Self-assembly of Hyaluronic Acid-Cu-

2 Quercetin flavonoid nanoparticles: synergistic

3 chemotherapy to target tumors

4 Short Title: Flavonoid nanoparticles for chemotherapy

5 6

Hanxun Yue^{1,2#}, Xuan Zhao^{1#}, Qin Yong¹, Min Shi¹, Xiaofeng Jiang¹, Yating Zhang¹, Xian Yu^{1*}

7 8

9

¹Phase I Clinical Trial Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400064, China;

10 ²The First people's Hospital of PingDingShan, Pingdingshan, 467000, China

11

18

19

20

21

22

23

24 25

26 27

28

29

30

31

32

33

34

35

36

37

38

39

12 Corresponding Author:

- 13 Xian Yu
- 14 No. 288 Tianwen Road, Nan'an District, Chongqing
- 15 Email address: 303671@cqmu.edu.cn
- 16 *These authors contributed equally to this work.

17 Abstract

Background: In this study, a natural compound called Quercetin (Qu) was investigated for its antitumor effects. However, due to its poor water solubility and low bioavailability, its clinical application is limited. To overcome this constraint, a modification was made to Qu which resulted in the creation of novel flavonoid self-assembling nanoparticles (HCQ NPs). Methods: HCQ NPs were synthesized by a self-assembly method and characterized using transmission electron microscopy, the Malvern Zetasizer instrument, X-ray photoelectron spectroscopy (XPS), the ultraviolet-visible spectrophotometric method (UV-vis), Fourier transform infrared (FITR) and inductively coupled plasma mass spectrometry. Extracellular, methylene blue spectrophotometric analysis was used to determine the ability of HCQ NPs to react with different concentrations of H₂O₂ to form hydroxyl radicals (*OH). Intracellular, DCFH-DA staining was used to detect the ability of HCQ NPs to react with H₂O₂ to generate reactive oxygen species. Flow cytometry was used to detect the uptake of HCQ NPs by MDA-MB-231 cells at different time points. The biocompatibility of HCQ NPs was evaluated using the Cell Counting Kit-8 (CCK-8) assay. Calcein AM/PI double staining and the CCK-8 assay were used to evaluate the synergistic antitumor effect of HCQ NPs and H₂O₂. Results: HCQ NPs showed uniformly sized analogous spherical shapes with a hydrodynamic diameter of 55.36± 0.27 nm. XPS revealed that Cu was mainly present as Cu²⁺ in the HCQ NPs. UV-vis absorption spectrum of the characteristic peak of HCQ NPs was located at 296 nm. Similarly, FTIR spectroscopy revealed a complex formation of Qu and Cu²⁺ that substantially changed the wavenumber of the 4-position C=O characteristic absorption peak. Based on the proportion of Qu and Cu²⁺ (1:2), the total drug loading of Qu and Cu²⁺ in the HCQ NPs for therapeutic purposes was calculated to be 9%. Methylene blue spectrophotometric analysis of OH indicated that Cu can lead to the generation of OH by triggering Fenton-like reactions.

Deleted: -----Page Break-

Deleted: Quercetin (Qu) is

Deleted: with various

Deleted: restrict

Deleted: address this limitation,

Deleted: was modified to prepare

Deleted:) in this study.

HCQ NPs rapidly accumulated in MDA-MB-231 cells with the extension of time, and the maximum accumulation concentration was reached at about 0.5 h. Calcein AM/PI double staining and CCK-8 revealed synergistic antitumor effects of HCQ NPs, including the chemotherapeutic effect of Qu and chemodynamic therapy by Cu²⁺ in a simulated tumor microenvironment. HCQ NPs demonstrated very low toxicity in LO2 cells in the biocompatibility experiment. Conclusion: This study showcases a new method of creating self-assembled flavonoid HCQ NPs that show great potential for use in fighting cancer.

Keywords: quercetin; quercetin-copper complex; flavonoid self-assembled nanoparticles; Fenton-like reaction; synergistic antitumor

Introduction

48

49

50

51

52 53

54

55

56

57

58

59 60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Cancer remains the primary cause of death globally. In 2020, the American Cancer Society, documented 19.3 million fresh cases of cancer and 10 million cancer-related deaths. (Sung et al. 2021). Combination chemotherapy using two or more drugs has been widely investigated in the cancer therapy (Jhaveri et al. 2014). Although drugs with non-overlapping toxicity are selected as candidates for treatment, their combined treatment effects are often associated with higher toxicity compared to the monotherapy (Tyagi et al. 2004; Zatloukal et al. 2003; Zhang et al. 2016). Additionally, the lack of targeting leads to an inability of the drugs to accumulate in the tumor tissues, limiting the synergistic effects of multiple drugs (Hua et al. 2018b; Lee et al. 2017). Thus, currently used multidrug chemotherapies do not always yield the expected outcomes. These problems could hypothetically be effectively overcome by encapsulating low-toxicity drugs in a targeted nanocarrier to form a nanodrug.

Many synthetic and natural compounds have been investigated for their potential antitumor effects (Sharifi-Rad et al. 2019). Many naturally occurring compounds have strong antitumor effects and excellent biocompatibility (Abdulridha et al. 2020; Hua 2002). Quercetin (Qu) is a natural flavonoid compound widely present in daily diets and known for its antitumor effects (Rauf et al. 2018). In vivo and in vitro experiments have shown that Qu exerts its antitumor effects by altering the cell cycle, inhibiting cell proliferation, promoting apoptosis, and inhibiting angiogenesis (Pang et al. 2019). For example, in breast cancer MDA-MB-453 and MDA-MB-231 cells, Qu can halt the cell cycle at the G2/M phase by upregulating p53 (Chien et al. 2009; Tang et al. 2020). However, its clinical applications are limited due to low oral bioavailability, poor water solubility, rapid metabolism, and enzyme degradation (Scalia et al. 2013). Qu modification methods such as metal complex formation have effectively overcome these challenges (Kakran et al. 2012). Hydroxyl and carbonyl groups present in Qu's structure are very effective metal chelators (Leopoldini et al. 2006). Qu-metal complexes' in vitro pharmacokinetic and biological activity, are better than Qu alone due to their geometric spatial orientation and availability of metal ions at the binding site (Dolatabadi 2011). For example, copper (Cu) ions can form a complex with Qu, demonstrating antitumor effects (Mutlu Genckal et al. 2020). In addition, Cu ions can achieve synergistic antitumor effects by triggering a Fenton-like reaction to convert hydrogen peroxide

Deleted: reports the novel synthesis

Deleted: demonstrate promising

Deleted: anticancer applications

Deleted: is

Deleted: leading

Deleted: worldwide. According to

Deleted: , approximately

Deleted: new

Deleted: cases

Deleted: causalities were registered in 2020

Deleted: An increasing number of

Deleted: that is

Deleted: been effective at overcoming

Deleted: serve as

Deleted: The

Deleted: of Qu-metal complexes

Formatted: Font: Not Italic

Deleted: which has demonstrated

105 (H₂O₂), which is excessively generated in the tumor microenvironment (TME), into more 106 cytotoxic hydroxyl radicals ('OH) (Liu et al. 2019).

107 Hyaluronic acid (HA) is a highly efficient tumor-targeted delivery vehicle characterized by good 108 biocompatibility, biodegradability, and unique CD44 receptor-binding capacity (Rippe et al. 109 2019). The Qu-Cu complex can target tumor cells with high CD44 receptor expression by forming 110 ionic bonds between HA and Cu ions. Therefore, we developed novel self-assembled 111 multifunctional flavonoid nanoparticles (HCQ NPs) containing HA, CuCl₂, and Qu. In these NPs, 112 Qu serves as a self-loading chemotherapeutic agent, while Cu and HA act as Fenton-like reagents. 113 with respective targeted delivery. The fabricated NPs demonstrated good targeting and 114 chemodynamic therapy (CDT) characteristics by effectively converting excess H₂O₂ in the TME

116 **Materials & Methods** 117

118 Materials

115

128

137

Qu (95%), HA (98%), and dimethyl sulfoxide (DMSO) were purchased from Aladdin Industrial 119 120

into hydroxyl radicals to augment the antitumor effects of Qu synergistically.

Co. (China). The H₂O₂ (30%) was purchased from Sinopharm Chemical Reagent Co., Ltd. Tris-

121 HCl buffer (pH 8.8) and Cu (II) chloride dihydrate (CuCl₂) were obtained from Sigma-Aldrich

122 Co. (USA). Cell culture medium (RPMI-1640, complete DMEM high glucose), trypsin (for cell

123 culturing, 0.25% w/v), and fetal bovine serum (FBS) were obtained from Thermo Fisher

124 Scientific Co. Ltd. (China). The breast cancer cell line (MDA-MB-231) was provided by the

125 School of Life Science and Technology, Chongqing Medical University, China. Human normal

126 liver cells (LO2) were provided by the School of Life Science and Technology, Xiamen

127 University, China.

Synthesis of HCO NPs

129 The HCQ NPs were synthesized using a coordination-induced self-assembly method. Aqueous

130 solutions of HA (10 mg/mL) and CuCl₂ (5 mg/mL) were prepared. In addition, Ou solution (20

131 mg/mL) was prepared with DMSO. Then, 1 mL of the HA solution and 150 μL of the CuCl₂

132 solution were added to a reaction flask and continuously stirred for 4 min while adding 150 µL

133 of 1M Tris-HCl (pH 8.8). Subsequently, 125 µL of the Qu solution was added dropwise,

134 followed by stirring for 4 h at room temperature. The fabricated HCQ NPs were purified by

135 dialysis overnight (MWCO: 10 kDa) and stored at room temperature until further

experimentation. 136

Characterization of HCQ NPs

The fabricated HCQ NPs were characterized for various physical and chemical properties. 138

139 Solution properties such as hydrodynamic diameters, zeta potentials, and stability of HCQ NPs

140 were evaluated using a Malvern Zetasizer instrument (Nano-ZS90, UK) (n=3). High-resolution

141 transmission electron microscopy (TEM) (JEOL JEM-2100F, Japan) was used to characterize the

142 morphological features of the NPs. The chemical structure of HCQ NPs was determined using

143 Fourier transform infrared (FTIR) spectroscopy (Ettlingen, Germany). Ultraviolet-visible (UV-

144 vis) absorption was collected using the Model Ultra-6600A (Rigol, China). X-ray photoelectron Deleted:

Deleted: With the formation of ionic bonds between HA and Cu ions, the

Deleted:

Deleted:

Deleted:

Deleted: synergistically

Deleted: Briefly, aqueous

spectroscopy (XPS) was measured using ESCALAB250Xi (Thermo Fisher Scientific, USA) at 150 W. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantitatively measure the proportion of Cu in the samples at 1 KW transmission power with argon as the carrier gas. The drug loading content of the two drugs (Qu and Cu) in the HCQ NPs was calculated using the following formula (Hua et al. 2018a).

Drug loading content(wt %) = $\frac{\text{mass of the drug in nanoparticles}}{\text{the total mass of the nanoparticles}} \times 100\%$

Extracellular chemodynamic activity of HCQ NPs

Different concentrations of H₂O₂ (1, 2, and 4 mM) were added to the HCQ NPs (200 μL, 5 mg/mL) and methylene blue (MB; (100 μL, 100 μg/mL), followed by stirring for 30 min at 37°C in a dark vessel to protect from light. To evaluate the ability of HCQ NPs to produce hydroxyl radicals *in vitro*, the change in MB absorbance was measured at 666 nm using an UV-vis

165 Cell culture

spectrophotometer.

153

154

155156

157

158

159

164

Various cell lines including MDA-MB-231 and LO2 were incubated at 37°C in RPMI-1640
 medium containing 10% FBS and 1% antibiotics (penicillin-streptomycin, 10,000 U/mL) under
 5% CO₂.

169 Intracellular measurement of reactive oxygen species (ROS)

MDA-MB-231 cells (4×10⁴) were seeded in a 24-well plate and cultured for 24 h. The PBS,

171 HCQ, and HCQ + H₂O₂ groups were respectively incubated with 55 μL PBS, 50 μL HCQ NPs +

172 5 μL PBS, and 50 μL HCQ NPs + 5 μL H₂O₂ (final concentration of H₂O₂ was 50 μM) for 4 h.

173 The cells were washed with PBS and incubated for 30 min in RPMI-1640 medium without FBS

174 containing 10 mM of 2',7'-dichlorofluorescein diacetate (DCFH-DA) in the dark. The intensity

of green fluorescence between different groups was observed using an inverted fluorescence

176 microscope (Nikon, USA) as an index of intracellular ROS.

177 Cellular uptake of HCQ NPs

178 The synthesized HCQ NPs were modified by an amide reaction with the fluorescent dye (cy-5)

and purified to obtain cy-5-HCQ NPs. MDA-MB-231 cells (1×10⁶) were seeded in 6-well plates

180 and incubated for 24 h. Equal amounts of PBS or cy-5-HCO NPs were added and incubated for

different times (30 min, 2 h, 4 h, 8 h, 12 h, and 24 h). The cells were washed with PBS,

182 trypsinized, and counted. The fluorescence intensity of each group was evaluated using flow

183 cytometry (Beckman, USA).

184 Cytotoxicity and synergism assays

185 The Cell Counting Kit-8 (CCK-8) assay was used to determine the cytotoxicity of HCQ NPs.

MDA-MB-231 cells (3×10^3) were seeded into 96-well plates and incubated for 24 h. Different

187 volumes of HCQ (5, 10, 15, and 20 μ L), and HCQ (5, 10, 15, and 20 μ L) + H₂O₂ (50 μ M) (the

188 volume difference of different groups supplemented with PBS) were added, and incubated for 48

189 h. Different volumes of HCQ NPs (5, 10, 15, and 20 µL) represent various concentrations of

190 HCQ NPs (Cu: Qu = 100 μM:50 μM, 190 μM:95 μM, 274 μM:137 μM, and 350 μM:175 μM)

191 based on drug loading content of the two drugs (Qu and Cu) in the HCQ NPs. The 96-well plates

 $Drug \text{ loading content(wt \%)} = \frac{\text{mass of}}{\text{the tota}}$ Deleted:

were washed with PBS, and 100 μ L RPMI-1640 containing 10% CCK-8 reagent was added to each well. The 96-well plates were placed in a CO₂ incubator for 3 h. Relative cell viability was

measured using a microplate reader (Thermo Fisher Scientific, USA) to detect the optical density(OD).

197 Calcein AM/PI double staining

MDA-MB-231 cells (5×10^5) were seeded into 6-well plates and incubated for 24 h. Cells were treated according to the grouping: PBS group (PBS 100 μ L), HCQ group (HCQ 90 μ L + 10 μ L PBS), and HCQ + H₂O₂ group (HCQ 90 μ L + 10 μ L H₂O₂). Cell culture plates were placed in the incubator for 48 h. The cell suspension of each group was collected and mixed with AM/PI dye under dark conditions. Then, 150 μ L cell suspension was added to a 24-well cell culture plate, and the cell culture plate was placed in a cell incubator for 30 min. The fluorescence in each

group was observed under a fluorescent inverted microscope.

205 Biocompatibility assay

204

212 213

214

215

216

217

218

219

220

221

222

223 224

225

226

227

228

229

230

231

232

The CCK-8 assay was used to detect the biocompatibility of HCQ NPs. LO2 cells (3×10³) were seeded into two 96-well plates and incubated for 24 h. Different volumes of HCQ NPs (5, 10, 15, and 20 μL) were added and incubated for 48 h. The 96-well plates were washed with PBS, and 100 μL RPMI-1640 containing 10% CCK reagent was added to each well. The 96-well plates were placed in a CO₂ incubator for 3 h. Relative cell viability was calculated using a microplate reader to detect the OD at 450 nm between different wells.

Results and Discussion

Design and preparations

There have only been a few reports on synergistic outcomes of antitumor combinations involving the chemotherapeutic effects of natural antitumor drugs and CDT mediated by Fenton or Fentonlike ions (Fe²⁺, Cu²⁺). Since the molecular structure of naturally bioactive compounds mainly includes phenolic hydroxyl groups, double bonds, and keto groups, metallic ions can easily undergo coordinated reactions with these medicines (Jung et al. 2022). Naturally bioactive compounds also have antioxidant properties, which are contradictory to the action of Fenton or Fenton-like ions, which exert chemodynamic effects by producing ROS (Xue et al. 2018). For example, curcumin is a natural antitumor drug that has strong anti-oxidant properties, is capable of chelating with Fenton or Fenton-like ions (Fe²⁺, Cu²⁺), and has been used to treat Alzheimer's disease because it inhibits ROS production (Chan et al. 2016; Zhai et al. 2015). However, other drugs such as gallic acid and gossypol can exert chemodynamic properties by reducing their coordinated Fenton or Fenton-like ions (Hao et al. 2020; Zaidi & Hadi 1992). Qu is another naturally bioactive compound (Wu et al. 2019), and some studies have speculated that the antitumor effects of Qu-copper complexes are stronger than that of Qu alone because the complex can insert between DNA base pairs to inhibit DNA molecules (Li et al. 2010). These complexes can also produce highly toxic ROS through a Fenton reaction, thereby inducing oxidative DNA damage (Tan et al. 2009). Although our pre-experimental results support this point, there is a lack of in vitro and in vivo validation experiments. In addition, antitumor

Deleted: Considering that

Deleted: anti-oxidant

235 nanodrug delivery systems have not been explored. Therefore, we constructed targeted self-236 assembled HCQ NPs with synergistic antitumor effects (chemotherapy and CDT) (Scheme 1) using Qu as a self-loading chemotherapeutic agent, Cu²⁺ as a Fenton-like reagent, and HA as a 237 238 targeted delivery vehicle. 239 Characterization of HCQ NPs 240 The TEM images of HCQ NPs showed a spherical shape with a smaller particle size (Fig. 1a). 241 The average hydrodynamic diameter of the HCO NPs was approximately 55.36± 0.27 nm (Fig. 242 1b). Since solid tumors have enhanced permeability and retention effects, the nanosized 243 diameters of HCO NPs likely promote their accumulation at tumor sites. The zeta potential of 244 HCQ NPs was affected by pH (Fig. 1c). The negative charge of HCQ NPs was weakened in 245 acidic conditions compared to alkaline or neutral conditions. Carboxyl groups present in HA 246 become ionized under weakly alkaline or near-neutral conditions compared to acidic conditions. Deleted: XPS revealed the presence of Cu²⁺ in HCQ NPs. The high-resolution XPS spectrum of Cu²⁺ 247 248 suggests that Cu existed primarily in the form of Cu²⁺ (Cu 2p _{3/2} peak at 934.58eV and Cu 2p _{1/2} 249 peak at 953.88eV) with altered satellite peaks (940.48eV and 943.58eV) (Fig. 1d). After 250 chelation with Cu²⁺, the UV-vis absorption spectrum of the characteristic peak of Qu at 254 and 251 374 nm was changed to 296 nm (Fig. 2a). Similarly, FTIR spectroscopy revealed that complex 252 formation of Qu and Cu²⁺ substantially changed the wavenumber of the 4-position C=O characteristic absorption peak (Fig. 2b). The C=O vibration frequency of the carbonyl group 253 254 shifted to the lower wavenumber direction (1612.53 and 1599.90 cm⁻¹), corresponding to the 255 formation of a coordinated bond between oxygen ions present on the carbonyl group and the 256 metallic ions (Tan et al. 2009). This bond deviated the electron density of the carboxyl group 257 from the geometric center to a low-frequency shift, indicating that the 4-position carbonyl 258 oxygen participates in the coordinated reaction. The stoichiometric ratio of Qu to Cu²⁺ was 259 determined to be 1:2 based on infrared and ICP-MS analyses. The ICP-MS results showed 133 260 μg of Cu ions per milliliter of HCO NPs. Based on the proportion of Qu and Cu²⁺ (1:2), the total 261 drug loading of Qu and Cu²⁺ in the HCQ NPs for therapeutic purposes was calculated to be 9%. 262 The drug loading capacity of HCQ NPs was similar to that of most nanodrug loading systems 263 $(\sim 10\%)$ (Li et al. 2018). The molecular weight of HA is significantly greater than the Qu-Cu²⁺ 264 complex. Therefore, introducing a large amount of HA (91%) leads to <u>forming</u> a Qu-Cu²⁺ Deleted: the formation of 265 complex nanodrug. 266 The temperature stability test demonstrated that the HCQ-NPs were stable at room temperature 267 (25°C) and higher temperatures (up to 50°C). However, at a low temperature (4°C), HCQ NPs 268 flocculated due to electrostatic interactions between HA and the Qu-Cu²⁺ complex, which was 269 significantly influenced by temperature (Fig. 2d). The time stability test demonstrated that HCQ 270 NPs were stable for 7 days at room temperature (Fig. 2c), which was due to the good water 271 solubility of HA (Hsiao et al. 2015). 272 ROS product stability of HCQ NPs

Hydroxyl radical 'OH is a potent oxidant that can react with various compounds, leading to their

degradation (Buxton et al. 1988). In a biological environment, OH can affect most cellular

273

277 biomolecules present in proteins, amino acids, and lipids (Bogdan et al. 2015). The capacity of 278 the HCQ NPs to produce 'OH was investigated using an MB degradation assay. The MB content Deleted: a 279 did not change in the HCQ NPs samples, but it was slightly decreased after H₂O₂ addition, which 280 led to the generation of 'OH by a Fenton-like reaction (Fig. 3a). 281 The production of ROS in the MDA-MB-231 cellular environment was further confirmed using 282 the fluorescence probe DCFH-DA. DCFH-DA is readily oxidized by ROS, emitting a green Deleted: easily 283 fluorescence (Rastogi et al. 2010). The hypoxia and antioxidant substances (such as GSH) 284 present in the TME may limit the production of ROS (Shi et al. 2020). Therefore, PBS control 285 indicated that ROS production was low in that cell line under standard culture conditions. For Deleted: normal 286 HCQ group, Qu of HCQ NPs can reduce the concentration of antioxidant substances by 287 decreasing the expression level of Bcl-2 (Sethi et al. 2023), Therefore, the ROS level was Deleted: , therefore 288 relatively increased compared to the PBS control. Confocal laser scanning microscopy (CLSM) 289 images showed considerably higher green fluorescence in the co-incubation groups of HCQ NPs 290 and H₂O₂ treated cancer cells compared to the control groups (PBS and HCQ NPs alone) (Fig. 291 3c). These findings confirmed the efficient generation of considerable amounts of 'OH, They Deleted: and 292 indicated the promising potential of HCQ NPs for synergetic CDT cancer therapy. As an Deleted: CDT, as 293 emerging noninvasive cancer treatment method, CDT can convert excessive amounts of 294 endogenously generated H₂O₂ in the TME to toxic 'OH through either Fe-mediated or Cu-295 mediated Fenton-like reactions (Bokare & Choi 2014; Tang et al. 2019). The essence of a Fenton 296 or Fenton-like reaction is that Fe²⁺ or Cu¹⁺ reacts with H₂O₂ to produce highly toxic 'OH; 297 however, Fe²⁺ or Cu¹⁺ radicals are unstable and easily oxidized to Fe³⁺ or Cu²⁺. Since Fe³⁺ or 298 Cu²⁺ containing reagents can reduce to Fe²⁺ or Cu¹⁺ under appropriate conditions (Grinhut et al. Deleted: are capable of reducing 299 2011), they are preferable for Fenton reactions. Initially, Qu coordinated with Cu ions and Deleted: In the beginning 300 reduced Cu²⁺ to Cu¹⁺, which participated in the Fenton-like reaction. The formation and cleavage of the coordinated bond between 3-OH and Cu²⁺ in the Qu structure is a reversible reaction (Sun 301 302 et al. 2020). When it breaks, Cu²⁺ reduces to Cu¹⁺, which participates in the Fenton-like reaction, 303 thereby further promoting the breakage of the coordinated bonds. Therefore, increasing the H₂O₂ 304 concentration outside the cells increases the production of 'OH (Tan et al. 2009). In addition, 305 there is a higher concentration of glutathione in tumor cells compared to normal tissue cells, 306 which results in strong reduction of Cu²⁺ to Cu¹⁺ (Liu et al. 2018). Therefore, HCQ NPs can 307 efficiently generate ROS through Fenton-like reactions both inside and outside the cell (Fig. 3a, 308 3b, 3c), providing evidence to support the use of HCQ NPs for CDT. 309 Cellular uptake of HCQ NPs 310 The cellular uptake of HCQ NPs by MDA-MB-231 cells was investigated using FCM. A higher mean fluorescence intensity indicated a greater uptake of HCQ NPs with longer incubation 311 312 periods (0.5, 2, 4, 12, and 24 h), indicating a time-dependent uptake of HCO NPs by MDA-MB-313 231 cells (Fig. 4a). These results also indicated that HCQ NPs could be rapidly taken up by 314 tumor cells, and HCQ NPs could be rapidly distributed into tumor cells to exert synergistic 315 antitumor effects. 316 Cytotoxicity and synergism assay

325 Considering the excellent capacity of HCQ NPs to produce 'OH, the in vitro anticancer effect 326 was further determined using the CCK-8 assay. LO2 cells were cultured with various 327 concentrations of HCQ NPs (Cu:Qu = 100 μM:50 μM, 190 μM:95 μM, 274 μM:137 μM, and 328 350 μM:175 μM). The HCQ NPs showed negligible adverse effects on LO2 cell viability, 329 demonstrating good cytocompatibility (Fig. 4b). Furthermore, the viability of MDA-MB-231 330 cells declined with increasing concentrations of HCQ NPs. A significant decline in cell viability 331 was observed in the presence of H₂O₂ (simulated TME), indicating synergistically strengthened 332 anticancer effects (Fig. 4c). To confirm further and visualize the cell death induced by Deleted: confirm 333 chemotherapy and CDT, living and dying cells with respective green fluorescence and red 334 fluorescence was observed using CLSM. Compared to the control group (PBS-treated MDA-335 MB-231 cells), some of the MDA-MB-231 cells were damaged following HCQ NPs treatment. Deleted: , but 336 Still, the majority of cells were damaged when simultaneously treated with H₂O₂ and HCQ NPs Deleted: was 337 (Fig. 4d). These results further support the chemotherapeutic and ROS effects of HCQ NPs for 338 synergistic tumor therapy. 339 There is a significant limitation in this study that should be noted. The study lacked animal Deleted: major 340 experiments to investigate the antitumor effect of the HCQ NPs in vivo. In the future, we will 341 conduct animal experiments to verify the synergistic and antitumor effects of the HCQ NPs. 342 343 Conclusions 344 This is the first study to report the synthesis of self-assembled flavonoid-coordinated polymer Deleted: 345 nanoparticles for chemotherapeutic applications. A Qu modification was used to introduce Cu²⁺ 346 (as a linker) and HA to form a Qu-Cu²⁺ targeted nanodrug. *In vitro* studies demonstrated that HCQ 347 NPs had excellent biocompatibility and synergistic antitumor effects. This study provides a novel 348 method for applying traditional Chinese medicine extracts by forming similar coordinated polymer Deleted: the application of 349 nanoparticles. 350 Deleted: Acknowledgements 351 Acknowledgments 352 None. 353 354 References 355 Abdulridha MK, Al-Marzoqi AH, Al-Awsi GRL, Mubarak SMH, Heidarifard M, and Ghasemian 356 A. 2020. Anticancer Effects of Herbal Medicine Compounds and Novel Formulations: a 357 Literature Review. Journal of Gastrointestinal Cancer 51:765-773. 10.1007/s12029-020-00385-0 358 359 Bogdan J, Zarzyńska J, and Pławińska-Czarnak J. 2015. Comparison of Infectious Agents 360 Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A 361 Practical Approach. Nanoscale Res Lett 10:1023. 10.1186/s11671-015-1023-z

- Bokare AD, and Choi W. 2014. Review of iron-free Fenton-like systems for activating H2O2 in
 advanced oxidation processes. *Journal of Hazardous Materials* 275:121-135.
 10.1016/j.jhazmat.2014.04.054
- Buxton GV, Greenstock CL, Helman WP, and Ross AB. 1988. Critical Review of rate constants
 for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH /•O-) in
 Aqueous Solution. *Journal of Physical and Chemical Reference Data* 17:513–886.
 10.1063/1.555805
- Chan S, Kantham S, Rao VM, Palanivelu MK, Pham HL, Shaw PN, McGeary RP, and Ross BP.
 2016. Metal chelation, radical scavenging and inhibition of Aβ42 fibrillation by food
 constituents in relation to Alzheimer's disease. *Food Chemistry* 199:185-194.
 10.1016/j.foodchem.2015.11.118
- Chien SY, Wu YC, Chung JG, Yang JS, Lu HF, Tsou MF, Wood WG, Kuo SJ, and Chen DR.
 2009. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent
 pathways in human breast cancer MDA-MB-231 cells. *Human and Experimental Toxicology* 28:493-503. 10.1177/0960327109107002
- Dolatabadi JE. 2011. Molecular aspects on the interaction of quercetin and its metal complexes
 with DNA. *International Journal of Biological Macromolecules* 48:227-233.
 10.1016/j.ijbiomac.2010.11.012

387

388

389

390 391

392

393

394

395

- Grinhut T, Salame TM, Chen Y, and Hadar Y. 2011. Involvement of ligninolytic enzymes and Fenton-like reaction in humic acid degradation by Trametes sp. *Applied Microbiology and Biotechnology* 91:1131-1140. 10.1007/s00253-011-3300-9
- Hao Y, Dong Z, Chen M, Chao Y, Liu Z, Feng L, Hao Y, Dong ZL, Chen MC, Chao Y, Liu Z, and Feng LZ. 2020. Near-infrared light and glucose dual-responsive cascading hydroxyl radical generation for in situ gelation and effective breast cancer treatment. *Biomaterials* 228:119568. 10.1016/j.biomaterials.2019.119568
- Hsiao MH, Mu Q, Stephen ZR, Fang C, and Zhang M. 2015. Hexanoyl-Chitosan-PEG Copolymer Coated Iron Oxide Nanoparticles for Hydrophobic Drug Delivery. ACS Macro Letters 4:403-407. 10.1021/acsmacrolett.5b00091
- Hua BJ. 2002. Study on the Mechanism of Differentiation and Apoptosis of Tumor Cells
 Induced by Effective monomers of Chinese Medicina Herbs. *Journal of Basic Chinese Medicine* 07.
- Hua L, Wang Z, Zhao L, Mao H, Wang G, Zhang K, Liu X, Wu D, Zheng Y, Lu J, Yu R, and
 Liu H. 2018a. Hypoxia-responsive lipid-poly-(hypoxic radiosensitized polyprodrug)
 nanoparticles for glioma chemo- and radiotherapy. *Theranostics* 8:5088-5105.
 10.7150/thno.26225
- Hua S, de Matos MBC, Metselaar JM, and Storm G. 2018b. Current Trends and Challenges in
 the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational
 Development and Commercialization. Frontiers in Pharmacology 9:790.
 10.3389/fphar.2018.00790

- Jhaveri A, Deshpande P, and Torchilin V. 2014. Stimuli-sensitive nanopreparations for
 combination cancer therapy. *Journal of Controlled Release* 190:352-370.
 10.1016/j.jconrel.2014.05.002
- Jung W, Lee DY, Moon E, and Jon S. 2022. Nanoparticles derived from naturally occurring
 metal chelators for theranostic applications. *Advanced Drug Delivery Reviews* 191:114620. 10.1016/j.addr.2022.114620
- Kakran M, Sahoo NG, Lin L, and Judeh Z. 2012. Fabrication of quercetin nanoparticles by anti solvent precipitation method for enhanced dissolution. *Powder Technology* 223.
 10.1016/j.powtec.2011.08.021
- Lee JJ, Saiful Yazan L, and Che Abdullah CA. 2017. A review on current nanomaterials and
 their drug conjugate for targeted breast cancer treatment. *International Journal of Nanomedicine* 12:2373-2384. 10.2147/ijn.S127329
- 420 Leopoldini M, Russo N, Chiodo S, and Toscano M. 2006. Iron chelation by the powerful
 421 antioxidant flavonoid quercetin. *Journal of Agricultural and Food Chemistry* 54:6343 422 6351. 10.1021/jf060986h
- Li SJ, Liao YF, and Du Q. 2018. Research and application of quercetin-loaded nano drug
 delivery system. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China Journal
 of Chinese Materia Medica 43:1978-1984. 10.19540/j.cnki.cjcmm.20180312.002
- 426 Li Y, Yang ZY, and Wu JC. 2010. Synthesis, crystal structures, biological activities and
 427 fluorescence studies of transition metal complexes with 3-carbaldehyde chromone
 428 thiosemicarbazone. European Journal of Medicinal Chemistry 45:5692-5701.
 429 10.1016/j.ejmech.2010.09.025
- Liu C, Wang D, Zhang S, Cheng Y, Yang F, Xing Y, Xu T, Dong H, and Zhang X. 2019.
 Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for
 Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione
 Depletion and Hypoxia Relief. ACS Nano 13:4267-4277. 10.1021/acsnano.8b09387
- Liu Y, Zhen W, Jin L, Zhang S, Sun G, Zhang T, Xu X, Song S, Wang Y, Liu J, and Zhang H.
 2018. All-in-One Theranostic Nanoagent with Enhanced Reactive Oxygen Species
 Generation and Modulating Tumor Microenvironment Ability for Effective Tumor
 Eradication. ACS Nano 12:4886-4893. 10.1021/acsnano.8b01893
- Mutlu Gençkal H, Erkisa M, Alper P, Sahin S, Ulukaya E, and Ari F. 2020. Mixed ligand
 complexes of Co(II), Ni(II) and Cu(II) with quercetin and diimine ligands: synthesis,
 characterization, anti-cancer and anti-oxidant activity. *Journal of Biological Inorganic Chemistry* 25:161-177. 10.1007/s00775-019-01749-z
- Pang B, Xu X, Lu Y, Jin H, Yang R, Jiang C, Shao D, Liu Y, and Shi J. 2019. Prediction of new targets and mechanisms for quercetin in the treatment of pancreatic cancer, colon cancer, and rectal cancer. *Food & Function* 10:5339-5349. 10.1039/c9fo01168d
- Rastogi RP, Singh SP, Häder DP, and Sinha RP. 2010. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate in the

- cyanobacterium Anabaena variabilis PCC 7937. Biochemical and Biophysical Research
 Communications 397:603-607. 10.1016/j.bbrc.2010.06.006
- Rauf A, Imran M, Khan IA, Ur-Rehman M, Gilani SA, Mehmood Z, and Mubarak MS. 2018.
 Anticancer potential of quercetin: A comprehensive review. *Phytotherapy Research* 32:2109-2130. 10.1002/ptr.6155
- Rippe M, Cosenza V, and Auzély-Velty R. 2019. Design of Soft Nanocarriers Combining
 Hyaluronic Acid with Another Functional Polymer for Cancer Therapy and Other
 Biomedical Applications. *Pharmaceutics* 11. 10.3390/pharmaceutics11070338

455

456

457

461 462

463

- Scalia S, Haghi M, Losi V, Trotta V, Young PM, and Traini D. 2013. Quercetin solid lipid microparticles: a flavonoid for inhalation lung delivery. *European Journal of Pharmaceutical Sciences* 49:278-285. 10.1016/j.ejps.2013.03.009
- Sethi G, Rath P, Chauhan A, Ranjan A, Choudhary R, Ramniwas S, Sak K, Aggarwal D, Rani I,
 and Tuli HS. 2023. Apoptotic Mechanisms of Quercetin in Liver Cancer: Recent Trends
 and Advancements. *Pharmaceutics* 15. 10.3390/pharmaceutics15020712
 - Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, and Cho WC. 2019. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. *Biomolecules* 9. 10.3390/biom9110679
- Shi L, Hu F, Duan Y, Wu W, Dong J, Meng X, Zhu X, and Liu B. 2020. Hybrid Nanospheres to
 Overcome Hypoxia and Intrinsic Oxidative Resistance for Enhanced Photodynamic
 Therapy. ACS Nano 14:2183-2190. 10.1021/acsnano.9b09032
- Sun S, Chen Q, Tang Z, Liu C, Li Z, Wu A, and Lin H. 2020. Tumor Microenvironment Stimuli Responsive Fluorescence Imaging and Synergistic Cancer Therapy by Carbon-Dot Cu(2+) Nanoassemblies. Angewandte Chemie International Ed In English 59:21041 21048. 10.1002/anie.202007786
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, and Bray F. 2021.
 Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality
 Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians
 71:209-249. 10.3322/caac.21660
- Tan J, Wang B, and Zhu L. 2009. DNA binding and oxidative DNA damage induced by a
 quercetin copper(II) complex: potential mechanism of its antitumor properties. *Journal of Biological Inorganic Chemistry* 14:727-739. 10.1007/s00775-009-0486-8
- Tang SM, Deng XT, Zhou J, Li QP, Ge XX, and Miao L. 2020. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. *Biomedicine and Pharmacotherapy* 121:109604. 10.1016/j.biopha.2019.109604
- Tang Z, Liu Y, He M, and Bu W. 2019. Chemodynamic Therapy: Tumour Microenvironment Mediated Fenton and Fenton-like Reactions. *Angewandte Chemie International Ed In* English 58:946-956. 10.1002/anie.201805664

- Tyagi AK, Agarwal C, Chan DC, and Agarwal R. 2004. Synergistic anti-cancer effects of
 silibinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against
 human breast carcinoma MCF-7 and MDA-MB468 cells. *Oncology Reports* 11:493-499.
- Wu L, Li J, Liu T, Li S, Feng J, Yu Q, Zhang J, Chen J, Zhou Y, Ji J, Chen K, Mao Y, Wang F,
 Dai W, Fan X, Wu J, and Guo C. 2019. Quercetin shows anti-tumor effect in
 hepatocellular carcinoma LM3 cells by abrogating JAK2/STAT3 signaling pathway.
 Cancer Med 8:4806-4820. 10.1002/cam4.2388
- Xue L, Zhang H, Zhang J, Li B, Zhang Z, and Tao S. 2018. Bixin protects against particle induced long-term lung injury in an NRF2-dependent manner. *Toxicol Res (Camb)* 7:258 270. 10.1039/c7tx00304h
- Zaidi R, and Hadi SM. 1992. Strand scission in DNA by gossypol and Cu(II): role of Cu(I) and
 oxygen-free radicals. *Journal of Biochemical Toxicology* 7:213-217.
 10.1002/jbt.2570070404
- Zatloukal P, Petruzelka L, Zemanová M, Kolek V, Skricková J, Pesek M, Fojtů H, Grygárková I,
 Sixtová D, Roubec J, Horenková E, Havel L, Průsa P, Nováková L, Skácel T, and Kůta
 M. 2003. Gemcitabine plus cisplatin vs. gemcitabine plus carboplatin in stage IIIb and IV
 non-small cell lung cancer: a phase III randomized trial. *Lung Cancer* 41:321-331.
 10.1016/s0169-5002(03)00233-2
 - Zhai P, Xia CL, Tan JH, Li D, Ou TM, Huang SL, Gu LQ, and Huang ZS. 2015. Syntheses And Evaluation Of Asymmetric Curcumin Analogues As Potential Multifunctional Agents For The Treatment Of Alzheimer's Disease. *Curr Alzheimer Res* 12:403-414. 10.2174/1567205012666150504151120
- Zhang RX, Wong HL, Xue HY, Eoh JY, and Wu XY. 2016. Nanomedicine of synergistic drug
 combinations for cancer therapy Strategies and perspectives. *Journal of Controlled Release* 240:489-503. 10.1016/j.jconrel.2016.06.012

Figure legends

503 504

505

506

- 512 Scheme 1. Schematic illustration of the preparation of HCQ NPs as a versatile nanoplatform for513 efficient synergistic chemotherapy.
- 514 Fig. 1. Characterizations of HCQ NPs. (a) TEM images of HCQ NPs; (b) Size distribution of
- 515 HCQ NPs; (c) Zeta potential under different pH conditions of HCQ NPs; (d) XPS analysis of
- 516 HCQ NPs. Data are presented as mean \pm SD (n=3). **P<0.01.
- 517 Fig. 2. Characterizations of HCQ NPs properties. (a) UV analysis; (b) FT-IR analysis; (c)
- 518 Time stability, and (d) Temperature stability. Data are presented as mean \pm SD (n=3). **P<0.01,
- 519 ****P*<0.001, *****P*<0.0001.
- 520 Fig. 3. (a) Extracellular chemodynamic activity of HCQ NPs (A: PBS; B: HCQ; C: HCQ+H₂O₂
- 521 2 nM; D: HCQ+H₂O₂ 4 nM; E: HCQ+H₂O₂ 6 nM); (b) Fluorescence quantitative results of (c);
- 522 (c) MDA-MB 231 cells incubated with PBS, HCQ, and HCQ+H₂O₂ after 24 h. ROS production
- 523 was determined using DCFH-DA after irradiation. Fluorescence was observed using a
- fluorescent microscope. Data are presented as mean \pm SD (n=3). **P<0.01, ***P<0.001.

525 Fig. 4. (a) Flow cytometric results of HCQ NPs at different incubation times (0.5, 2, 4, 12, and 526 24 h); (b) CCK8 assay results of LO2 cells. Survival ratio of cells after treatment with PBS and HCQ NPs at different concentrations (5, 10, 15, and 20 μ L represent Cu: Qu = 100 μ M:50 μ M, 527 528 $190~\mu M:95~\mu M,\,274~\mu M:137~\mu M,$ and $350~\mu M:175~\mu M);$ (c) CCK8 assay results of MDA-MB 529 231 cells. Survival ratio of cells after treatment with PBS, HCQ NPs and HCQ NPs + H₂O₂ at 530 different concentrations (5, 10, 15, and 20 μ L represent Cu: Qu = 100 μ M:50 μ M, 190 μ M:95 531 μM , 274 μM :137 μM , and 350 μM :175 μM); (d) Calcein AM (cytoplasm staining of live cells) 532 and PI (nucleus staining of dead cells) co-stained images of MDA-MB 231 cells incubated with 533 different treatment groups. Data are presented as mean \pm SD (n=3). **P<0.01, ***P<0.001.