal muscle bands
(Figs 6B, C; 7). Four infundibula funnel-shaped with blind end, delimited by epidermis, deeply
developed down to base of calyx, widening apically, with broad apertures on subumbrella (Fig. 7).
Gastrovascular cavity without claustrum. Numerous gastric filaments in gastrovascular cavity (Fig. 3F,
G). At base of infundibula, the four interradial longitudinal muscle bands of the stalk divide into eight
bands (Figs 6C-G; 7D, E), continuing up through the calyx along interradii, reaching out into the eight
adradial arms. Gastrovascular cavity divided into four perradial gastric pockets at the manubrium
region (Fig. 6F, G), where gonadal vesicles are located in mature individuals. Four perradial gastric
pockets bifurcating distally to form eight adradial branches, each of which is running into each arm.
The manubrium is short and quadrangular, with dark-pigmented perradial corners, and with the four
oral lobes thin and folded (Figs 4A–D; 6F, G).
Eight adradial arms, all alike, and notches between arms are all approximately equal in size
(Figs $1_{\bar{a}}$ 2). However, arms occasionally exhibit some perradial pairing, with the perradial notches
between arms sometimes a little narrower than the interradial notches. Tip of each arm with a cluster
of up to 130 (or more than 200 in larger specimens) knobbed (capitate) secondary tentacles; all
tentacles are short, from 1 to 3 mm long (Figs 1–3, 8A–H).
Intertentacular lobules at the internal tip of the arms (at the base of tentacular clusters) (Fig.
8A-C). Each secondary tentacle in the arms is ensheathed with longitudinal muscle fibers (Fig. 8D-F).
Four groups of perradial muscular fibers extend from the manubrium lips (Fig. 4C, D) down to the

four perradial corners of the manubrium. The coronal muscles lie beneath the subumbrellar surface at the periphery of the calyx and are comprised of four interradial and four perradial segments.

Eight anchors on the exumbrella, near the margin, one between each pair of arms in the interradii and perradii outside of the low-point of each notch (Figs $1_{\frac{1}{2}}2_{\frac{1}{2}}3A$ –E). The anchors are irregularly oval in outline and about half as long as the diameter of the stalk, but quite variable in shape and size between animals. The primary tentacle (the developmental origin of the anchor) capitulum usually disappears in older specimens, but is present in developing animals to a greater or lesser extent depending on animal size (Figs 3A–E $_{\frac{1}{2}}6H$). The anchors may be fairly flat in profile or rather elongate, but they are never flaring or trumpet-shaped with thickened or rolled edges (Figs $1_{\frac{1}{2}}2_{\frac{1}{2}}$ 3A–E); the cavity of each anchor communicates with the general body cavity of the animal by means of a very short canal through the anchor peduncle (Fig. 3E).

The eight adradial gonads extend the full length of the eight arms, are very broad in the middle, filling much of the available subumbrellar surface, and in large specimens slightly folding over on themselves, and narrower at both ends (Figs $1_{\bar{a}}2_{\bar{a}}4E-G$). The gonads in the largest animals are composed of 200 to 300 tightly-packed gonadal vesicles that are roughly spherical, but may be so tightly packed together that their shape may be modified (Figs $1_{\bar{a}}2_{\bar{a}}4E-G$). The gonadal vesicles are not arranged in rows; there are 10 to 22 vesicles abreast at the broadest part of each gonad (usually 12-16) (Figs $1_{\bar{a}}2$). In the largest animals, the proximal half of each gonad is turned over upon itself in the perradii and the distal half is turned over in a similar manner in the interradii (Figs $1_{\bar{a}}$). The gonads are separated in the interradii, but are closer at their bases in the perradii, making four pairs of gonadal bands (Figs $1_{\bar{a}}2$).

The exumbrellar surface is finely granulated with numerous, scattered nematocyst clusters (Fig. 9L). The subumbrella is marked with distinctive bright-white nematocyst spots that are about the

same size as the gonadal vesicles (Fig. 4E–G) — these white spots are arranged in the perradii, mostly closely grouped in a single row along the distal perradial edges of the gonads from the tips of the arms to the widest point of the gonads or a little further down, but also occasionally located along the calyx margin (perradial center) in large specimens (Figs $1_{\frac{1}{4}}4E-H_{\frac{1}{4}}8I$). The subumbrellar epidermis is raised in slight bulges over each white nematocyst spot (Figs $4H_{\frac{1}{4}}8I$).

Overall color in life is highly variable, but each individual is of a single color, from brown or beige to orangey red to peach, rusty or wine red, or greenish, usually cryptically matching the color of its eelgrass or algal substrate (Figs $1_{\tilde{a}}$ 2); young (small) animals are less pigmented. Gonads and anchors golden brownish to green to orange to wine red, bright-white nematocyst spots along perradial edges of gonads and (rarely) subumbrellar margin; tentacles greenish to golden yellow to reddish or pink (Figs $1_{\tilde{a}}$ 2). Often, but not always, with four dark brown to orange longitudinal stripes of varying intensity on the perradial corners of the manubrium (Fig. 4A–D) and on the perradii of the stalk, bifurcating at the stalk-calyx junction (Figs $1_{\tilde{a}}2_{\tilde{a}}5F$), extending halfway up the calyx on the exumbrella along the interradial edge of each gonad, and sometimes also with lighter stripes running along both upper edges of the gonads near the calyx margin (Fig. 2B, C). Muscles whitish to colorless in the stalk and calyx (Fig. 5D, E).

Cnidome. Secondary tentacles with two types of nematocysts: isorhiza (abundant), length 9.54–13.50 μ m (mean 12.11 μ m, number of capsules measured n = 62), diameter 2.26–4.18 μ m (mean 3.51 μ m, n = 62); and microbasic eurytele (scarce), length 15.69–19.85 μ m (mean 17.73 μ m, n = 24), diameter 7.39–9.36 μ m (mean 8.52 μ m, n = 24) (Fig. 9A–F). White nematocyst spots with one type of nematocysts: birhopaloid type II (two dilatations close together) (abundant), length 11.63–17.13 μ m (mean 14.60 μ m, n = 50), diameter 7.95–11.39 μ m (mean 9.96 μ m, n = 50) (Fig. 9G–I). Gastric

482 filaments with one type of nematocysts: rhopaloid (not enough information to identify them as 483 eurytele, stenotele, or birhopaloid) (abundant), length $7.10-10.70 \mu m$ (mean $8.90 \mu m$, n = 11), 484 diameter 4.13–6.80 μ m (mean 5.47 μ m, n = 11) (Fig. 9J, K). Exumbrella with one type of 485 nematocysts: rhopaloid (not enough information to identify them as eurytele, stenotele, or birhopaloid), mean length 11.04 μ m (n = 13), mean diameter 4.46 μ m (n = 13) (Fig. 9L, M). 486 487 **Behavior.** This animal is almost always attached to the substrate by its pedal disc; some use of the 488 489 anchors and secondary tentacles for anchorage has also been observed (Figs 1, 2). Only once or twice 490 in many visits to the seashore have we seen a specimen free in the water. This stauromedusa produces 491 a periderm in the form of a thin transparent cup that encases the pedal disc and is left behind when the 492 staurozoan moves (Fig. 10); a new periderm is formed when the staurozoan reattaches. Small (usually 493 arthropod) prey was captured by flexing (not contracting) one or more secondary tentacles on one or 494 more adjacent arms, which immediately then bent in to the manubrium to transfer the captured prey to 495 the mouth. Bending of an arm or arms was often accompanied by bending or twisting of the stalk. 496 Spontaneous bending of single and multiple arms was typically observed. The anchors did not 497 participate in feeding behaviors; their sole purpose appears to be as adhesive organs. One animal 498 spawned spontaneously in the laboratory in May 2015, releasing many 35 µm diameter eggs in sticky 499 mucus strands through its mouth opening of the manubrium (Fig. 11). 500 501 **Etymology.** The specific name, originally assigned by Gellermann (1926) in her unpublished M.S. 502 Thesis, refers to the San Juan Archipelago, San Juan County, Washington State, where this animal is 503 abundant in some more-exposed areas, and she studied it in detail. This location in NW Washington is

504	approximately the epicenter of its presently known distribution along NE Pacific shorelines and the
505	location of some of the most-dense populations.
506	
507	Habitat. On living eelgrass and surfgrass, Zostera marina and Phyllospadix scouleri, or on various
508	species of red, green, and brown algae in the low intertidal to shallow subtidal, to at least 10 m deep in
509	areas of moderate wave activity.
510	
511	Distribution. Along the Pacific coast of North America at least from eastern Aleutians to just north of
512	Point Conception in central California (Fig. 12; Table S1). It seems not to occur south of Point
513	Conception, as this species is not listed in the Southern California Association of Invertebrate
514	Taxonomists species list for the Southern California Bight (Cadien et al. 2018), nor has it been seen by
515	naturalist diver-photographers Kevin Lee, Merry Passage and Phil Garner in about 4,500 dives near
516	Los Angeles (personal communication to C.E.M.).
517	On San Juan Island, Washington, the type locality (Fig. 12), very small H. sanjuanensis
518	stauromedusae can be found beginning in approximately mid-April, and the last specimens persist into
519	late November. No recognizable life history stages have been found from late fall until mid-spring.
520	
521	Gene sequences. GenBank accession numbers: LSU (28S): KU308593, AY920782; SSU (18S):
522	AF358102, KU308562, MN329739; SSU-ITS1-5.8S-ITS2-LSU: FJ874776, HM022143, HM022144,
523	HM022145, MN329741; 16S: AY845339, HM022149, HM022150, HM022151, MN329738; COI:
524	KU257477, MH242772, MN329740; Transcribed RNA sequences: HAHB01000001-
525	HAHB01134305; Partial genome: JN700944.
526	

Remarks. Haliclystus is a genus comprised of species with four interradial longitudinal muscles in the
stalk (=peduncle) (Figs $5_{\bar{a}}6_{\bar{b}}$ 7), a shared character of the suborder Myostaurida (see Miranda <i>et al</i> .
2016a). Within this suborder, <i>Haliclystus</i> is placed in the family Haliclystidae, characterized by the
presence of perradial and interradial anchors (=rhopalioids, adhesive and sensorial structures derived
from primary tentacles, located between adjacent pair of arms) (Figs 1-3) (Miranda et al. 2016a;
Miranda & Collins 2019). The family Haliclystidae is also represented by species of the genera
Depastromorpha Carlgren, 1935, Depastrum Gosse, 1858; Halimocyathus James-Clark, 1863 and
Manania James-Clark, 1863. However, differently from all these genera, Haliclystus does not have
claustrum, a tissue composed of a thin layer of mesoglea surrounded by a double layer of gastrodermis
(Miranda et al. 2016a, 2017). In addition, species of Haliclystus generally have four perradial
chambers in the stalk (although this character is variable during development) (Figs $5_{\bar{2}}$ 6) (Miranda et
al. 2016a, b) and the coronal muscle at the subumbrellar margin can be divided or entire (Miranda et
al. 2016a). The genus has shown as monophyletic in all phylogenetic analyses for the class (Collins &
Daly 2005; Miranda et al. 2010, 2016a; Holst & Laakmann 2019; Holst et al. 2019). However, in spite
of recent efforts (e.g., Hirano 1997; Miranda et al. 2009, 2016a; Kahn et al. 2010), the taxonomy of
the genus is still a challenge, as characters generally mentioned in the description of the species, such
as number of tentacles and number of chambers in the stalk are known to show intraspecific variation
(Uchida 1929; Hirano 1986; Miranda et al. 2009; Kahn et al. 2010).
Haliclystus sanjuanensis, discussed as a nomen nudum in different articles (see above), is
herein properly described. Haliclystus sanjuanensis is unique among other species of Haliclystus
because of the arrangement of the bright-white nematocyst spots in perradii only, forming a
conspicuous line along the perradial edges of gonads and rarely also a few near the perradial calyx
margin (Figs 1, 4; see also Table S2; Hirano 1997). Haliclystus antarcticus and H. auricula, the

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

species phylogenetically most closely related to H. sanjuanensis (Miranda et al. 2010, 2016a; Holst et al. 2019), do not have these white nematocyst spots (see Hirano 1997; Miranda et al. 2009, 2013). Haliclystus borealis Uchida, 1933, Haliclystus californiensis Kahn et al., 2010, Haliclystus inabai (Kishinouye, 1893), Haliclystus monstrosus (Naumov, 1961), Haliclystus sinensis Ling, 1937, Haliclystus tenuis Kishinouye, 1910, H. salpinx, and H. octoradiatus have white nematocysts spots in both perradii and interradii (see also additional differences in Table S2). There is no information concerning white spots for Haliclystus kerguelensis Vanhöffen, 1908. However, H. sanjuanensis can be distinguished from *H. kerguelensis* based on the proportion between calyx and stalk and on the dark stripes (Table S2). Nevertheless, it is important to highlight that *H. kerguelensis* was described in 1908, based on a drawing and not specimens; Kramp (1957) reports three additional specimens collected in 1929–1930, but he does not include figures, so the validity of this species has never been tested. The only *Haliclystus* species left for comparison is *H. stejnegeri*, which is morphologically very similar to H. sanjuanensis (Table S2). However, although both species have white nematocyst spots found in perradii only, in *H. sanjuanensis* the white spots are relatively abundant along the perradial edges of the gonads, running from near the margin to considerably deep into the subumbrella (Figs 1, 4), whereas in *H. stejnegeri* the white spots are relatively sparse and mainly found along the edge of gonads near the calyx margin (Fig. 13; Table S2). One additional difference is the pattern of pigmentation in the calyx (exumbrella). In *H. sanjuanensis*, eight dark stripes may be present, running halfway up the calyx along the interradial edges of gonads, which join as four stripes in the perradii running the length of the stalk; dark stripes may also be present near calyx margin running along both edges of gonads (Fig. 2; Table S2). On the other hand, *H. stejnegeri* is characterized by its exclusive pattern with eight adradial pairs of dark stripes running the length of the calyx, and each two pairs

united at the perradii of calyx base continuing as four dark stripes running down the stalk; the calyx margin is also tinted in the same color (Kishinouye 1899; Fig. 13; Table S2). Unfortunately, preserved stauromedusae frequently lose their live coloration, so this character can be difficult to assess in preserved specimens.

Although some morphological characters used to differentiate species of *Haliclystus* are tricky, the current valid species have good support based on molecular evidence. Nine out of 13 described species of *Haliclystus* have been phylogenetically placed (Miranda *et al.* 2016a; Holst & Laakmann 2019; Holst *et al.* 2019), including *H. sanjuanensis*. Interestingly, although morphologically similar, *H. sanjuanensis* and *H. stejnegeri* did not come out as closely related species (Miranda *et al.* 2016a; Holst & Laakmann 2019; Holst *et al.* 2019). *Haliclystus sanjuanensis* proved to be molecularly very similar to *H. antarcticus* and *H. auricula* (Miranda *et al.* 2010; Kayal et al. 2018; Holst *et al.* 2019), despite the huge geographical gap between the known distributions of these species: Western United States and Canada for *H. sanjuanensis* (Fig. 12); Southern Chile and Argentina and the Antarctica Peninsula for *H. antarcticus* (Miranda *et al.* 2018); and Eastern United States and Europe for *H. auricula* (Miranda *et al.* 2018).

The geographic distribution of *H. sanjuanensis* in the North Pacific Ocean begins at about 34.5° N in central California and extends up at least to Southeast Alaska (about 58.2° N) and also west into the Aleutian Islands (to at least 166.7° W) (Fig. 12). It may or may not overlap *H. stejnegeri* at the upper end of its range in the NE Pacific, but then *H. stejnegeri* appears to swing across and down the NW Pacific to the Kurile Islands and to northern Japan (Miranda *et al.* 2018). *Haliclystus californiensis* is a very distinctive orangey-red species that is sympatric with *H. sanjuanensis*, occurring from southern California to at least central British Columbia (Kahn *et al.* 2010; our studies, see also Table S2). Four more described species of *Haliclystus*, easily separated from *H. sanjuanensis*,

because of the pattern of white nematocyst spots and the number of secondary tentacles on each arm in adult stauromedusae (see Table S2), are found in NW Pacific waters of China, Far East Russia, Japan, and Korea (*H. sinensis*, *H. borealis*, *H. tenuis*, and *H. inabai*) (see Miranda *et al*. 2018).

At least one more undescribed species of *Haliclystus* (Gellermann 1926) picks up about the midpoint of the south to north distribution of *H. sanjuanensis*, from the San Juan Islands and southern Vancouver Island to at least SE Alaska and possibly all the way to the Kuriles, northern Japan, and mainland far-east Russia, where a look-alike has been described as *H. monstrosus* (Naumov 1961; Sheiko & Stepanyants 1990). This undescribed species of *Haliclystus* is also similar to *H. salpinx*, a species found in the North Atlantic (James-Clark 1863; Berrill 1962; but see also Sheiko & Stepanyants 1990), raising the hypothesis that all records of *H. salpinx* in Washington State (Otto 1976, 1978; Mills 1987; Strathmann 1987; Wrobel & Mills 1998, 2003; Mills & Larson 2007) are misidentifications, but we need to complete further work to be sure. We are in the process of collecting more material for DNA and morphological comparisons to determine how many other *Haliclystus* species we are dealing with in the boreal North Pacific.

ACKNOWLEDGMENTS

We thank the scientists, our colleagues, and the staff at the Friday Harbor Labs for their intellectual support and friendship over the years and for hosting our international collaborative study of *Haliclystus sanjuanensis* in May 2015. James T. (Jim) Carlton generously read through many early editions of books about the natural history of the California seashore in the early twentieth century and sent us scans of all pages mentioning stauromedusae. C.E.M. had many enjoyable discussions with West Coast photographers including Ron Larson, Neil McDaniel, Andy Lamb, Ron Shimek, Jeff Goddard, Gary MacDonald, Steve Lonhart, Allison Gong, Jeff Mondragon, Gustav Paulay, Nancy

619	Treneman, Dave Behrens, and several photographers who posted images on iNaturalist.com,
620	identifying their photographs of Haliclystus as she developed a detailed picture of the range of this
621	species. We thank Gustav Paulay, Ron Larson, and Neil McDaniel for allowing us to use their
622	photographs of living <i>Haliclystus sanjuanensis</i> for this description (Figs 1, 2); Gustav Paulay's
623	photographs in Fig. 2 were taken during the summer 2017 Bioblitz organized and funded by the Hakai
624	Institute, at Calvert Island, BC. We also thank Karen Sanamyan and Nadya Sanamyan for kindly
625	allowing us to use their photographs of living Haliclystus stejnegeri in Fig. 13. Henry Choong, Curator
626	of Invertebrate Zoology at the Royal British Columbia Museum in Victoria, sent us photographs of
627	RBCM specimen #015-00395 collected in May 2015 in Haida Gwaii, and subsequently hosted C.E.M.
628	for an in-person visit of the RBCM collection of Haliclystus stauromedusae.
629	
630	REFERENCES
631	Abbott, D.P. (1987) Observing Marine Invertebrates: Drawings from the Laboratory. Hilgard,
632	G.H. (Ed.). Stanford University Press, Stanford, California, 380 pp.
	(- <i></i>),,,,,
633	Adriansyah, A.S., Astri, A., Hirano, Y., Collins, A.G., Deshaies, ML., Putra, D., Sekiguchi, S.,
633634	
	Adriansyah, A.S., Astri, A., Hirano, Y., Collins, A.G., Deshaies, ML., Putra, D., Sekiguchi, S.,
634	Adriansyah, A.S., Astri, A., Hirano, Y., Collins, A.G., Deshaies, ML., Putra, D., Sekiguchi, S., Ikeda, S., Okuizumi, K., Chikuchishin, M., Aoki., M. & Ames, C.L. (2022) Analyses of
634 635	Adriansyah, A.S., Astri, A., Hirano, Y., Collins, A.G., Deshaies, ML., Putra, D., Sekiguchi, S., Ikeda, S., Okuizumi, K., Chikuchishin, M., Aoki., M. & Ames, C.L. (2022) Analyses of stalked jellyfish in Kitsunezaki, Japan: <i>Calvadosia nagatensis</i> , and two lineages of
634635636	Adriansyah, A.S., Astri, A., Hirano, Y., Collins, A.G., Deshaies, ML., Putra, D., Sekiguchi, S., Ikeda, S., Okuizumi, K., Chikuchishin, M., Aoki., M. & Ames, C.L. (2022) Analyses of stalked jellyfish in Kitsunezaki, Japan: <i>Calvadosia nagatensis</i> , and two lineages of <i>Haliclystus inabai</i> with early life stages observed in an aquarium in Canada. <i>Hydrobiology</i> ,
634635636637	Adriansyah, A.S., Astri, A., Hirano, Y., Collins, A.G., Deshaies, ML., Putra, D., Sekiguchi, S., Ikeda, S., Okuizumi, K., Chikuchishin, M., Aoki., M. & Ames, C.L. (2022) Analyses of stalked jellyfish in Kitsunezaki, Japan: <i>Calvadosia nagatensis</i> , and two lineages of <i>Haliclystus inabai</i> with early life stages observed in an aquarium in Canada. <i>Hydrobiology</i> , 1, 252–277. DOI: 10.3390/hydrobiology1030019
634635636637638	Adriansyah, A.S., Astri, A., Hirano, Y., Collins, A.G., Deshaies, ML., Putra, D., Sekiguchi, S., Ikeda, S., Okuizumi, K., Chikuchishin, M., Aoki., M. & Ames, C.L. (2022) Analyses of stalked jellyfish in Kitsunezaki, Japan: <i>Calvadosia nagatensis</i> , and two lineages of <i>Haliclystus inabai</i> with early life stages observed in an aquarium in Canada. <i>Hydrobiology</i> , 1, 252–277. DOI: 10.3390/hydrobiology1030019 Anonymous (1958) Key to the medusae found in the San Juan waters. <i>In:</i> Various authors, <i>Marine</i>

641	Anonymous and undated, but probably about 2001, Docket No. 72-26. Diablo Canyon:
642	Independent Spent Fuel Storage Installation, Environmental Report, 202 pp. Available at
643	https://www.nrc.gov/docs/ML0201/ML020180196.pdf.
644	Austin, W.C. (1985) An Annotated Checklist of Marine Invertebrates in the Cold Temperate
645	Northeast Pacific. Volume 1. Khoyatan Marine Laboratory, Cowichan Bay, British
646	Columbia, Canada, 218 pp.
647	Barr, L. & Barr, N. (1983) Under Alaskan Seas: The Shallow Water Marine Invertebrates. Alaska
648	Northwest Publishing Company, Anchorage, 208 pp.
649	Berrill, M. (1962) The biology of three New England stauromedusae, with a description of a new
650	species. Canadian Journal of Zoology, 40(7), 1262-1249. DOI: 10.1139/z62-101
651	Bigelow, H.B. (1920) Report of the Canadian Arctic Expedition 1913–18, Vol. 8, Part H:
652	Medusae and Ctenophora. Thomas Mulvey, Printer to the King's Most Excellent Majesty,
653	Ottawa, 22 pp., 2 pls.
654	Brewer, R., Chenelot, H., Harper, S. & Jewett, S. (2011) Sea Life of the Aleutians: An Underwater
655	Exploration. Alaska Sea Grant College Program, University of Alaska, Fairbanks, 146 pp.
656	Brusca, G.J. & Brusca, R.C. (1978) A Naturalist's Seashore Guide: Common Marine Life of the
657	Northern California Coast and Adjacent Shores. Mad River Press, Eureka, California, 205
658	pp.
659	Cadien, D.B, Lovell, L.L., Barwick, K.L, & Haggin, B.M. (Ed.) (2018) A Taxonomic Listing of
660	Benthic Macro- and Megainvertebrates from Infaunal and Epifaunal Monitoring and
661	Research Programs in the Southern California Bight. Edition 12. Prepared by the Southern
662	California Association of Marine Invertebrate Taxonomists, Natural History Museum of Los

663	Angeles County, Research & Collections, 900 Exposition Boulevard, Los Angeles,
664	California, 167 pp.
665	Caine, E.A. (1980) Ecology of two littoral species of caprellid amphipods (Crustacea) from
666	Washington, USA. Marine Biology, 56, 327–335.
667	Cairns, S.D., Calder, D.R., Brinckmann-Voss, A., Castro, C.B., Pugh, P.R., Cutress, C.E., Jaap,
668	W.C., Fautin, D.G., Larson, R.J., Harbison, G.R., Arai, M.N. & Opresko, D.M. (1991)
669	Common and Scientific Names of Aquatic Invertebrates from the United States and Canada:
670	Cnidaria and Ctenophora. American Fisheries Society, Special Publication 22, Bethesda,
671	Maryland, 80 pp.
672	Cairns, S.D., Calder, D.R., Brinckmann-Voss, A., Castro, C.B., Fautin, D.G., Pugh, P.R., Mills,
673	C.E., Jaap, W.C., Arai, M.N., Haddock, S.H.D. & Opresko, D.M. (2002) Common and
674	Scientific Names of Aquatic Invertebrates from the United States and Canada: Cnidaria and
675	Ctenophora. Second Edition. American Fisheries Society, Special Publication 28, Bethesda,
676	Maryland, 115 pp.
677	Collins, A.G. (2000) Towards understanding the phylogenetic history of Hydrozoa: hypothesis
678	testing with 18S gene sequence data. Scientia Marina, 64 (Supplement 1), 5–22.
679	Collins, A.G. (2002) Phylogeny of Medusozoa and the evolution of cnidarian life cycles. <i>Journal og</i>
680	Evolutionary Biology, 15, 418–432.
681	Collins, A.G., Bentlage, B., Matsumoto, G.I., Haddock, S.H.D., Osborn, K.J. & Schierwater, B.
682	(2006a) Solution to the phylogenetic enigma of <i>Tetraplatia</i> , a worm-shaped cnidarian. <i>Biology</i>
683	Letters, 2, 120–124. DOI: 10.1098/rsbl.2005.0372
684	Collins, A.G. & Daly, M. (2005) A new deepwater species of Stauromedusae, <i>Lucernaria janetae</i>
685	(Cnidaria, Staurozoa, Lucernariidae), and a preliminary investigation of stauromedusan

686	phylogeny based on nuclear and mitochondrial rDNA data. <i>Biological Bulletin</i> , 208, 221–230
687	DOI: 10.2307/3593154
688	Collins, A.G., Schuchert, P., Marques, A.C., Jankowski, T., Medina, M. & Schierwater, B. (2006b)
689	Medusozoan phylogeny and character evolution clarified by new large and small subunit
690	rDNA data and an assessment of the utility of phylogenetic mixture models. Systematic
691	Biology, 55, 97–115. DOI: 10.1080/10635150500433615
692	Eckelbarger, K.J. (1994) Oocytic nutrition in the lower Metazoa: the Scyphozoa. <i>In:</i> Wilson, W.H.
693	Jr., Stricker, S.A. & Shinn, G.L. (Ed.) Reproduction and Development of Marine
694	Invertebrates, The Johns Hopkins University Press, Baltimore, pp. 15–28.
695	Eckelbarger, K.J. & Larson, R.J. (1993) Ultrastructural study of the ovary of the sessile
696	scyphozoan, Haliclystus octoradiatus (Cnidaria: Stauromedusae). Journal of Morphology,
697	218, 225–236.
698	Flora, C.J. & Fairbanks, E. (1977) The Sound and the Sea: A Guide to Northwestern Neritic
699	Invertebrate Zoology. The Washington State Department of Printing, Olympia, Washington,
700	476 pp.
701	Gellermann, M.P. (1926) Medusae of the San Juan Archipelago. M.S. Thesis, University of
702	Washington, Seattle, 100 pp. and 37 plates.
703	Gornik, S.G., Bergheim, B.G., Morel, B., Stamatakis, A., Foulkes, N.S. & Guse, A. (2021)
704	Photoreceptor diversification accompanies the evolution of Anthozoa. Molecular Biology
705	and Evolution, 38 (5), 1744-1760. DOI: 10.1093/molbev/msaa304
706	Guberlet, M.L. (1936) Animals of the Seashore. Metropolitan Press, Portland, Oregon, 410 pp.
707	Guberlet, M.L. (1949) Animals of the Seashore (revised). Binfords & Mort, Publishers, Portland,
708	Oregon, 410 pp.

- 709 Gwilliam, G.F. Jr. (1956) Studies on Western North American Stauromedusae. Ph.D. Dissertation,
- 710 University of California, Berkeley, 192 pp.
- 711 Gwilliam, G.F. (1960) Neuromuscular physiology of a sessile scyphozoan. *Biological Bulletin*,
- 712 119, 454–473.
- 713 Hartigan, A., Jaimes-Becerra, A., Okamura, B., Doonan, L.B., Ward, M., Marques, A.C. &
- Long, P.F. (2021) Recruitment of toxin-like proteins with ancestral venom function supports
- endoparasitic lifestyles of Myxozoa. *PeerJ*, 9, e11208. DOI: 10.7717/peerj.11208
- Heeger, T. (1998) Quallen: Gefährliche Schönheiten. Wissenschaftliche Verlagsgesellschaft mbH,
- 717 Stuttgart, 358 pp.
- 718 Hirano, Y.M. (1986) Species of stauromedusae from Hokkaido, with notes on their
- metamorphosis. Journal of the Faculty of Science, Hokkaido University, Series VI, Zoology,
- 720 24, 182–201.
- 721 Hirano, Y.M. (1997) A review of a supposedly circumboreal species of stauromedusa, *Haliclystus*
- 722 auricula (Rathke, 1806). Proceedings of the 6th International Conference on Coelenterate
- 723 *Biology, 1995*, pp. 247–252.
- Holst, S., Heins, A. & Laakmann, S. (2019) Morphological and molecular diagnostic species
- characters of Staurozoa (Cnidaria) collected on the coast of Helgoland (German Bight, North
- 726 Sea). *Marine Biodiversity*, 49, 1775–1797. DOI: 10.1007/s12526-019-00943-1
- 727 Holst, S. & Laakmann, S. (2019) First record of the stalked jellyfish *Haliclystus tenuis*
- Kishinouye, 1910 (Cnidaria: Staurozoa) in Atlantic waters. *Marine Biodiversity*, 49, 1061–
- 729 1066. DOI: 10.1007/s12526-018-0888-3
- Holst, S., Miranda, L.S., Meyer, P., Michalik, P. & Sötje, I. (2021) Morphological analyses of
- the adult and juvenile stages of the stalked jellyfish *Craterolophus convolvulus* (Johnston,

732 1835) (Cnidaria: Staurozoa: Stauromedusae: Craterolophidae) using micro-CT. 733 Zoologischer Anzeiger, 292, 240–260. DOI: 10.1016/j.jcz.2021.04.005 734 Hyman, L.H. (1940a) The Invertebrates: Protozoa through Ctenophora. Vol. I. McGraw-Hill 735 Book Company, New York & London, 726 pp. 736 Hyman, L.H. (1940b) Observations and experiments on the physiology of medusae. *Biological* 737 Bulletin, 79, 282–296. 738 International Commission on Zoological Nomenclature (1999) International Code of Zoological 739 Nomenclature, Fourth edition. International Trust for Zoological Nomenclature, London, 740 xxix + 306 pp.741 James-Clark, H. (1863) Prodromus of the history, structure, and physiology of the order 742 Lucernariae. *Journal of the Boston Society of Natural History*, 7, 531–567. 743 Jensen, G.C., Gotshall, D.W. & Flores Miller, R.E. (2018) Beneath Pacific Tides: Subtidal 744 Invertebrates of the West Coast. MolaMarine, Bremerton, 296 pp. 745 Kahn, A.S., Matsumoto, G.I., Hirano, Y.M. & Collins, A.G. (2010) Haliclystus californiensis, a 746 "new" species of stauromedusa (Cnidaria: Staurozoa) from the northeast Pacific, with a key to 747 the species of *Haliclystus*. Zootaxa, 2518, 49–59. DOI: 10.11646/zootaxa.2518.1.3 748 Kayal, E., Bentlage, B., Collins, A.G., Kayal, M., Pirro, S., & Lavrov, D.V. (2012) Evolution of 749 linear mitochondrial genomes in medusozoan cnidarians. Genome Biology and Evolution, 4, 750 1–12. DOI: 10.1093/gbe/evr123 751 Kayal, E., Bentlage, B., Pankey, M.S., Ohdera, A.H., Medina, M., Plachetzki, D.C., Collins, A.G. 752 & Ryan, J.F. (2018) Phylogenomics provides a robust topology of the major cnidarian 753 lineages and insights on the origins of key organismal traits. BMC Evolutionary Biology, 18, 754 68. DOI: 10.1186/s12862-018-1142-0

- Kayal, E., Roure, B., Phillippe, H., Collins, A.G. & Lavrov, D.V. (2013) Cnidarian phylogenetic
- relationships as revealed by mitogenomics. *BMC Evolutionary Biology*, 13, 5. DOI:
- 757 10.1186/1471-2148-13-5
- 758 Kishinouye, K. (1899) Contributions to the natural history of the Commander Islands. XIII. A new
- species of stalked medusae, Haliclystus stejnegeri. Proceedings of the United States National
- 760 *Museum* [No. 1188], 22, 125–129.
- 761 Knapp, S.K. (1950) Checklist of the Animals for the Coos Bay Area. Student report, Summer, 1950,
- Oregon Institute of Marine Biology, Charleston, Oregon, 17 pp. On file at the University of
- Oregon Institute of Marine Biology Library (accessed July 2019).
- Koch, T.L. & Grimmelikhuijzen, C.J.P. (2019) Global neuropeptide annotations from the
- genomes and transcriptomes of Cubozoa, Scyphozoa, Staurozoa (Cnidaria: Medusozoa), and
- Octocorallia (Cnidaria: Anthozoa). Frontiers in Endocrinology, 10, 831.
- 767 DOI:10.3389/fendo.2019.00831
- 768 Kozloff, E.N. (1973) Seashore Life of Puget Sound, the Strait of Georgia, and the San Juan
- Archipelago. University of Washington Press, Seattle and London, 282 pp. and 28 plates.
- 770 Kozloff, E.N. (1974) Keys to the Marine Invertebrates of Puget Sound, the San Juan Archipelago,
- and Adjacent Regions. University of Washington Press, Seattle and London, 226 pp.
- 772 Kozloff, E.N. (1996) Seashore Life of the Northern Pacific Coast: An Illustrated Guide to Northern
- 773 California, Oregon, Washington, and British Columbia. University of Washington Press,
- Seattle and London, 370 pp.
- 775 Kramp, P.L. (1957) Medusae. B.A.N.Z. Antarctic Research Expedition, 1929–31, Series B, Volume
- 776 *6, Part 8,* 151–164.

PeerJ

- 777 Kramp, P.L. (1961) Synopsis of the medusae of the world. Journal of the Marine Biological
- Association of the United Kingdom, 40, 1–469.
- 779 Lamb, A. & Hanby, B.P. (2005 & 2015) Marine Life of the Pacific Northwest: A Photographic
- 780 Encyclopedia of Invertebrates, Seaweeds and Selected Fishes. Harbour Publishing, Madeira
- Park, British Columbia, 398 pp.
- 782 Larson, R.J. (1990) Scyphomedusae and cubomedusae from the eastern Pacific. Bulletin of Marine
- 783 *Science*, 47, 546–556.
- Lewandowska, M., Hazan, Y. & Moran, Y. (2020) Initial virome characterization of the common
- cnidarian lab model *Nematostella vectensis*. *Viruses*, 12, 218. DOI: 10.3390/v12020218
- 786 Li, H.-H., Sung, P.-J. & Ho, H.-C. (2016) The complete mitochondrial genome of the Antarctic
- stalked jellyfish, *Haliclystus antarcticus* Pfeffer, 1889 (Staurozoa: Stauromedusae). *Genomics*
- 788 Data, 8, 113–114. DOI: 10.1016/j.gdata.2016.04.012
- 789 MacGinitie, G.E. & MacGinitie, N. (1949) Natural History of Marine Animals. McGraw-Hill Book
- Company, Inc., New York, 473 pp.
- 791 MacGinitie, G.E. & MacGinitie, N. (1968) Natural History of Marine Animals. Second Edition.
- McGraw-Hill Book Company, Inc., New York, 523 pp.
- 793 McLean, J.H. (1962) Sublittoral ecology of kelp beds of the open coast area near Carmel,
- 794 California. *Biological Bulletin*, 122, 95–114.
- 795 Mejía-Sánchez, N. & Marques, A.C. (2013) Getting information from ethanol preserved
- nematocysts of the venomous cubomedusa *Chiropsalmus quadrumanus*: a simple technique to
- facilitate the study of nematocysts. Latin American Journal of Aquatic Research, 41, 166–169.
- 798 DOI: 10.3856/vol41-issue1-fulltext-14

799	Mills, C.E. (1987) Key to the Class Scyphozoa, Orders Semaeostomeae and Stauromedusae. <i>In:</i>
800	Kozloff, E.N. & Price, L.H. (Ed.) Marine Invertebrates of the Pacific Northwest. University of
801	Washington Press, Seattle, pp. 65–67.
802	Mills, C.E. (1996) Key to the Class Scyphozoa, Orders Semaeostomeae and Stauromedusae and
803	New key to Order Stauromedusae. In: Kozloff, E.N. & Price, L.H. (Ed.) Marine Invertebrates
804	of the Pacific Northwest, with Additions and Corrections, University of Washington Press,
805	Seattle. pp. 65–67, 489.
806	Mills, C.E. (1999-present) Stauromedusae: list of all valid species names. Friday Harbor
807	Laboratories, Friday Harbor, Washington. Available from
808	http://faculty.washington.edu/cemills/Staurolist.html (accessed March 2023).
809	Mills, C.E. & Hirano, Y.M. (2007) Stauromedusae. In: Denny, M.W. & Gaines, S.D. (Ed.)
810	Encyclopedia of Tidepools and Rocky Shores. University of California Press, Berkeley, pp.
811	539–541.
812	Mills, C.E. & Larson, R.J. (2007) Scyphozoa: Scyphomedusae, Stauromedusae, and Cubomedusae
813	In: Carlton, J.T. (Ed.) The Light and Smith Manual: Intertidal Invertebrates from Central
814	California to Oregon. Fourth Edition. University of California Press, Berkeley, pp. 168–173.
815	Miranda, L.S. & Collins, A.G. (2019) Eyes in Staurozoa: a review. <i>PeerJ</i> , 7, e6693, 13 pp. DOI:
816	10.7717/peerj.6693
817	Miranda, L.S., Collins, A.G., Hirano, Y.M., Mills, C.E. & Marques, A.C. (2016b) Comparative
818	internal anatomy of Staurozoa (Cnidaria) with functional and evolutionary inferences. PeerJ,
819	4, e2594, 83 pp. DOI: 10.7717/peerj.2594

820	Miranda, L.S., Collins, A.G. & Marques, A.C. (2010) Molecules clarify a chidarian life cycle – th
821	"hydrozoan" Microhydrula limopsicola is an early life stage of the staurozoan Haliclystus
822	antarcticus. PLoS One, 5, e10182, 9 pp. DOI: 10.1371/journal.pone.0010182
823	Miranda, L.S., Collins, A.G. & Marques, A.C. (2013) Internal anatomy of <i>Haliclystus antarcticus</i>
824	(Cnidaria, Staurozoa) with a discussion on histological features used in staurozoan taxonomy
825	Journal of Morphology, 274, 1365–1383. DOI: 10.1002/jmor.20185
826	Miranda, L.S., García-Rodriguez, J., Collins, A.G., Morandini, A.C. & Marques, A.C. (2017)
827	Evolution of claustrum in Cnidaria: comparative anatomy reveals that it is exclusive to some
828	species of Staurozoa and absent in Cubozoa. Organisms Diversity & Evolution, 17, 753-766.
829	DOI: 10.1007/s13127-017-0342-6
830	Miranda, L.S., Hirano, Y.M., Mills, C.E., Falconer, A., Fenwick, D., Marques, A.C. & Collins,
831	A.G. (2016a) Systematics of stalked jellyfishes (Cnidaria: Staurozoa). PeerJ, 4, e1951, 48 pp
832	DOI: 10.7717/peerj.1951
833	Miranda, L.S., Mills, C.E., Hirano, Y.M., Collins, A.G. & Marques, A.C. (2018) A review of the
834	global diversity and natural history of stalked jellyfishes (Cnidaria, Staurozoa). Marine
835	Biodiversity, 48, 1695–1714. DOI: 10.1007/s12526-017-0721-4
836	Miranda, L.S., Morandini, A.C. & Marques, A.C. (2009) Taxonomic review of <i>Haliclystus</i>
837	antarcticus Pfeffer, 1889 (Stauromedusae, Staurozoa, Cnidaria), with remarks on the genus
838	Haliclystus Clark, 1863. Polar Biology, 32, 1507–1519. DOI: 10.1007/s00300-009-0648-8
839	Naumov, D.V. (1961) Stsifoidnye meduzy morei SSSR (Scyphomedusae of the seas of the
840	USSR). Akademiya Nauk SSSR, Opredeliteli po Faune SSSR, 75, 1–98.
841	Nicosia, A., Bennici, C., Biondo, G., Costa, S., Di Natale, M., Masullo, T., Monastero, C.,
842	Ragusa, M.A., Tagliavia, M. & Cuttitta A. (2018) Characterization of translationally

843	controlled tumour protein from the sea anemone Anemonia viridis and transcriptome wide
844	identification of cnidarian homologues. Genes, 9(1), 30. DOI: 10.3390/genes9010030
845	O'Clair, R.M. & O'Clair, C.E. (1998) Southeast Alaska's Rocky Shores: Animals. Plant Press,
846	Auke Bay, Alaska, 562 pp.
847	Östman, C. (2000) A guideline to nematocyst nomenclature and classification, and some notes on
848	the systematic value of nematocysts. Scientia Marina, 64 (Supplement 1), 31-46.
849	Otto, J.J. (1976) Early development and planula movement in <i>Haliclystus</i> (Scyphozoa:
850	Stauromedusae). In: Mackie, G.O. (Ed.) Coelenterate Ecology and Behavior. Plenum Press,
851	New York and London, pp. 319–329.
852	Otto, J.J. (1978) The settlement of <i>Haliclystus</i> planulae. <i>In:</i> Chia, FS. & Rice, M.E. (Ed.)
853	Settlement and Metamorphosis of Marine Invertebrate Larvae. Elsevier, New York, pp. 13-
854	22.
855	Phillips, R.C. (1984) The Ecology of Eelgrass Meadows in the Pacific Northwest: A Community
856	Profile. United States Fish and Wildlife Service, FWS/OBS-84/24, 85 pp.
857	Ricketts, E.F. (1929) Preserved Zoological Specimens and Mounted Museum Specimens. Pacific
858	Biological Laboratories, Pacific Grove, California, 27 pp.
859	Ricketts, E.F. & Calvin, J. (1939) Between Pacific Tides [First Edition]. Stanford University Press.
860	Stanford, xxii + 320 pp.
861	Ricketts, E.F. & Calvin, J. (1948) Between Pacific Tides. Revised (Second) Edition. Stanford
862	University Press, Stanford, xxvii +365 pp.
863	Ricketts, E.F., Calvin, J. & Hedgpeth, J.W. (1952) Between Pacific Tides. Third Edition. Stanford
864	University Press, Stanford, xiii + 502 pp.

- Ricketts, E.F., Calvin, J. & Hedgpeth, J.W. (1962) Between Pacific Tides. Revised Third Edition.
- Stanford University Press, Stanford, xiii + 516 pp.
- Ricketts, E.F., Calvin, J. & Hedgpeth, J.W. (1968) Between Pacific Tides. Fourth Edition.
- Stanford University Press, Stanford, xiv + 614 pp.
- Ricketts, E.F., Calvin, J., Hedgpeth, J.W. & Phillips, D.W. (1985) Between Pacific Tides. Fifth
- 870 Edition. Stanford University Press, Stanford, xxvi + 652 pp.
- 871 Rodger, K.A. (Ed.) (2006) *Breaking Through: Essays, Journals, and Travelogues of Edward F.*
- 872 *Ricketts*. University of California Press, Berkley, 348 pp.
- 873 Santander, M.D., Maronna, M.M., Ryan, J.F. & Andrade, S.C.S. (2022) The state of Medusozoa
- genomics: current evidence and future challenges. *GigaScience*, 11, 1–14. DOI:
- 875 10.1093/gigascience/giac036
- 876 Sheiko, O. & Stepanyants, S. 1990. Far East representatives of stauromedusae of the family
- 877 Eleutherocarpida. In: Gulbin, V.V. (Ed.) Systematic and Ecology of the Hydrobionts of the
- Far-East Marine Reserve. Far East Branch of the USSR Academy of Sciences, Vladivostok,
- pp. 30–43.
- 880 Singla, C.L. (1976) Ultrastructure and attachment of the basal disk of *Haliclystus*. *In*: Mackie,
- G.O. (Ed.) *Coelenterate Ecology and Behavior*. Plenum Press, New York and London, pp.
- 882 533–540.
- 883 Smith, L.S. (1976) Living Shores of the Pacific Northwest. Pacific Search Press, Seattle, 160 pp.
- 884 Smith, R.I. (1955) Field notebook #3, in the possession of James T. Carlton in early 2020, and to
- be deposited in the Cadet Hand Library of the Bodega Marine Laboratory, University of
- 886 California, Davis.

887	Smith, R.I. (1970) Class Scyphozoa. In: Light, S.F., Smith, R.I., Pitelka, F.A., Abbott, D.P. &
888	Weesner F.M. (Ed.) Light's Manual: Intertidal Invertebrates of the Central California Coast.
889	Second Edition. University of California Press, Berkeley and Los Angeles, pp. 40–41.
890	Smith, R.I. (1975) Class Scyphozoa. In: Smith, R.I. & Carlton, J.T (Ed.) Light's Manual:
891	Intertidal Invertebrates of the Central California Coast. Third Edition. University of
892	California Press, Berkeley, Los Angeles and London, pp. 94–97.
893	Smith, R.I., Pitelka, F.A., Abbott, D.P. & Weesner, F.M., with the assistance of many other
894	contributors (1954) Intertidal Invertebrates of the Central California Coast. University of
895	California Press, Berkeley and Los Angeles, 446 pp.
896	Snively. G. (1978) Exploring the Seashore in British Columbia, Washington and Oregon: A Guide
897	to Shorebirds and Intertidal Plants and Animals. Gordon Soules Book Publishers Ltd.,
898	Vancouver/London and Pacific Search Press, Seattle, 240 pp.
899	Steinbeck, J., Ricketts, E. & Hedgpeth, J.W (Ed.) (1978) The Outer Shores, Part I: Ed Ricketts and
900	John Steinbeck Explore the Pacific Coast. Mad River Press, Eureka, California, 128 pp.
901	Steinworth, B.M., Martindale, M.Q. & Ryan, J.F. (2023) Gene loss may have shaped the
902	cnidarian and bilaterian Hox and ParaHox complement. Genome Biology and Evolution,
903	15(1), evac172. DOI: 10.1093/gbe/evac172
904	Strathmann, M.F. (1987) Phylum Cnidaria, Class Scyphozoa. In: Strathmann, M.F. (Ed.)
905	Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast.
906	University of Washington Press, Seattle and London, pp. 72–82.
907	Uchida, T. (1929) Studies on the Stauromedusae and Cubomedusae, with special reference to their
908	metamorphosis. Japanese Journal of Zoology, 2, 103-193.

909	Vöcking, O., Macias-Muñoz, A., Jaeger, S.J. & Oakley, T.H. (2022) Deep diversity: extensive
910	variation in the components of complex visual systems across animals. Cells, 11, 3966.
911	DOI: 10.3390/cells11243966
912	Westfall, J.A. (1968) Electron microscopy of adhesive organs of the stalked jellyfish <i>Haliclystus</i> .
913	American Zoologist, 8, 803–804 (Abstract).
914	Westfall, J.A. (1973) Ultrastructural evidence for neuromuscular systems in coelenterates.
915	American Zoologist, 13, 236–246.
916	Westfall, J.A. (1987) Ultrastructure of invertebrate synapses. In: Ali, M.A. (Ed.) Nervous Systems
917	in Invertebrates. Plenum Press, New York, pp. 3–28.
918	Westfall, J.A., Yamataka, S. & Enos, P.D. (1970) An ultrastructural survey of synapses in tentacles
919	of coelenterates. American Zoologist, 10, 545 (Abstract).
920	Westlake, H. (2015) A comparative immunohistochemical study of the neuromuscular
921	organization of Haliclystus 'sanjuanensis' and Manania handi (Cnidaria: Staurozoa). M.S.
922	Thesis, University of Victoria, British Columbia, Canada, 185 pp.
923	Westlake, H.E. & Page, L.R. (2017) Muscle and nerve net organization in stalked jellyfish
924	(Medusozoa: Staurozoa). Journal of Morphology, 278, 29–49. DOI: 10.1002/jmor.20617
925	Wrobel, D. & Mills, C. (1998 & 2003) Pacific Coast Pelagic Invertebrates: A Guide to the
926	Common Gelatinous Animals. Sea Challengers and the Monterey Bay Aquarium, Monterey,
927	California, iv plus 108 pages.
928	Zagal, C.J. (2004) Diet of the stauromedusa Haliclystus auricula from southern Chile. Journal of
929	the Marine Biological Association of the United Kingdom, 84, 337–340. DOI:
930	10.1017/S0025315404009245h

931	Zapata, F., Goetz, F.E., Smith, S.A., Howison, M., Siebert, S., Church, S.H., Sanders, S.M., Ames,	
932	C.L., McFadden, C.S., France, S.C., Daly, M., Collins, A.G., Haddock, S.H.D., Dunn, C. &	
933	Cartwright, P. (2015) Phylogenomic analyses support traditional relationships within Cnidari	
934	PLoS ONE,10(10):e139068. DOI: 10.1371/journal.pone.0139068	
935	Zhang, X. & Jacobs, D. 2022. A broad survey of gene body and repeat methylation in Cnidaria	
936	reveals a complex evolutionary history. Genome Biology and Evolution, 14(2), evab284. DOI:	
937	10.1093/gbe/evab284	
938		
939	FIGURES	
940		
941	Figure 1. Haliclystus sanjuanensis in the field. A, D, E) oral view; B, C) lateral view. A, B)	
942	images courtesy of Gustav Paulay, collected from Cattle Point, San Juan Island (type locality); C-	
943	E) images courtesy of Ron Larson from (C) Saxe Point, Victoria, British Columbia; (D) and (E)	
944	Seal Rock, Oregon. Abbreviations: am, arm; an, anchor; AR, adradii; cl, calyx; gd, gonad; IR,	
945	interradii; mn, manubrium; PR, perradii; sk, stalk; tc, secondary tentacles; ws, white nematocyst	
946	spot.	
947		
948	Figure 2. Dark stripes pattern in <i>Haliclystus sanjuanensis</i> (see also Table S2). A–D, F) lateral	
949	view; E) aboral view. A) Beresford Island, B.C., image courtesy of Neil McDaniel; B-D) Calvert	
950	Island, B.C., images courtesy of Gustav Paulay; E, F) Seal Rock, Oregon, images courtesy of Ron	
951	Larson. Abbreviations: am, arm; an, anchor; AR, adradii; cl, calyx; ds, dark stripes; gd, gonad; IR,	
952	interradii; PR, perradii; sk, stalk; tc, secondary tentacles.	
953		

954	Figure 3. Calyx of <i>Haliclystus sanjuanensis</i> , with anchors, gastric filaments, and secondary		
955	tentacles. A) Lateral view of a juvenile stauromedusa, with anchors with a remnant of primary		
956	tentacle; B-D) lateral view of adult stauromedusae, with more developed anchors with smaller		
957	remnant of primary tentacles; E) connection of anchor with calyx; F-G) gastric filaments inside		
958	gastrovascular cavity; H–J) secondary tentacles at arms tips. Abbreviations: an, anchor; gd, gonad;		
959	gf, gastric filaments; tc, secondary tentacles; ws, white nematocyst spot.		
960			
961	Figure 4. Calyx of <i>Haliclystus sanjuanensis</i> with manubrium and white nematocyst spots. A-		
962	B) general oral view; C–D) detail of manubrium, with perradial muscular fibers; E–G) general view		
963	of the pattern of distribution of white nematocyst spots; H) detail of white nematocyst spots.		
964	Abbreviation: gd, gonad; IR, interradii; mf, muscular fibers; mn, manubrium; PR, perradii; tc,		
965	secondary tentacles; ws, white nematocyst spot.		
966			
967	Figure 5. Stalk of <i>Haliclystus sanjuanensis</i> . A) Lateral view of stalk-calyx connection; B) lateral		
968	view of stalk, with pedal disc; C) basal view of pedal disc; D) lateral view of stalk, with four		
969	interradial longitudinal muscles and four perradial chambers; E-F) detail of lateral view of stalk,		
970	with four interradial longitudinal muscles and with four perradial chambers.		
971	Abbreviations: cl, calyx; mu, interradial longitudinal muscle; pc, perradial chamber; pd, pedal disc;		
972	sk, stalk.		
973			
974	Figure 6. Internal anatomy of stalk and calyx of a juvenile (immature) Haliclystus		
975	sanjuanensis. A) stalk, with four perradial chambers and four interradial longitudinal muscles; B)		
976	stalk-calyx connection, with fused gastric chambers into one main gastrovascular cavity; C-E) base		

of manubrium region, with delimitation of four perradial gastric pockets; F) manubrium region, with central manubrium and four perradial gastric pockets delimited; G) detail of manubrium, with four corners; H) anchor of a juvenile specimen, with remnant of primary tentacle. A–G: cross-sections; H: longitudinal section. Abbreviations: ep, epidermis; gf, gastric filament; gp, perradial gastric pocket; gt, gastrodermis; gv, gastrovascular cavity; in, infundibulum; mn, manubrium; ms, mesoglea; mu, interradial longitudinal muscle; pc, perradial gastric chamber; rm, remnant of primary tentacle; sp, septum.

Figure 7. Interradial longitudinal muscle and infundibula of a juvenile (immature)

Haliclystus sanjuanensis. A) Interradial longitudinal muscle in stalk; B) Interradial longitudinal muscle at the stalk-calyx connection; C) Interradial longitudinal muscle and infundibulum at calyx base, with a "group" of nematoblasts; D) wider infundibulum and compressed longitudinal muscle; E) even wider infundibulum and more compressed longitudinal muscle, at base of manubrium region, with two "groups" of nematoblasts. A–E) cross-sections. Abbreviations: ep, epidermis; gf, gastric filament; gt, gastrodermis; gv, gastrovascular cavity; in, infundibulum; ms, mesoglea; mu, interradial longitudinal muscle; nmb, nematoblasts; sp, septum.

Figure 8. Internal anatomy of arms tips, secondary tentacles, and white nematocyst spots of a juvenile (immature) *Haliclystus sanjuanensis*. A) Tip of arm, showing intertentacular lobules and secondary tentacles; B, C) detail of intertentacular lobules; D, E) stem of secondary tentacles, with longitudinal muscle; F) stem of secondary tentacles; G, H) knob of secondary tentacle; I) white nematocyst spot. A, B, D, E, G, I) longitudinal sections; C, F, H) cross-sections. Abbreviations: am,

999	arms; ep, epidermis; gt, gastrodermis; il, intertentacular lobules; ms, mesoglea; mu, longitudinal
1000	muscle; nmb, nematoblasts; st, stem; tc, secondary tentacles.
1001	
1002	Figure 9. Nematocysts of Haliclystus sanjuanensis. A) Knob of a secondary tentacle, with
1003	nematocysts covering the capitate tip; B) stem of a secondary tentacle, with migrating nematocysts
1004	C) general view of nematocysts of secondary tentacles; D) isorhizas of secondary tentacles; E)
1005	eurytele of secondary tentacles; F) discharged eurytele of secondary tentacles; G) general view of
1006	nematocysts of the white spots; H) birhopaloid of white spots; I) discharged birhopaloid of white
1007	spots, with two dilatations (black arrows) close together; J, K) nematocysts in the gastric filaments;
1008	L, M) nematocysts on exumbrellar surface.
1009	
1010	Figure 10. Periderm of Haliclystus sanjuanensis. Periderm (A and B), in the form of a thin
1011	transparent cup (white arrows) that encases the pedal disc, that has been left behind after the
1012	stauromedusa Haliclystus sanjuanensis moved.
1013	
1014	Figure 11. Haliclystus sanjuanensis spawning. A, B) Eggs release through month opening; C)
1015	gonadal vesicles, with many eggs; D) isolated egg. Abbreviations: eg, eggs; ve, gonadal vesicles;
1016	mn, manubrium.
1017	
1018	Figure 12. Map of the geographic distribution of Haliclystus sanjuanensis. Star represents type
1019	locality.
1020	

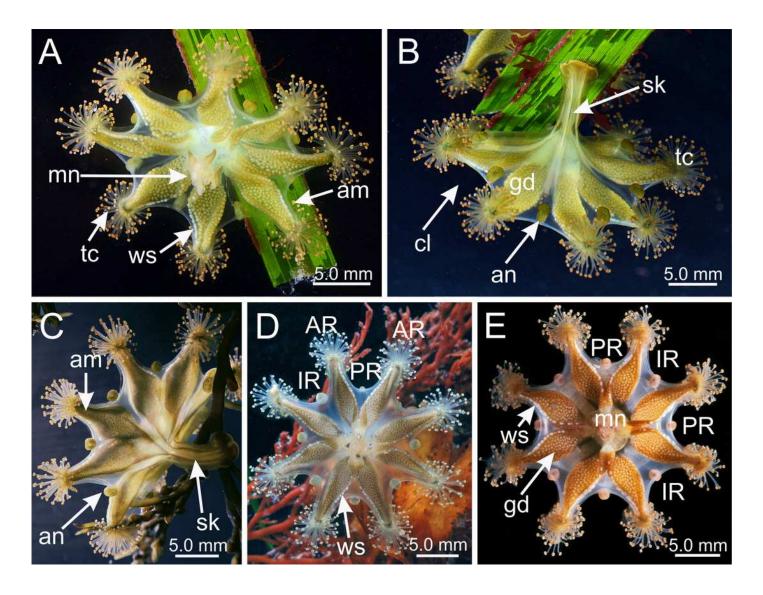
1021	Figure 13. General morphology of <i>Haliclystus stejnegeri</i> . A) Lateral view, with dark stripes
1022	pattern (see Table S2); B) oral view, with few white nematocyst spots at perradii. Abbreviations:
1023	ds, dark stripes; ws, white nematocyst spot. Images courtesy of Karen Sanamyan and Nadya
1024	Sanamyan (locality: Kamchatka, SE Kamchatka, Avacha Bay).
1025	
1026	TABLE
1027	Table 1. Holotype, paratypes, and additional material used in this study.
1028	
1029	SUPPLEMENTAL TABLES
1030	Table S1. Records of <i>Haliclystus sanjuanensis</i> based on this study, literature, photographs,
1031	specimens deposited in public and particular collections, and personal communications.
1032	
1033	Table S2. Comparison of the thirteen described species of <i>Haliclystus</i> .

Table 1(on next page)

Holotype, paratypes, and additional material used in this study.

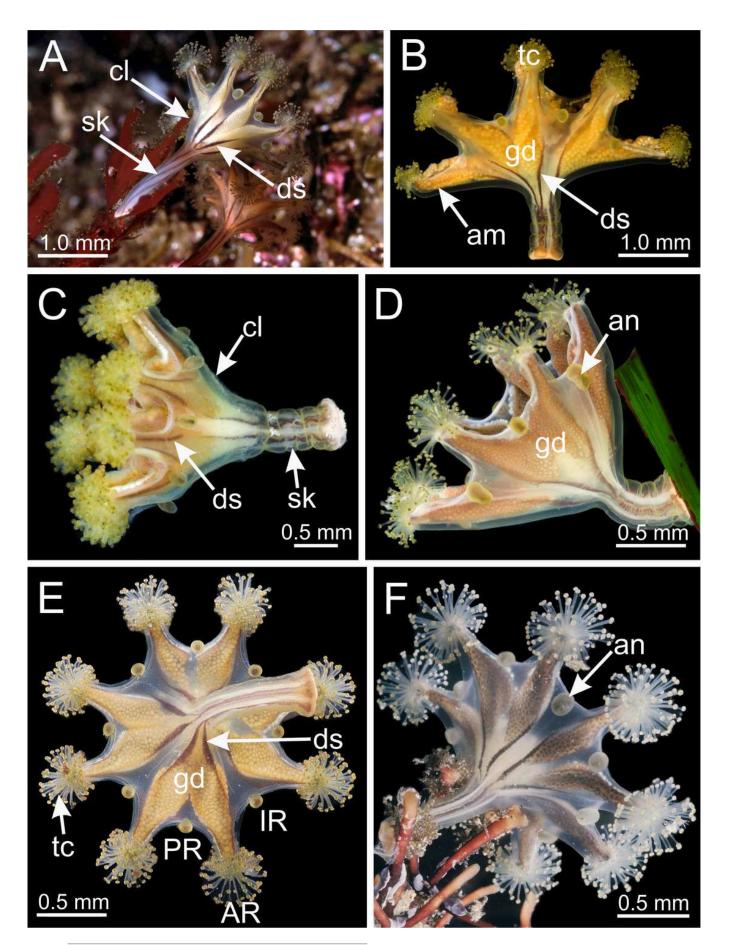
Table 1. Holotype, paratypes, and additional material used in this study.

Institution	Catalog number	Data
Smithsonian Institution, National Museum of Natural History	USNM 1522349	1 Holotype in 10% formalin, collected July 15, 2019
Smithsonian Institution, National Museum of Natural History	USNM 1522350	3 Paratypes in 10% formalin, collected July 15, 2019
Smithsonian Institution, National Museum of Natural History	USNM 1522351	5 specimens in 95% ethanol, collected July 15, 2019
Smithsonian Institution, National Museum of Natural History	USNM 1522352	11 specimens in 10% formalin, collected July 3, 2019
Smithsonian Institution, National Museum of Natural History	USNM 1522353	3 specimens in 10% formalin, collected July 29, 2019
Florida Museum at the University of Florida	UF Cnidaria 15456	3 Paratypes in 10% formalin, collected July 15, 2019
Florida Museum at the University of Florida	UF Cnidaria 15457	11 specimens in 10% formalin, collected July 3, 2019
Florida Museum at the University of Florida	UF Cnidaria 15458	5 specimens in 95% ethanol, collected July 15, 2019
California Academy of Sciences	CASIZ 236463	3 Paratypes in 10% formalin, collected July 15, 2019
California Academy of Sciences	CASIZ 236464	11 specimens in 10% formalin, collected July 3, 2019
California Academy of Sciences	CASIZ 236465	2 specimens in 10% formalin, collected July 29, 2019
California Academy of Sciences	CASIZ 236466	5 specimens in 95% ethanol, collected July 15, 2019
Royal British Columbia Museum	022-00040-001	3 Paratypes in 10% formalin, collected July 15,

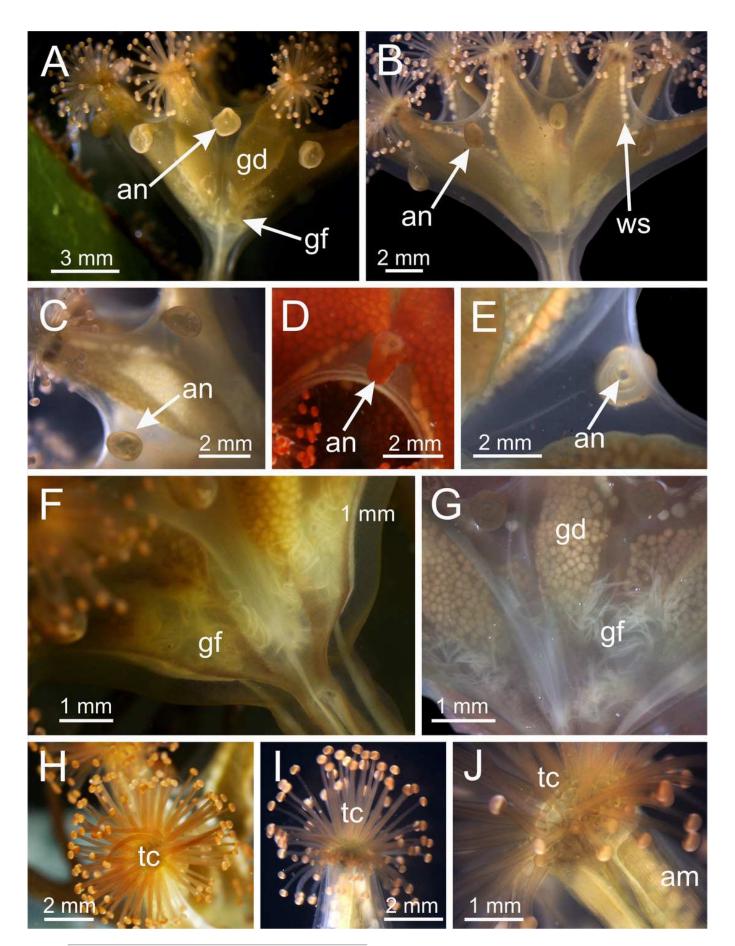


		2019
Royal British Columbia Museum	022-00040-002	5 specimens in 95% ethanol, collected July 15, 2019
Royal British Columbia Museum	022-00041-001	11 specimens in 10% formalin, collected July 3, 2019
Royal British Columbia Museum	022-00042-001	3 specimens in 10% formalin, collected July 29, 2019
Friday Harbor Labs Synoptic collection	#3140	11 specimens in 10% formalin, collected July 3, 2019
Friday Harbor Labs Synoptic collection	#3141	5 specimens in 95% ethanol, collected July 15, 2019
Taxonomic Collections Center of the Federal University of Minas Gerais	UFMG-INV 2000003, Slides LABEC 001	1 specimen in 10% formalin, collected May 18– 19, 2015

2

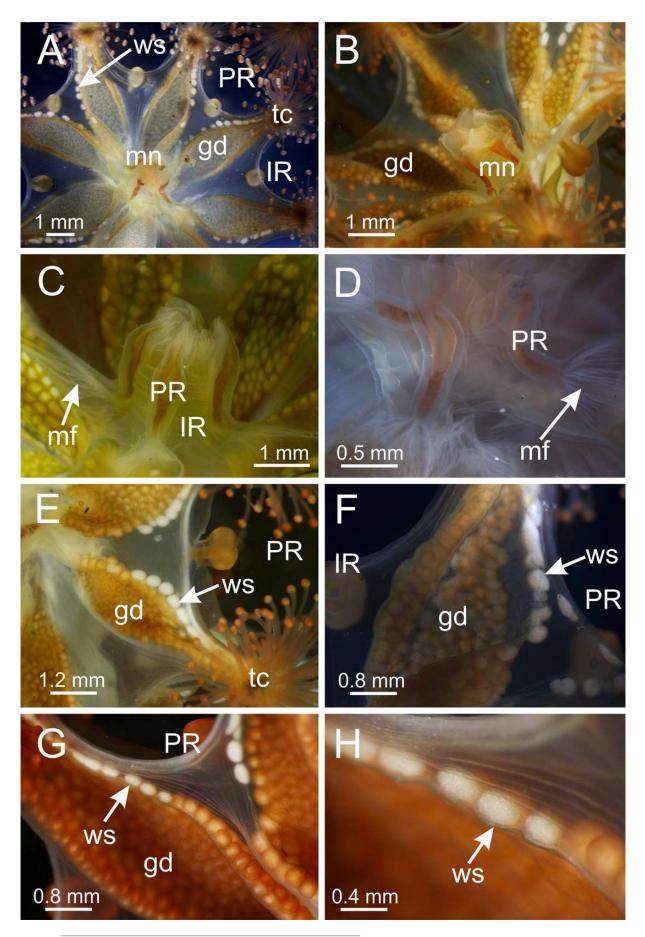

Haliclystus sanjuanensis in the field.

A, D, E) oral view; B, C) lateral view. A, B) images courtesy of Gustav Paulay, collected from Cattle Point, San Juan Island (type locality); C-E) images courtesy of Ron Larson from (C) Saxe Point, Victoria, British Columbia; (D) and (E) Seal Rock, Oregon. Abbreviations: am, arm; an, anchor; AR, adradii; cl, calyx; gd, gonad; IR, interradii; mn, manubrium; PR, perradii; sk, stalk; tc, secondary tentacles; ws, white nematocyst spot.


Dark stripes pattern in *Haliclystus sanjuanensis* (see also Table S2).

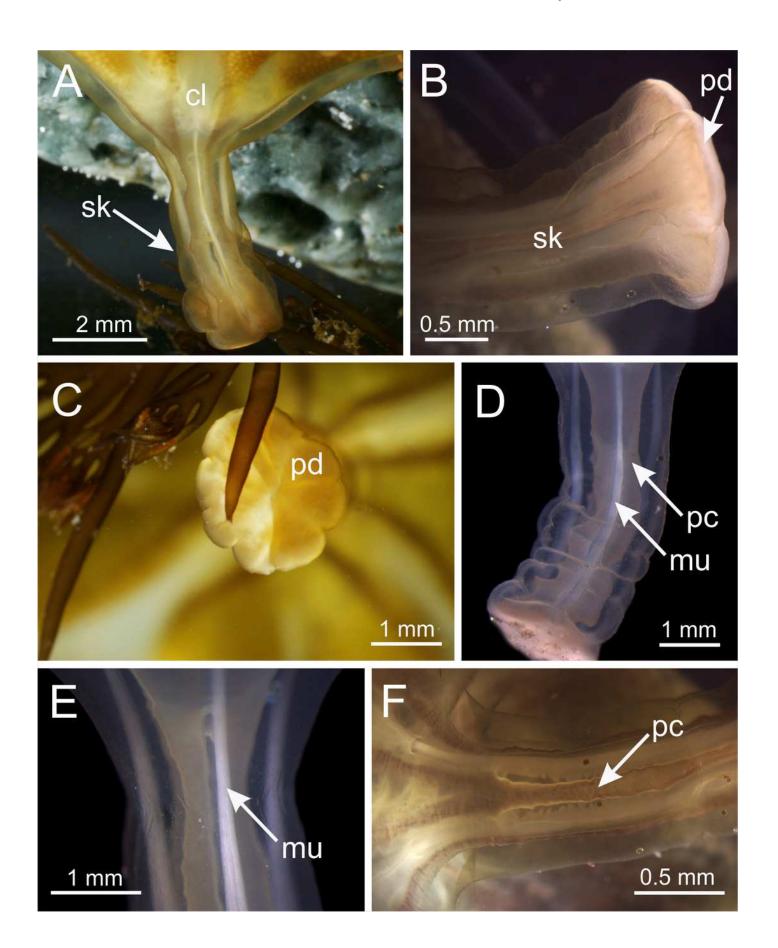
A-D, F) lateral view; E) aboral view. A) Beresford Island, B.C., image courtesy of Neil McDaniel; B-D) Calvert Island, B.C., images courtesy of Gustav Paulay; E, F) Seal Rock, Oregon, images courtesy of Ron Larson. Abbreviations: am, arm; an, anchor; AR, adradii; cl, calyx; ds, dark stripes; gd, gonad; IR, interradii; PR, perradii; sk, stalk; tc, secondary tentacles.

Calyx of *Haliclystus sanjuanensis*, with anchors, gastric filaments, and secondary tentacles.

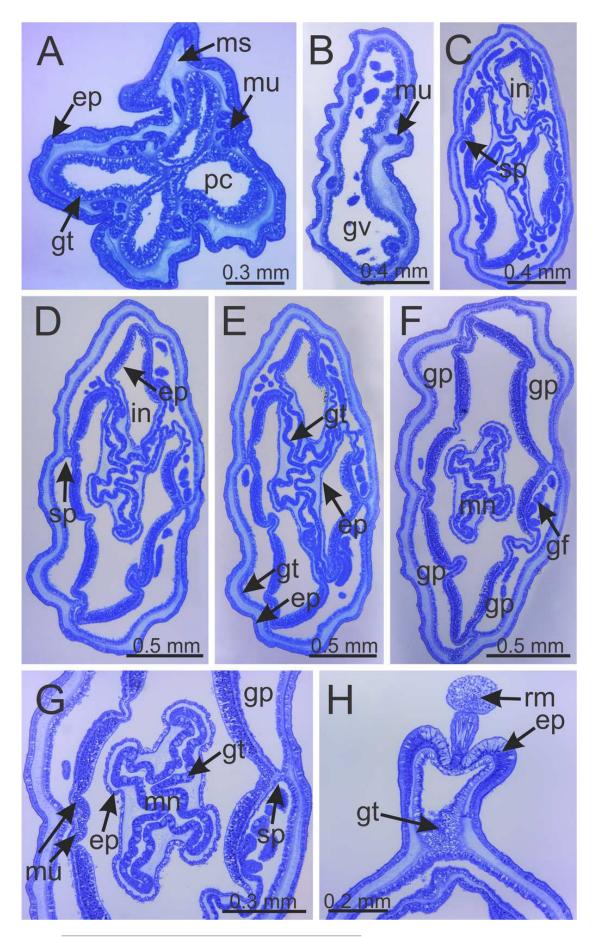

A) Lateral view of a juvenile stauromedusa, with anchors with a remnant of primary tentacle; B-D) lateral view of adult stauromedusae, with more developed anchors with smaller remnant of primary tentacles; E) connection of anchor with calyx; F-G) gastric filaments inside gastrovascular cavity; H-J) secondary tentacles at arms tips. Abbreviations: an, anchor; gd, gonad; gf, gastric filaments; tc, secondary tentacles; ws, white nematocyst spot.

Calyx of *Haliclystus sanjuanensis* with manubrium and white nematocyst spots.

A-B) general oral view; C-D) detail of manubrium, with perradial muscular fibers; E-G) general view of the pattern of distribution of white nematocyst spots; H) detail of white nematocyst spots. Abbreviation: gd, gonad; IR, interradii; mf, muscular fibers; mn, manubrium; PR, perradii; tc, secondary tentacles; ws, white nematocyst spot.



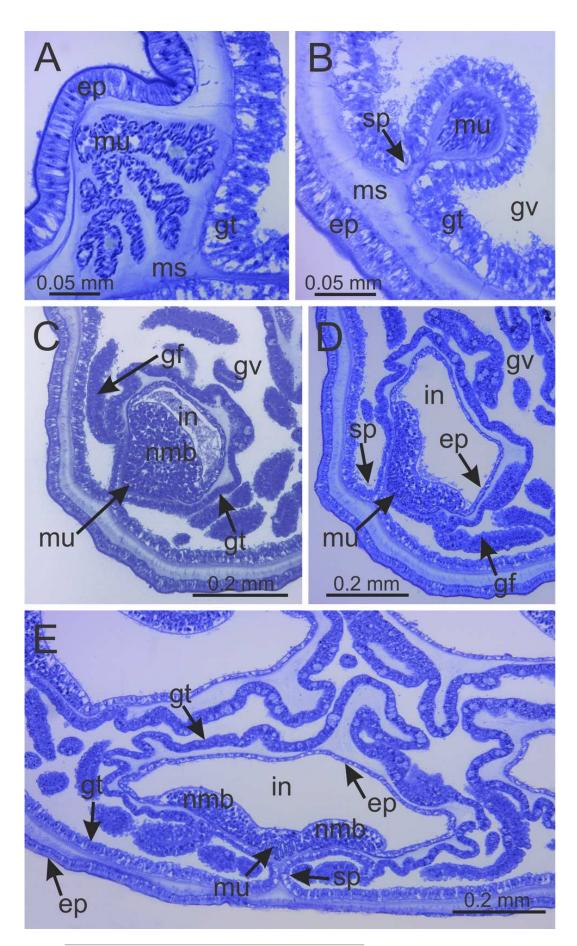
PeerJ reviewing PDF | (2023:05:85426:0:1:NEW 8 May 2023)


Stalk of Haliclystus sanjuanensis.

A) Lateral view of stalk-calyx connection; B) lateral view of stalk, with pedal disc; C) basal view of pedal disc; D) lateral view of stalk, with four interradial longitudinal muscles and four perradial chambers; E-F) detail of lateral view of stalk, with four interradial longitudinal muscles and with four perradial chambers. Abbreviations: cl, calyx; mu, interradial longitudinal muscle; pc, perradial chamber; pd, pedal disc; sk, stalk.

Internal anatomy of stalk and calyx of a juvenile (immature) Haliclystus sanjuanensis.

A) stalk, with four perradial chambers and four interradial longitudinal muscles; B) stalk-calyx connection, with fused gastric chambers into one main gastrovascular cavity; C–E) base of manubrium region, with delimitation of four perradial gastric pockets; F) manubrium region, with central manubrium and four perradial gastric pockets delimited; G) detail of manubrium, with four corners; H) anchor of a juvenile specimen, with remnant of primary tentacle. A–G: cross-sections; H: longitudinal section. Abbreviations: ep, epidermis; gf, gastric filament; gp, perradial gastric pocket; gt, gastrodermis; gv, gastrovascular cavity; in, infundibulum; mn, manubrium; ms, mesoglea; mu, interradial longitudinal muscle; pc, perradial gastric chamber; rm, remnant of primary tentacle; sp, septum.



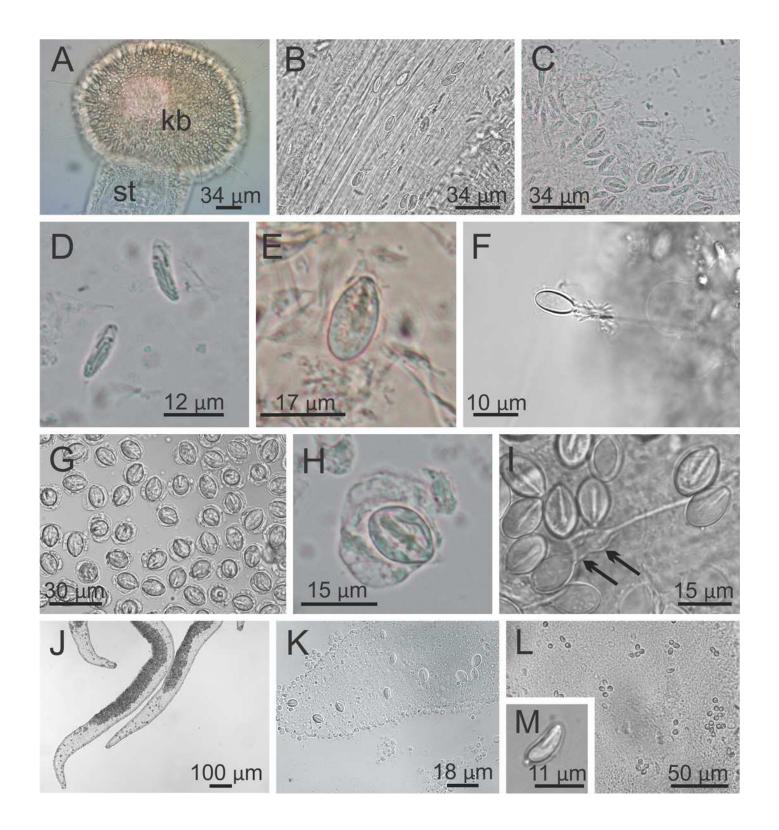
PeerJ reviewing PDF | (2023:05:85426:0:1:NEW 8 May 2023)

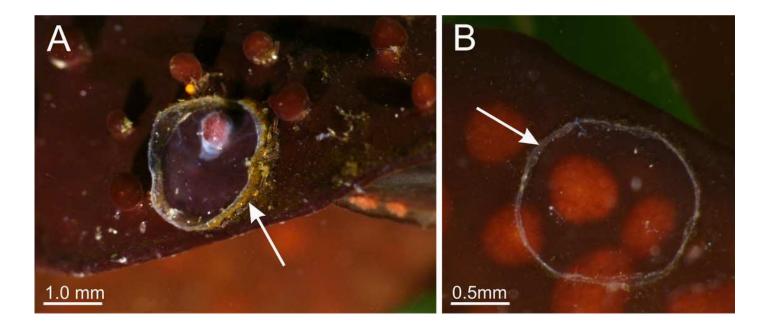
Interradial longitudinal muscle and infundibula of a juvenile (immature) *Haliclystus* sanjuanensis,

A) Interradial longitudinal muscle in stalk; B) Interradial longitudinal muscle at the stalk-calyx connection; C) Interradial longitudinal muscle and infundibulum at calyx base, with a "group" of nematoblasts; D) wider infundibulum and compressed longitudinal muscle; E) even wider infundibulum and more compressed longitudinal muscle, at base of manubrium region, with two "groups" of nematoblasts. A–E) cross-sections. Abbreviations: ep, epidermis; gf, gastric filament; gt, gastrodermis; gv, gastrovascular cavity; in, infundibulum; ms, mesoglea; mu, interradial longitudinal muscle; nmb, nematoblasts; sp, septum.

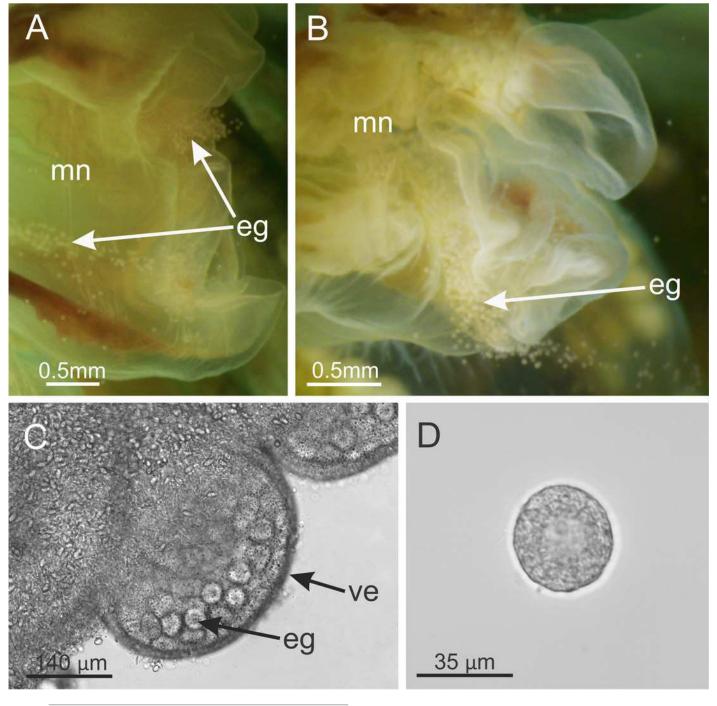
PeerJ reviewing PDF | (2023:05:85426:0:1:NEW 8 May 2023)

Internal anatomy of arms tips, secondary tentacles, and white nematocyst spots of a juvenile (immature) *Haliclystus sanjuanensis*.


A) Tip of arm, showing intertentacular lobules and secondary tentacles; B, C) detail of intertentacular lobules; D, E) stem of secondary tentacles, with longitudinal muscle; F) stem of secondary tentacles; G, H) knob of secondary tentacle; I) white nematocyst spot. A, B, D, E, G, I) longitudinal sections; C, F, H) cross-sections. Abbreviations: am, arms; ep, epidermis; gt, gastrodermis; il, intertentacular lobules; ms, mesoglea; mu, longitudinal muscle; nmb, nematoblasts; st, stem; tc, secondary tentacles.


Nematocysts of Haliclystus sanjuanensis.

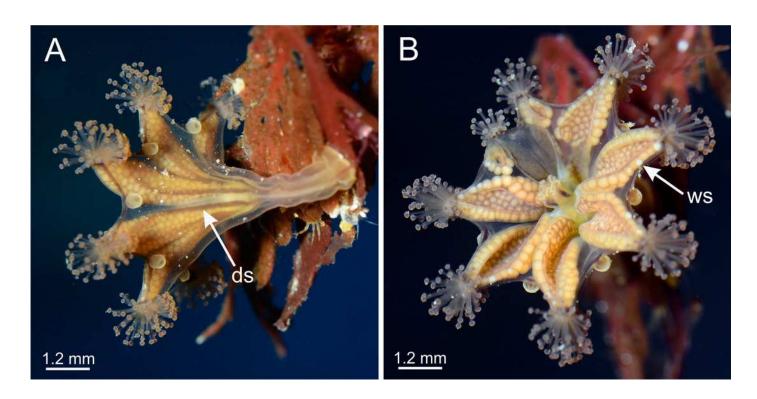
A) Knob of a secondary tentacle, with nematocysts covering the capitate tip; B) stem of a secondary tentacle, with migrating nematocysts; C) general view of nematocysts of secondary tentacles; D) isorhizas of secondary tentacles; E) eurytele of secondary tentacles; F) discharged eurytele of secondary tentacles; G) general view of nematocysts of the white spots; H) birhopaloid of white spots; I) discharged birhopaloid of white spots, with two dilatations (black arrows) close together; J, K) nematocysts in the gastric filaments; L, M) nematocysts on exumbrellar surface.


Periderm of *Haliclystus sanjuanensis*.

Periderm (A and B), in the form of a thin transparent cup (white arrows) that encases the pedal disc, that has been left behind after the stauromedusa *Haliclystus sanjuanensis* moved.

Haliclystus sanjuanensis spawning.


A, B) Eggs release through month opening; C) gonadal vesicles, with many eggs; D) isolated egg. Abbreviations: eg, eggs; ve, gonadal vesicles; mn, manubrium.


Map of the geographic distribution of *Haliclystus sanjuanensis*.

Star represents type locality.

General morphology of Haliclystus stejnegeri.

A) Lateral view, with dark stripes pattern (see Table S2); B) oral view, with few white nematocyst spots at perradii. Abbreviations: ds, dark stripes; ws, white nematocyst spot. Images courtesy of Karen Sanamyan and Nadya Sanamyan (locality: Kamchatka, SE Kamchatka, Avacha Bay).

