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ABSTRACT
Arthropods play a crucial role in terrestrial ecosystems, for instance in mediating
energy fluxes and in forming the food base for many organisms. To better understand
their functional role in such ecosystem processes, monitoring of trends in arthropod
biomass is essential. Obtaining direct measurements of the body mass of individual
specimens is laborious. Therefore, these data are often indirectly acquired by utilizing
allometric length-biomass relationships based on a correlative parameter, such as body
length. Previous studies have often used such relationships with a low taxonomic
resolution and/or small sample size and/or adopted regressions calibrated in different
biomes. Despite the scientific interest in the ecology of arctic arthropods, no site-
specific family-level length-biomass relationships have hitherto been published. Here
we present 27 family-specific length-biomass relationships from two sites in the High
Arctic: Zackenberg in northeast Greenland and Knipovich in north Taimyr, Russia.
We show that length-biomass regressions from different sites within the same biome
did not affect estimates of phenology but did result in substantially different estimates
of arthropod biomass. Estimates of daily biomass at Zackenberg were on average 24%
higher when calculated using regressions for Knipovich compared to using regressions
for Zackenberg. In addition, calculations of daily arthropod biomass at Zackenberg
based on order-level regressions from frequently cited studies in literature revealed
overestimations of arthropod biomass ranging from 69.7% to 130% compared to
estimates based on regressions for Zackenberg. Our results illustrate that the use
of allometric relationships from different sites can significantly alter the biological
interpretation of, for instance, the interaction between insectivorous birds and their
arthropod prey. We conclude that length-biomass relationships should be locally
established rather than being based on global relationships.
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INTRODUCTION
Arthropods constitute the most numerically abundant and diverse animal group in
terrestrial ecosystems (Goulson, 2019). Global biomass of above-ground arthropods
is estimated to be similar to the biomass of all humans and their livestock combined
(Rosenberg et al., 2023). Across the globe, arthropods play essential roles in nutrient cycling
(Yang & Gratton, 2014), and in food webs, where they serve as e.g., pollinators and/or
as both prey and predators (Ollerton, Winfree & Tarrant, 2011; Schmidt et al., 2017). For
example, ca. 60% of all bird species are insectivorous and rely on arthropods as a resource
for survival, growth and egg production (Morse, 1971; Klaassen et al., 2001; Piersma et al.,
2003), and 88% of all plant species are estimated to depend on animal pollination, most of
which can be attributed to insects (Ollerton, Winfree & Tarrant, 2011; Goulson, 2019).

Due to the integral role of arthropods in mediating ecosystem functions, long-term
ecological monitoring of trends in arthropod diversity, abundance and biomass is essential
(Hallmann et al., 2017; Goulson, 2019; Gillespie et al., 2020). Data on arthropod biomass
are important in ecological studies, for instance in characterizing size—abundance
relationships (White et al., 2007) and in measuring energy fluxes among habitats and/or
within food webs (Polis & Hurd, 1995). Moreover, detailed information on arthropod
biomass is key to understanding whether and when the temporal asynchrony between the
breeding phenology of insectivorous birds and arthropod availability translates into fitness
consequences (Durant et al., 2005; Ramakers, Gienapp & Visser, 2019). Data on biomass
can also provide a better understanding of processes underlying changes in arthropod
community structure (Southwood, Moran & Kennedy, 1982;Robertson et al., 2012), because
biomass scales with metabolic rate and thus serves as an indicator of the functional role of a
species within the arthropod community (Gillooly et al., 2001; Saint-Germain et al., 2007).

The importance of data on arthropod biomass is ubiquitous, but acquiring body mass
measures for each individual arthropod specimen is laborious. A less time-consuming
alternative is to derive estimates of body mass from a correlative parameter such as
body length (e.g., Rogers, Buschbom &Watson, 1977; Sample et al., 1993). This requires
knowledge of the allometric relationship between body length and bodymass for individual
prey taxa. Such relationships typically follow a power function (e.g.,Gowing & Recher, 1984;
Hayes & Shonkwiler, 2006) and are frequently used to estimate arthropod biomass (e.g.,
Saint-Germain et al., 2007; McKinnon et al., 2012; Lister & Garcia, 2018).

Despite the prevalent use of such allometric relationships, they have several limitations.
In particular, four types of extrapolations can reflect into biased inferences regarding
arthropod biomass: (I) Empirically quantified allometric relationships are generally
restricted to temperate regions (Rogers, Buschbom &Watson, 1977; Schoener, 1980; Sample
et al., 1993; Sohlström et al., 2018), the subtropics (Sage, 1982) or the tropics (Schoener,
1980; Ganihar, 1997; Gruner, 2003; Sohlström et al., 2018), while detailed regressions
for other regions—such as the Arctic—are lacking. As arthropods may have specific
morphological adaptations to their local environment (e.g., Strathdee & Bale, 1998),
applying allometric relations parameterized for one region to another may result in biased
estimates of arthropod biomass (Schoener, 1980; Hodar, 1996; Baumgärtner & Rothhaupt,
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2003, but see Gowing & Recher, 1984). (II) Empirically quantified allometric relationships
are seldom available at a family level or lower taxonomical levels (but see e.g., Sample et al.,
1993). As a result, order-level taxonomical equations are frequently used to estimate biomass
(e.g., Sage, 1982; Senner, Stager & Sandercock, 2017; Sohlström et al., 2018). Resorting to
such coarse taxonomic resolutionmay be problematic because length-biomass relationships
can vary remarkably even within the lower taxonomical levels (Johnston & Cunjak, 1999;
Baumgärtner & Rothhaupt, 2003). (III) Empirically quantified allometric relationships are
generally based on datasets with limited sample sizes (e.g., Hodar, 1996; Sabo, Bastow &
Power, 2002). (IV) Empirically quantified allometric relationships are often based on data
from several decades ago (e.g., Rogers, Buschbom &Watson, 1977), while the morphology
of arthropods may have changed over time (Bowden et al., 2015; Polidori et al., 2020;
Wonglersak et al., 2021).

In this study, we present allometric length-biomass relationships at high (family-level)
taxonomic resolution from two sites in the High Arctic. Drawing on these detailed, site-
specific data, we show that estimates of daily arthropod biomass can differ substantially
when calculated using length-biomass relationships parameterized for different sites
within the same biome, or when they are based on order-level regressions extracted from
frequently cited studies from other biomes. Our results demonstrate the importance of
using site-specific length-biomass relationships at high taxonomic resolution to improve
the accuracy of biomass estimates and enhance biological inferences.

MATERIALS & METHODS
Allometric length-biomass regressions for Zackenberg and Knipovich
Data collection and processing
To derive allometric length-biomass relationships for arctic arthropods at high taxonomical
resolution (family level), and to compare the generality of such relations between areas,
we used data from two high arctic sites. Arthropods were caught using yellow pitfalls in
June–August 2015 in Zackenberg, northeast Greenland (74◦28′N, 20◦34′W, N = 3,594)
and June–July 2018 in Knipovich, Taimyr, Russia (76◦04′N, 98◦32′E, N = 799). Upon
collection, specimens were stored in 96% ethanol and later identified to family level,
except for Collembola and Acari which were identified to sub-class level. The length of all
specimens was measured under a stereomicroscope to the nearest 0.1 mm directly after
taking them out of the ethanol preservative. Lengths were measured from the frons to the
tip of the abdomen, excluding any appendages such as antennas, proboscis, or ovipositor.
Once measured, all specimens were dried for 2–4 days in open air until their biomass
remained constant. All specimens were subsequently oven-dried for 20–24 h at 60 ◦C, after
which they were placed in a desiccator filled with silica gel to prevent increases in biomass
due to moisture absorption. The dry mass of all specimens was weighed directly after
taking them out of the desiccator on a microscale balance with an accuracy of 0.01 mg. In
general, we aimed to determine the dry mass for each individual specimen, but, to reduce
the relative effect of measurement error (Mährlein et al., 2016), we grouped specimens
that were too small to be weighed individually into several length classes and subsequently
calculated an average dry mass per length class.
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Fitting statistical models
We fit separate length-biomass regressions for all taxonomic groups in Zackenberg and
Knipovich, and fit separate models for data measured at the level of individuals and for
data averaged per length class. We only fit models when at least eight specimens or groups
were measured. We fit four linear models per taxonomic group: (I) an intercept-only
model: W=B0, (II) a linear model on untransformed data: W=B0+B1∗L, (III) a linear
model on natural-log transformed data, i.e., an exponential model: ln(W)= B0+B1∗L,
and (IV) a linear model on natural log–log transformed data, i.e., a power model:
ln(W)= B0+B1∗ln(L), where W = dry mass, L = body length, B0 corresponds to
the intercept and B1 to the slope of the linear model. We then selected the best model
for each taxonomic group based on AIC (Burnham & Anderson, 2002). For all models we
visually checked normality assumptions using QQ-plots and checked homoscedasticity
assumptions by plotting standardized Pearson residuals against fitted values and against
body length (Zuur et al., 2009). To quantify uncertainty for the fitted allometric equations,
we calculated 95% quantile confidence intervals for model predictions and regression
coefficients using non-parametric (case) bootstrapping using 10,000 bootstrap samples
(Efron & Tibshirani, 1994; Nakagawa & Cuthill, 2007). We only used bootstrapping for
taxa with a sample size of at least 20. We corrected body mass predictions from log-linear
models using Duan’s smearing factor (Duan, 1983; Mährlein et al., 2016). For the full
derivation of the appropriate model, dealing with outliers and quantification of model
uncertainty, see Article S1.

Allometric length-biomass regressions extracted from literature
To compare our regressions for Zackenberg and Knipovich to those often used in literature,
we selected nine frequently cited studies containing allometric length-biomass relationships
of terrestrial arthropods: Rogers, Buschbom &Watson (1977); Schoener (1980); Sage (1982);
Gowing & Recher (1984); Sample et al. (1993); Hodar (1996); Ganihar (1997); Sabo, Bastow
& Power (2002); Gruner (2003). As these studies only contained family-level regressions
for Hymenoptera Ichneumonidae, but not for the other arthropod families in our dataset
(Table S1), we extracted regressions at order-level taxonomic resolution. We then selected
the three most cited studies (extracted from Web of Science on 6 July 2023) that provided
regressions for all three taxonomic orders in our dataset (i.e., Araneae, Diptera and
Hymenoptera).

Estimates of arthropod biomass and phenology based on different
allometric regressions
To establish how our perception of seasonal trajectories in arthropod biomass would
differ depending on the origin of the length-biomass regressions employed, we derived
estimates of (I) average daily arthropod biomass, and (II) the timing of the median
date of arthropod biomass, for 24 years of arthropod data collected at Zackenberg when
biomass was inferred using family-level length–biomass regressions for either Zackenberg,
Knipovich, or order-level length-biomass regressions from literature.
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Arthropod data
We analyzed 24 years of arthropod data collected at Zackenberg between 1996 and 2019
(Greenland Ecosystem Monitoring, 2020). These data were not part of the data used to derive
allometric regressions for Zackenberg, as the latter was based on additional arthropod data
collected in 2015. Sampling has occurred at near-weekly intervals from the moment of
snowmelt until late August or late September (Schmidt et al., 2016). Arthropods were
trapped using yellow pitfall traps at six plots with dimensions 10 × 20 m2 (Schmidt et al.,
2016). One plot was not operational between 1999 and 2018 and was therefore excluded
from our analysis. To prevent biases due to interannual differences in the duration of
the trapping window, we restricted our analysis to a fixed period from day of year 157
(5-6 June) to 238 (25-26 August). All collected specimens were identified at family-level
taxonomic resolution, except for Acari and Collembola which were identified to sub-class
level. We restricted our analysis to the taxonomic groups: Araneae Linyphiidae, Diptera
Chironomidae, Dip. Empididae, Dip. Muscidae, Dip. Mycetophilidae, Dip. Sciaridae, and
Hymenoptera Ichneumonidae, because these were the only families for which we were able
to calculate length-biomass regressions for both Zackenberg and Knipovich (excluding
Collembola as they made a very limited contribution to overall biomass). This subset
included 234,487 specimens, corresponding to 30.1% of the total number of specimens for
all taxonomic groups, which corresponds to 25.0% of total biomass.

Estimating arthropod biomass
The selected Zackenberg arthropod data contain counts of specimens per taxonomic group
with a timestamp corresponding to the date when a trap is emptied. These counts thus
reflect the cumulative number of specimens collected during all the days for which a trap
was active. We first translated this into daily counts per taxonomic group by calculating
the average number of trapped specimens per taxonomic group for each day a trap was
active. To infer seasonal trajectories in biomass from these count data, we then allocated a
length to each specimen by random sampling from taxon-specific length distributions (for
more details see Article S1). Once a length was allocated to each individual, we used our
taxon-specific length-biomass regressions to calculate its corresponding biomass. This latter
step was carried out five times, utilizing the regressions specific to Zackenberg, Knipovich,
and those extracted from the three studies selected from literature. For each of these five
biomass variables, we then calculated the average arthropod biomass per trap per day for
each year. In addition, we estimated arthropod phenology for each year by calculating the
date when 50% of cumulative biomass was reached (hereafter ‘‘median date of arthropod
biomass’’) using linear interpolation. We obtained 95% quantile confidence intervals for
all estimated parameters using non-parametric (case) bootstrapping with 10,000 bootstrap
samples (Efron & Tibshirani, 1994; Nakagawa & Cuthill, 2007). All statistical analyses were
performed in R version 4.1.2 (R Core Team, 2021).

Portions of this text were previously published as part of a preprint (https://www.biorxiv.
org/content/10.1101/2023.04.04.534924v1.full).
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RESULTS
Allometric length-biomass regressions
We identified 4,389 arthropod specimens belonging to 42 taxonomic groups (Zackenberg,
n= 3,590 specimens of 34 taxonomic groups, and Knipovich, n= 799 of 19 taxonomic
groups). Body length was measured for 4,383 individual specimens, while biomass was
measured for 1,573 individual specimens. The remaining 2,785 individuals, for which
biomass could not be individually determined, were grouped into length classes for which
an average length and biomass was calculated per group. For 27 taxonomic groups, sample
size was sufficiently large to construct allometric relationships for one or both sites, resulting
in 22 regressions for Zackenberg and 15 regressions for Knipovich (Table 1, Table S2). We
fit two regressions for Acari and two for Diptera Chironomidae at Zackenberg (i.e., one for
data measured at the level of individuals and one for data averaged per length class). For 31
out of 37 allometric relationships the best supported statistical model was a linear model
fitted on natural log–log transformed data, i.e., a power model (Table S3). The allometric
relationships of the eight arthropod taxa for which data were available for both Zackenberg
and Knipovich are shown in Fig. 1, while the relationships for arthropod taxa for which
data were only available for either site are shown in Figs. S1 and S2, respectively. The
average calculated smearing factor across all length-biomass regressions was 1.041 [95%
CI, 1.027, 1.058]. Since we used a natural-log transformed response variable, body mass
predictions on the arithmetic scale would thus underestimate arthropod biomass by 4.1%
(and as much as 25.4% for Ichneumonidae) unless this correction was made (Table 1).

From the nine studies selected from literature, Rogers, Buschbom &Watson (1977),
Hodar (1996) and Ganihar (1997) were the three most cited studies that provided
allometric regressions for all three arthropod orders in our analysis (i.e., Aranea, Diptera
and Hymenoptera, Table S1). The extracted allometric relationships from literature are
summarized in Table 2.

Estimates of arthropod biomass and phenology based on different
allometric regressions
Estimates of the average arthropod biomass per trap per day at Zackenberg were on average
23.9% [95% CI: 23.5, 24.4] higher when calculated using regressions for Knipovich than
when calculated using regressions for Zackenberg (Fig. 2, Table 3). When biomass was
calculated using order-level regressions extracted from literature, estimates of the average
arthropod biomass per trap per day at Zackenberg were between 69.7% and 129.7%
higher than when biomass was calculated using regressions for Zackenberg (Fig. 2, Table
3). Taxon-specific differences between our family-level regressions from Zackenberg and
Knipovich, and the order-level regressions extracted from literature are visualized in
Figure S3.

Estimates of the median date of arthropod biomass at Zackenberg were on average 0.13
days [95% CI: 0.03, 0.26] earlier when regressions for Knipovich were used instead of
regressions for Zackenberg (Table 3). In addition, when arthropod biomass was calculated
using order-level regressions extracted from literature, the median date of arthropod
biomass occurred on average between 0.09 and 0.78 days earlier than when regressions for
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Table 1 Best supported allometric length-biomass relationships for 27 arthropod taxa for Zackenberg (n = 22) and Knipovich (n = 15). The
column ‘n’ depicts the number of data points on which each allometric model was fit with, if applicable, in brackets the sample size before averaging
within different length classes. ‘Min (mm)’ and ‘Max (mm)’ indicate the minimum and maximum of length ranges of specimens used to fit each re-
gression. ‘SF’ depicts the smearing factor used to correct backtransformed predictions for models with a natural-log transformed response variable.
‘Level’ indicates whether the allometric model was fit on individual level measurements or average values for different length classes. ‘Location’ indi-
cates the site where the specimens were collected. Case-bootstrapped 95% confidence intervals for all model parameters can be found in Table S2.

Taxon n Min
(mm)

Max
(mm)

B0 B1 SF Level Model Location

Aca sp. 6 (605) 0.29 1.64 −3.627 2.012 1.028 avg ln(W/SF)= B0 + B1 * ln(L) ZAC
Aca sp. 9 2.08 3.24 −3.438 3.249 1.008 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Ara Dictynidae 8 2.06 2.50 −5.903 5.646 1.052 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Ara Linyphiidae 28 2.30 3.70 −2.422 1.928 1.013 ind ln(W/SF)= B0 + B1 * ln(L) KNP
Ara Linyphiidae 25 0.69 2.62 −3.556 2.938 1.035 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Ara Lycosidae 129 1.74 8.68 −3.718 2.931 1.013 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Ara Thomisidae 12 2.55 5.55 −3.268 2.963 1.007 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Clm sp. 9 (209) 0.65 2.56 −0.015 0.026 NA avg W= B0 + B1 * L KNP
Clm sp. 8 (1002) 0.20 1.71 −5.129 1.196 1.008 avg ln(W/SF)= B0 + B1 * ln(L) ZAC
Col Carabidae 21 6.30 8.30 5.371 NA NA ind W= B0 KNP
Col Chrysomelidae 34 4.90 6.60 −3.672 3.384 1.011 ind ln(W/SF)= B0 + B1 * ln(L) KNP
Col Staphylinidae 56 2.90 7.50 −4.403 2.498 1.051 ind ln(W/SF)= B0 + B1 * ln(L) KNP
Dip Anthomyiidae 30 2.74 7.41 −2.648 0.510 1.039 ind ln(W/SF)= B0 + B1 * L ZAC
Dip Bolitophilidae 16 3.30 4.80 −4.061 1.559 1.050 ind ln(W/SF)= B0 + B1 * ln(L) KNP
Dip Ceratopogonidae 37 (337) 1.42 2.78 −3.476 0.765 1.019 avg ln(W/SF)= B0 + B1 * ln(L) ZAC
Dip Chironomidae 83 1.16 6.10 −4.738 2.414 1.150 ind ln(W/SF)= B0 + B1 * ln(L) KNP
Dip Chironomidae 67 (328) 1.31 2.93 −0.028 0.031 NA avg W= B0 + B1 * L ZAC
Dip Chironomidae 45 2.70 7.64 −6.286 3.127 1.058 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Dip Culicidae 78 3.97 6.94 −3.093 1.313 1.098 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Dip Empididae 30 5.90 7.80 −2.151 1.467 1.011 ind ln(W/SF)= B0 + B1 * ln(L) KNP
Dip Empididae 22 3.57 8.50 −4.295 2.350 1.025 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
DipMuscidae 44 4.00 7.80 −4.685 2.949 1.013 ind ln(W/SF)= B0 + B1 * ln(L) KNP
DipMuscidae 412 3.84 8.80 −4.679 2.835 1.025 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
DipMycetophilidae 32 3.40 5.40 −3.597 1.923 1.031 ind ln(W/SF)= B0 + B1 * ln(L) KNP
DipMycetophilidae 21 3.72 5.45 −5.411 2.701 1.022 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Dip Phoridae 14 1.71 3.28 −0.116 0.091 NA ind W= B0 + B1 * L ZAC
Dip Scathophagidae 35 5.45 8.93 −3.717 2.370 1.022 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Dip Sciaridae 110 1.56 3.50 −3.854 0.525 1.047 ind ln(W/SF)= B0 + B1 * L KNP
Dip Sciaridae 48 (273) 1.62 3.75 −5.164 2.384 1.030 avg ln(W/SF)= B0 + B1 * ln(L) ZAC
Dip Syrphidae 9 6.58 12.62 −5.314 3.087 1.012 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Dip Tachinidae 11 (28) 10.56 12.48 −3.952 2.617 1.005 avg ln(W/SF)= B0 + B1 * ln(L) ZAC
Dip Tipulidae 52 9.70 15.80 −3.033 1.945 1.024 ind ln(W/SF)= B0 + B1 * ln(L) KNP
Dip Trichoceridae 31 3.10 5.90 −6.197 3.234 1.035 ind ln(W/SF)= B0 + B1 * ln(L) KNP
Hym Ichneumonidae 22 2.40 6.70 −5.739 3.226 1.063 ind ln(W/SF)= B0 + B1 * ln(L) KNP

(continued on next page)
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Table 1 (continued)

Taxon n Min
(mm)

Max
(mm)

B0 B1 SF Level Model Location

Hym Ichneumonidae 50 1.86 12.34 −5.559 2.928 1.254 ind ln(W/SF)= B0 + B1 * ln(L) ZAC
Hym Tenthredinidae 12 4.30 8.10 −5.434 3.261 1.061 ind ln(W/SF)= B0 + B1 * ln(L) KNP
Lep Nymphalidae 61 12.34 15.09 3.408 −0.330 1.023 ind ln(W/SF)= B0 + B1 * ln(L) ZAC

Notes.
Abbreviations: Aca, Acari; Ara, Araneae; Clm, Collembola; Col, Coleoptera; Dip, Diptera; Hym, Hymenoptera; Lep, Lepidoptera; ind, individual level weight measure-
ments; avg, averaged weight estimates per length class; W, body mass (mg); L, body length (mm); KNP, Knipovich; ZAC, Zackenberg.

Figure 1 Length-biomass allometric relationships for eight arthropod taxa for which data were avail-
able for both Zackenberg and Knipovich.Data for Zackenberg (ZAC) are depicted as orange triangles
and data for Knipovich (KNP) as blue circles. Axes are log-transformed but labelled with non-transformed
values. Superscripts following the taxonomic names indicate whether datapoints represent individual level
weight measurements (‘IND’) or averages per length class (‘AVG’). Solid lines indicate the best supported
model for each taxon. Dotted lines indicate 95% quantile confidence intervals calculated over 10,000 case
bootstrapping runs. Individual bootstrapping runs are drawn as transparent lines to create a colour gradi-
ent that visualizes the distribution of best fitting models over all bootstrapping runs. Wide confidence in-
tervals (e.g., for Empididae) are an artefact of the use of case-resampling in combination with influential
datapoints.

Full-size DOI: 10.7717/peerj.15943/fig-1

Zackenberg were used (Table 3). The maximum difference in estimated median date of
arthropod biomass for a single year occurred in 2015 where this metric was 5.6 days earlier
when based on Rogers, Buschbom &Watson (1977) instead of based on regressions from
Zackenberg (Table 3).
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Table 2 Overview of order-level regressions extracted from literature. The column ‘n’ depicts the number of data points on which each allomet-
ric model was fit. ‘Min (mm)’ and ‘Max (mm)’ indicate the minimum and maximum of length ranges of specimens used to fit each regression. ‘B0’
and ‘B1’ correspond to the parameters of the allometric regression depicted under ‘Model’. ‘Location’ indicates the site where the specimens were
collected.

Taxon n Min
(mm)

Max
(mm)

B0 B1 Model Location Reference

Ara sp. 114 1.0 12.7 −3.211 2.468 ln(W)= B0 + B1 * ln(L) IN_Goa Ganihar (1997)
Dip sp. 20 1.8 16.0 −3.429 2.594 ln(W)= B0 + B1 * ln(L) IN_Goa Ganihar (1997)
Hym sp. 26 2.4 10.0 −3.592 2.643 ln(W)= B0 + B1 * ln(L) IN_Goa Ganihar (1997)
Ara sp. 18 1.3 27.1 −2.260 2.296 ln(W)= B0 + B1 * ln(L) ES_GRX Hodar (1996)
Dip sp. 36 1.0 24.0 −3.467 2.392 ln(W)= B0 + B1 * ln(L) ES_GRX Hodar (1996)
Hym sp. 24 1.6 26.5 −1.810 1.900 ln(W)= B0 + B1 * ln(L) ES_GRX Hodar (1996)
Ara sp. 25 0.7 12.0 −3.106 2.929 ln(W)= B0 + B1 * ln(L) USA_WA Rogers, Buschbom &Watson (1977)
Dip sp. 84 0.9 34.0 −3.293 2.366 ln(W)= B0 + B1 * ln(L) USA_WA Rogers, Buschbom &Watson (1977)
Hym sp. 97 0.7 27.0 −3.871 2.407 ln(W)= B0 + B1 * ln(L) USA_WA Rogers, Buschbom &Watson (1977)

Notes.
Abbreviations:: Ara, Araneae; Dip, Diptera; Hym, Hymenoptera; W, body mass (mg); L, body length (mm); IN_Goa, Goa India; ES_GRX, Granada Spain; USA_WA,
Washington state United States of America.

DISCUSSION
Based on 24 years of data, we show how the use of family-level allometric relationships from
two siteswithin the same (arctic) biome can result in substantially different estimates of daily
arthropod biomass, despite employing identical methodology and taxonomic resolution.
In addition, estimates of daily arthropod biomass calculated using order-level regressions
extracted from literature were considerably larger than estimates based on family-level
regressions for Zackenberg. This corroborates the findings of earlier studies showing
distinct variation within taxonomic groups in regression coefficients or in estimated
biomass of invertebrates among sites and/or habitats (Schoener, 1980; Hodar, 1996; Sabo,
Bastow & Power, 2002; Baumgärtner & Rothhaupt, 2003, but see Gowing & Recher, 1984).
Although we show that estimates of arthropod phenology based on different regressions are
on average unimportant from a biological perspective (i.e., smaller than a day), estimates
for a single year could differ up to 5.6 days.

Inconsistencies in family-level regression coefficients, or biomass estimates, across sites
may arise from differences in site-specific species compositions, or because variation in
the time, location and type of sampling (e.g., yellow pitfalls versus sweep netting) may
yield different subsets of sampled species when species differ in their phenology and/or
small-scale spatial distribution (Høye & Forchhammer, 2008). In addition, variation in
regression parameters might occur due to differences in the timing of emergence among
dimorphic sexes (Danks & Oliver, 1972; McLachlan, 1986), or because species differ in
their morphological adaptations to their local environment (Schoener, 1980; Strathdee &
Bale, 1998). For instance, arthropods in the tropics have been suggested to have longer
and thinner bodies than those in temperate areas (Schoener, 1980; Sohlström et al., 2018).
Differences in habitat characteristics and/or food availability may also affect regression
parameters by causing intraspecific variation in growth rates (Griffith, Perry & Perry, 1993;
Johnston & Cunjak, 1999). Although we employed identical methodologies for Zackenberg

Versluijs et al. (2023), PeerJ, DOI 10.7717/peerj.15943 9/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.15943


Figure 2 Estimates of average biomass per pitfall trap per day at Zackenberg (1996 –2019), calculated
based on regressions from five different sources.Data include the Araneae family Linyphiidae, Diptera
families Chironomidae, Empididae,Muscidae,Mycetophilidae and Sciaridae and Hymenoptera family
Ichneumonidae. Data depicted in blue are calculated using family-level length-biomass regressions for
Knipovich (KNP) and data in orange using family-level regressions for Zackenberg (ZAC). Data depicted
in grey are calculated using order-level regressions extracted from literature, where the solid grey line
is based on regressions from Rogers, Buschbom &Watson (1977), the dashed grey lines on regressions
from Hodar (1996) and the dotted grey line on regressions from Ganihar (1997). Boxplots summarize the
spread in the data, where horizontal white bars indicate the median, the box depicts the interquartile range
and whiskers represent 1.5 times the interquartile range from the upper/lower quartile.

Full-size DOI: 10.7717/peerj.15943/fig-2

Table 3 Differences in the estimated median date of arthropod biomass and the average arthropod biomass per trap per day at Zackenberg.
All depicted differences are relative to biomass estimates calculated based on family-level regressions for Zackenberg. The column ‘Regressions’ in-
dicates which length-biomass regressions were used to calculate biomass. The column ‘Mean diff. peak (days)’ indicates the mean difference in es-
timated median date of arthropod biomass (in days) relative to when Zackenberg regressions were used to calculate this metric, while the column
‘Max diff. peak (days)’ indicates the maximum difference for this metric (in days) for a single year. The column ‘Mean diff. biomass (%)’ indicates
the mean difference in the average arthropod biomass per trap per day (as a percentage) relative to when Zackenberg regression were used to cal-
culate this metric, while the column ‘Max diff. biomass (percentage)’ indicates the maximum difference for this metric for a single year. Values in
square brackets include 95% quantile confidence intervals calculated using non-parametric case-bootstrapping.

Regressions Mean diff.
peak (days)

Max diff.
peak (days)

Mean diff.
biomass (%)

Max diff.
biomass (%)

Knipovich (this study) 0.13 [0.03, 0.26] 1.44 23.9 [23.5, 24.4] 27.3
Ganihar (1997) 0.30 [0.01, 0.73] 4.29 129.7 [126.6, 133.4] 157.0
Hodar (1996) 0.09 [−0.39, 0.72] 5.56 69.7 [66.7, 73.0] 89.6
Rogers, Buschbom &Watson (1977) 0.78 [0.41, 1.31] 5.63 75.6 [72.3, 79.8] 108.9
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and Knipovich, comparisons of regression parameters or biomass estimates among studies
might be hampered by differences in methodologies used for the measuring and weighing
of arthropods (Schoener, 1980; Johnston & Cunjak, 1999; Méthot et al., 2012). For instance,
corrections for back-transformations from the logarithmic to the arithmetic scale are
frequently overlooked (e.g., Rogers, Buschbom &Watson, 1977; Sohlström et al., 2018).
Variation in body width of specimens might also explain some of the variation between
regression parameters (Sohlström et al., 2018), although this may only lead to marginal
improvements for allometric relationships constructed at the family level (Sample et al.,
1993; Gruner, 2003).

Our results highlight that applying length-biomass relationships calibrated for one site
to another site could result in significantly biased estimates of arthropod biomass, even
when compared at family-level resolution within the same biome. Accurate estimates
of arthropod biomass are essential to understanding food web dynamics and processes
driving community structure (e.g., Saint-Germain et al., 2007) and are for instance crucial
in calculating the minimum amount of arthropod biomass required to sustain average
growth and survival of birds (Schekkerman et al., 2003; Saalfeld et al., 2019). In addition,
the use of length-biomass regressions from different sites can affect estimates of the
relative contribution of different prey taxa to total prey biomass (Hodar, 1996), impacting
estimates of prey availability for insectivores. We hope that our family-level length-biomass
regressions for theArctic will result inmore accurate estimates of, for instance, global above-
ground arthropod biomass (Rosenberg et al., 2023), local population trends in (arctic)
arthropod biomass (Andersson et al., 2022), and prey availability for insectivorous birds
(Reneerkens et al., 2016; Zhemchuzhnikov et al., 2021). Because our family-level length-
biomass equations differ considerably from those from non-arctic regions and from those
constructed at order-level taxonomic resolution, we argue that site-specific equations with
high taxonomical resolution will provide the most accurate description of local trends in
arthropod biomass and will lead to the most accurate biological inference.

CONCLUSIONS
We hypothesized that estimates of arthropod biomass in the Arctic were biased by
the use of old allometric relationships from other regions and/or by low taxonomical
resolution. While the use of allometric relationships from different sites—even within
the same biome—and from lower-taxonomical studies in different biomes had limited
effect on estimates of arthropod phenology, they did drastically affect estimates of
arthropod biomass. As such, this can affect biological interpretations regarding ecological
relationships, such as the balance between trophic layers and the food available for offspring
growth. Ideally, future studies should establish arthropod length-biomass relationships
based on local samples and with high taxonomical resolution.
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