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ABSTRACT
Background. Pulmonary hypertension (PH) is a syndrome characterized by marked
remodeling of the pulmonary vasculature and increased pulmonary vascular resistance,
ultimately leading to right heart failure and even death. The localization of Zrt/Irt-like
Protein 8 (ZIP8, a metal ion transporter, encoded by SLC39A8) was abundantly in
microvasculature endothelium and its pivotal role in the lung has been demonstrated.
However, the role of Zip8 in PH remains unclear.
Methods. Bioinformatics analysis was employed to identify SLC39A8 expression
patterns and differentially expressed genes (DEGs) between PH patients and normal
controls (NC), based on four datasets (GSE24988, GSE113439, GSE117261, and
GSE15197) from the Biotechnology Gene Expression Omnibus (NCBI GEO) database.
Gene set enrichment analysis (GSEA) was performed to analyze signaling pathways
enriched for DEGs. Hub genes were identified by cytoHubba analysis in Cytoscape.
Reverse transcriptase-polymerase chain reaction was used to validate SLC39A8 and its
correlated metabolic DEGs expression in PH (SU5416/Hypoxia) mice.
Results. SLC39A8 expression was downregulated in PH patients, and this expression
pattern was validated in PH (SU5416/Hypoxia)mouse lung tissue. SLC39A8-correlated
genes were mainly enriched in the metabolic pathways. Within these SLC39A8-
correlated genes, 202 SLC39A8-correlated metabolic genes were screened out, and
seven genes were identified as SLC39A8-correlatedmetabolic hub genes. The expression
patterns of hub genes were analyzed between PH patients and controls and further
validated in PH mice. Finally, four genes (Fasn, Nsdhl, Acat2, and Acly) were
downregulated in PH mice. However, there were no significant differences in the
expression of the other three hub genes between PH mice and controls. Of the four
genes, Fasn and Acly are key enzymes in fatty acids synthesis, Nsdhl is involved in
cholesterol synthesis, and Acat2 is implicated in cholesterol metabolic transformation.
Taken together, these results provide novel insight into the role of Zip8 in PH.
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INTRODUCTION
Pulmonary hypertension (PH) is a syndrome characterized by marked remodeling of the
pulmonary vasculature and increased pulmonary vascular resistance and pressure, leading
to right heart failure and even death (Hassoun, 2021). PH pathogenesis is multifactorial
and presented as the aberrantly elevated pulmonary artery pressure (PAP), the persistent
increase in pulmonary vascular resistance, and the vascular remodeling (Crosswhite &
Sun, 2014). The pathological features of the disorder include remodeling of the distal
pulmonary vasculature, infiltration of inflammatory cells, and extension of the pulmonary
artery smooth muscle cells (PASMC) into typically nonmuscularized vessels (Hassoun,
2021). A recent review pointed out that PH has been mitigated by drugs that improve
vascular relaxation and inhibit cell proliferation, but the long-term effects are not ideal
(Mathew, 2011). The newer drugs are urgently needed to improve survival and exercise
tolerance.

SLC39A8 encodes a zinc transporter ZIP8, a member of ZIPs, whose expression was
found to be highest in the kidney, lung, and testis, compared with other organs (Wang
et al., 2007); in different organs, its expression was abundant in endothelium (Tran et al.,
2022). The important role of ZIP8 in the lung has been demonstrated in several studies.
For example, loss of ZIP8 expression was associated with impaired renewal capacity of
type 2 alveolar epithelial cells (AEC2s) and enhanced lung fibrosis (Liang et al., 2022), and
increased ZIP8 expression in lung epithelial cells was associated with a protective role
against TNF-induced cytotoxicity (Besecker et al., 2008), and increased ZIP8 expression in
the lung was associated with re-organization of filamentous actin (Geng et al., 2018). These
data demonstrated the important role of ZIP8 in the lung.

A review has summarized the role of ZIPs in many diseases (Takagishi, Hara & Fukada,
2017), however, their role in vascular diseases had been paid little attention. Recently, some
studies suggested that the expression of ZIP12 (another member of ZIPs) was induced in
the vasculature in human patients and rat models of PH in vivo (Tran et al., 2021; Xiao
et al., 2021; Zhao et al., 2015; Zhu et al., 2022), which was at least partially responsible for
hypoxia-induced PH in both human and rats (Zhao et al., 2015). Other studies showed
that ZIP14 could mediate the influx of Zn2+ in sheep pulmonary artery endothelial cells
(Thambiayya et al., 2012). Despite growing interest in the role of ZIPs in vascular disease,
the understanding of the functions of ZIPs in PH remains a gap in current knowledge.
Based on the above research background, we hypothesize that ZIP8, hereafter referred to
as SLC39A8, could play a vital role in the progression of PH.

To test this hypothesis, we analyzed SLC39A8 expression in PH patients as well mice,
identified four metabolic hub genes correlated with SLC39A8 by using bioinformatic
methods, and validated the expression of these genes in PH mice, to predict SLC39A8-
related molecular mechanisms in PH pathogenesis.
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MATERIALS & METHODS
Data collection and processing
We searched the National Center for Biotechnology Gene Expression Omnibus (NCBI
GEO) database for datasets related to both ‘‘pulmonary hypertension’’ and ‘‘Homo
sapiens’’, identifying seven datasets. All the downloaded files were processed using R
version 4.2.1, and the data were normalized, calibrated, and log2-transformed. Of these
datasets, only those containing the expression of SLC39A8 in both PH patients and normal
control (NC) samples were selected, such as GSE24988 (62 PH and 22 NC), GSE113439
(15 PH and 11 NC), GSE117261 (58 PH and 25 NC) and GSE15197 (18 PH and 13 NC).
Considering the small number of specimens in each dataset, the 4 datasets were merged
(153 PH and 71 NC), hereafter referred to as merged dataset, and followed by batch
normalization using ‘‘sva (v3.32.10)’’ and ‘‘limma (v3.24.4)’’ R package to eliminate the
batch effect.

Identifying differentially expressed genes
Differential expression analysis was performed between PH lung tissue and normal tissue
using the Limma package in R language. Genes were considered to be differential expression
genes (DEGs) with P < 0.05 and |log2FC|>0. Results were visualized using ‘‘volcano’’ and
‘‘heatmap’’ plots constructed using ‘‘ggplot2 (v3.3.6)’’.

Mouse model of PH/animal experiment
C57BL/6J male mice at 8–10-weeks were purchased from SPF (Beijing) Biotechnology
Co., Ltd. Animals were randomized into two groups, kept at 20–25 ◦C under a 12 h
light-dark cycle, and allowed free access to food and water freely. To induce the mice PH
model (n= 10), received a single weekly subcutaneous injection of SU5416 (Su, 20 mg/kg
body weight, suspended in carboxymethylcellulose solution). Then mice were housed in a
hypoxic environment (10% O2, Hx) for 4 weeks. Carboxymethylcellulose solution consists
of four major components including 0.5% (wt/vol) carboxymethylcellulose sodium, 0.9%
(wt/vol) sodium chloride, 0.4% (vol/vol) polysorbate 80, and 0.9% (vol/vol) benzyl alcohol
in deionized water. Control mice (n= 10) received a vehicle instead of SU5416 and were
subjected to normoxic conditions. A mean pulmonary arterial pressure (mPAP) of ≥ 25
mmHg was regarded as a success of PH modeling, and researchers who tested mPAP were
blinded to animal groups.

All animals survived until the end of the experiment. This study did not require
euthanasia. At the end of the treatment, all mice were anaesthetized with pentobarbital
sodium (30 mg/kg, i.p.) before being sacrificed, then lung tissue samples were collected for
the subsequent experiments.

All experimental protocols were approved by the Ethics Committee of Xinxiang Medical
University (XYLL 20230062) and administrated strictly following the Guidelines of the
Laboratory Animal Center of Henan Province, Xinxiang Medical University.

Reverse transcriptase-polymerase chain reaction (RT-PCR)
Total RNA was extracted from lung tissues using Trizol reagent (Invitrogen, Waltham,
MA, USA) according to the manufacturer’s instructions. The concentration of RNA was
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Table 1 The primer sequences of the interested genes in this study.

Gene name Primer sequences Product
size

forward 5′- GGACTCGCTATTGGGACTCT-3′
mouse Slc39a8

reverse 5′- GGGTTGGCATAGCAAGTCAC-3′
287 bp

forward 5′-ACTTTCTGGGTGTAATTTTCTCTG-3′
mouse Acat2

reverse 5′-TGGAATACCTACCCCACCTCA-3′
382 bp

forward 5′-AACCAGCAGTGCCAGTGTTGTC-3′
mouse Nsdhl

reverse 5′-GGTGCTCAGCGGCTAAGATGTG-3′
335 bp

forward 5′-CCAAGATCCCTGCAAGGAAAG-3′
mouse Acly

reverse 5′-TCAGGATTTCCTTGTGTCCCC-3′
205 bp

forward 5′-CGGCTGCGTGGCTATGATTATGG-3′
mouse Fasn

reverse 5′- GGTTGCTGTCGTCTGTAGTCTTGAG -3′
324 bp

forward 5′-CTTTGGCATTGTGGAAGGGCTC-3′
mouse Gapdh

reverse 5′- GCAGGGATGATGTTCTGGGCAG-3′
126 bp

forward 5′-CAGAGGAGCCTCGAGCATTTA-3′
mouse Fdps

reverse 5′-GGAAGGCTTGTACCACGGTC-3′
240 bp

forward 5′-TCCTGTCACCAAGCATAGCC-3′
mouse Acss2

reverse 5′-AAACCGTGTGTGGTTCCCAT-3′
343 bp

determined with Nanodrop 1000 (Thermo Scientific, Waltham, MA, USA), and RNA (1
µg) of each sample was reverse transcribed using QuantiTect Reverse Transcription Kit
(Qiagen). PCR was performed in technical triplicate for each sample by using a thermal
cycler (GeneAmp PCR system 2400; PerkinElmer, Fremont, CA). Primer sequences used
for the target genes analyzed are listed in Table 1.

Gene set Enrichment Analysis (GSEA) of DEGs and
SLC39A8-correlated DEGs
Gene set enrichment analysis (GSEA) was performed on the DEGs using GSEA/MsigDB
(https://www.gsea-msigdb.org/gsea/msigdb). C2.cp.all.v2022.1.Hs.symbols.gmt (All
Canonical Pathways) (3050) was selected as the reference gene set. Enrichment of gene
sets was ranked according to normalized enrichment score (NES), which represents the
strength of the enrichment and it denotes normalized enrichment score. Gene sets with
|NES|>1 (positive NES scores indicate that gene set was upregulated in PH groups, negative
NES scores indicate that the gene set was downregulated in PH groups), P < 0.05 and FDR
(q value) < 0.25 were considered significantly enriched (Zhou et al., 2020).

Protein–Protein Interaction (PPI) network analysis and the hub genes
identified
PPI network was constructed by Cytoscape software. In this study, STRING (version 11,
http://www.webgestalt.org/) was used to analyze the PPI of SLC39A8-correlated DEGs,
and interaction with a combined score >0.4 (medium confidence score) was considered
statistically significant (Wu et al., 2021). Then, the PPI network was constructed and
visualized using the Cytoscape software (v3.9.1) (Shannon et al., 2003). Hub genes were
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identified using the Cytoscape plugin CytoHubba, and three different algorithms such as
MCC, Degree, and Closeness were selected (Feng et al., 2018).

Statistical analysis
Statistical analyses were performed using SPSS 18.0, GraphPad Prism 9.0, and R 4.2.1.
Wilcoxon rank sum test and Welch t ’ test was used to compare the difference of SLC39A8
and 7 key hub genes expression between PH and NC. Pearson correlation analysis was used
to examine the relationship between the expression of SLC39A8 and other genes expressed
in lung tissue of PH and NC. A Student’s t -test was used to compare the difference in
SLC39A8, Acat2, Acly, and Fasn expression in the lung between PHmice and control mice.
Data were expressed as mean ± S.E.M.

RESULTS
Identification of differential gene SLC39A8 in PH and NC
As shown in Fig. 1A, a total of 5228 DEGs ((log2FC > 0, P < 0.05) were identified from the
merged datasets (GSE24988, GSE113439, GSE117261, and GSE15197), of which 3,031 were
downregulated and 2,197 were upregulated. The heatmap of DEGs in the pooled dataset
showed hierarchical clustering of altered transcription in two groups (Fig. 1B), which may
facilitate identification of the unknown transcripts’ function or the unknown function of
known transcripts.

Based on the GSEA analysis of all DEGs, the top 6 Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways (Fig. 1C) included ‘‘Arrhythmogenic Right Ventricular
Cardiomyopathy Arvc’’ (Talati & Hemnes, 2015), ‘‘Ecm Receptor Interaction’’ (Thenappan
et al., 2018b; Yuan et al., 2020), ‘‘Wnt Signaling Pathway’’ (de Jesus Perez et al., 2014;
Konigshoff & Eickelberg, 2010), ‘‘Hypertrophic Cardiomyopathy Hcm’’ (Mitra et al.,
2020; Musumeci et al., 2017), ‘‘Focal Adhesion’’ (Lin et al., 2017; Ravi et al., 2013; Zhao
et al., 2014a), ‘‘Dilated Cardiomyopathy’’ (Dzięwikecka et al., 2020; Liang et al., 2021),
all of which could be associated with PH. On the other hand, 4 of the top 5 enriched
Reactome pathways (Fig. 1D) encompassed ‘‘Degradation of the Extracellular Matrix’’
(Mumby et al., 2021; Thenappan, Chan &Weir, 2018a), ‘‘Cilium Assembly’’, ‘‘Extracellular
Matrix Organization’’ (Thenappan, Chan &Weir, 2018a), and ‘‘Signaling By Tgfb Family
Members’’ (Woo, Ornitz & Singh, 2019), all of which could be involved in the pathogenesis
of PH.

As shown in Fig. 1B, SLC39A8 was among the top 100 DEGs. To further verify its
expression pattern, we next analyzed the expression of SLC39A8 in lung tissue between
PH and NC. As shown in Fig. 1E, the expression of SLC39A8 decreased in the lung
tissue of PH patients (Fig. 1E). To further validate this variation of SLC39A8 in PH, we
examined the expression of SLC39A8 in a mice model of PH induced by SU5416/Hypoxia
by quantitative RT-PCR. Likewise, SLC39A8 expression in the lung tissue of PH mice was
noticeably reduced (Fig. 1F). Taken together, these results suggest that the datasets we
screened are validated and SLC39A8 expression was downregulated in PH.
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Figure 1 SLC39A8 expression was downregulated in PH patients andmouse PHmodels. (A) The
volcano plots of DEGs in the merged datasets (153 PH and 71 NC, merged from these four datasets), in
which 3,031 DEGs were downregulated (log2FC> 0, FDR< 0.05) and 2,197 DEGs upregulated (log2FC
> 0, FDR< 0.05). (B) Heatmap of DEGs in the merged datasets (C) GSEA analysis shows enriched KEGG
pathways. (D) GSEA analysis shows enriched Reactome pathways. (E) Expression levels of SLC39A8 in
PH and NC groups in the merged datasets. (F) Expression levels of Slc39a8 in the lungs of normoxia and
Su/Hx treated PH mice (n= 10). Data were presented as mean± SEM. ***P < 0.001.

Full-size DOI: 10.7717/peerj.15939/fig-1
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Figure 2 Correlation analysis of all DEGs and SLC39A8. (A) Heatmap of the top 20 genes positively or
negatively correlated with SLC39A8. Red represents positive correlation and blue represents negative cor-
relation. (B) Top five genes positively correlated with SLC39A8 were displayed. (C) Top five genes nega-
tively correlated with SLC39A8 were displayed.

Full-size DOI: 10.7717/peerj.15939/fig-2

Identifying SLC39A8-correlated genes
To further explore potential molecular mechanisms of SLC39A8 in PH, we used Pearson
correlation coefficients to perform correlation analysis on all genes expressed in PH andNC,
thereby identifying genes with expression patterns correlated with SLC39A8 expression.
Then 6,083 SLC39A8-correlated genes were identified when considered adjusted [adj.] P
< 0.05.

According to the results of correlation analysis, 2,851 genes are negatively correlated with
SLC39A8, and 3,232 genes are positively correlated with SLC39A8. As shown in Fig. 2A, top
20 positive-correlated genes and the top 20 negatively-correlated genes were displayed in
heat maps of Pearson correlations. Then, the top five positively SLC39A8-correlated genes
were presented in Fig. 2B, such as lysosomal associated membrane protein 3 (LAMP3),
phosphatase and actin regulator-1 (PHACTR1), methionine synthase reductase (MTRR),
methionine synthase reductase ATP-binding cassette transporter A3 (ABCA3) and sciellin
(SCEL). Top five negatively associated genes were also presented in Fig. 2C, such as
clusterin (CLU), Transmembrane protein family (TMEM45A), eyes absent homolog 2
(EYA2), Musashi2 (MSI2) and Serpin Peptidase Inhibitor, Clade F 1 (SERPINF1). Among
them,CLU (Liu et al., 2015;Nicolescu, 2015) andABCA3 (Kunig et al., 2007;Ota, Kimura &
Kure, 2016) have been shown to be associated with PH, which indirectly suggests SLC39A8
may play a pivotal role in the progression of PH. Taken together, these results suggest that
SLC39A8-related genes are associated with PH, which indicates that SLC39A8 may play a
role in PH development.

GSEA analysis of SLC39A8-correlated genes
After identifing SLC39A8-correlated genes, we further performed gene set enrichment
analysis (GSEA) using gene set collections from the MsigDB (https://www.gsea-msigdb.
org/gsea/msigdb/collections.jsp). These enriched pathways consisted of Wikipathways,
Reactome, and KEGG. As shown in Fig. 3A, The SLC39A8-correlated genes were
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Figure 3 The GSEA analysis of SLC39A8-correlated DEGs between PH and NC. (A) GSEA classical
plots generated based on NES score in canonical Wikipathways. (B) The top three WikiPathways are listed
respectively. (C) GSEA classical plots generated based on NES score in canonical Reactome pathways. (D)
GSEA classical plots generated based on NES score in canonical KEGG pathways. P .adj< 0.05 and false
discovery rate (FDR, qvalue)<0.25 were used to indicate significant enrichment score.

Full-size DOI: 10.7717/peerj.15939/fig-3

enriched in ‘‘Cholesterol Metabolism With Bloch and Kandutschrussell pathways’’,
‘‘Cholesterol Biosynthesis Pathway’’, ‘‘Cholesterol Synthesis Disorders’’, ‘‘Nrf2 pathway’’
and ‘‘Mevalonate Arm of Cholesterol Biosynthesis Pathway’’ in WikiPathways based on
normalized enrichment score (NES). Among the top five WikiPathways enriched in the
SLC39A8-correlated DEGs, four were clustered into a group ‘‘cholesterol metabolism’’,
which was themost significant and has been demonstrated associated with PH (Heresi et al.,
2010; Jonas & Kopeć, 2019; Zhang et al., 2017). Then, the top three pathways were displayed
in Fig. 3B, respectively. According to the results of GSEA enrichment analysis of Reactome
pathways, the SLC39A8-correlated genes were enriched in, ‘‘Antigen Processing Cross
Presentation’’, ‘‘Cholesterol Biosynthesis’’, ‘‘innate Immune System’’ and ‘‘Regulation Of
Cholesterol Biosynthesis By Srebp Srebf’’. Among the top five Reactome pathways, twowere
clustered into a ‘‘cholesterol metabolism’’ group. Furthermore, GSEA enrichment analysis
of KEGG pathways revealed that the pathways enriched by SLC39A8-correlated genes
included ‘‘TerpenoidBackboneBiosynthesis’’, ‘‘Steroid Biosynthesis’’, ‘‘Neuroactive Ligand
Receptor Interaction’’, ‘‘Focal Adhesion’’ and ‘‘Wnt Signaling Pathway’’. Of these pathways,
‘‘Neutrophil Degranulation’’ (Taylor et al., 2018), ‘‘innate Immune System’’ (Taylor et al.,
2018), Wnt signaling pathway (de Jesus Perez et al., 2014; Konigshoff & Eickelberg, 2010),
and ‘‘Steroid Biosynthesis’’ (Hester, Ventetuolo & Lahm, 2019) have already been linked
to PH. Collectively, the role of SLC39A8 in the progression of PH may be attributed to
cholesterol and/or steroid metabolism, based on our results of GSEA analysis.
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Identifying key SLC39A8-correlated metabolic DEGs between PH and
NC
Accumulating evidence has indicated that pulmonary arterial hypertension (PAH) is
associated with metabolic dysfunction (He et al., 2022; He et al., 2020; Wang et al., 2022;
Xu, Janocha & Erzurum, 2021). And a previous study has identified 1,660 human genes
assigned to 86 metabolic pathways from the KEGG database (Gong et al., 2021). Based on
these findings, we subsequently identified SLC39A8-correlated metabolic DEGs between
the PH and NC, and constructed the PPI network of DEGs. As shown in Fig. 4A, a
venn diagram revealed 202 common genes in three groups, including 1,660 transcripts of
metabolic genes, 6,083 SLC39A8-correlated genes, and 5,228 DEGs between PH and NC.
The 202 SLC39A8-correlated metabolic DEGs were analyzed by the STRING database to
explore PPI, in which interactions with a combined score greater than 0.4 were obtained to
construct PPI networks (Fig. 4B). The node color in PPI network changed gradually from
yellow to red in increasing order according to the degree ranking of cytohubba (such as 1–2,
3–4, 5–7, 8–10, 11–19, 20–24, and 25–30). Hub genes were identified by the CytoHubba
plugin in Cytoscape (https://string-db.org/). The top 15 hub genes were identified using
three different algorithms closeness, degree, and MCC as shown in Figs. 4C–4E. A Venn
diagram (Fig. 4F) revealed 7 common genes in the three groups, such as cholesterol
acyl-transferase 2 (ACAT2), NAD(P)-dependent steroid dehydrogenase-like (NSDHL),
farnesyl diphosphate synthase (FDPS), fatty acid synthase (FASN), ATP-citrate lyase
(ACLY), farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and Acetyl-CoA synthetase
2 (ACSS2), indicating that they represented the key SLC39A8-correlated metabolic DEGs
between PH and NC. Together, these results further support the role of SLC39A8 in PH
may be associated with cholesterol metabolism.

Validation of key SLC39A8-correlated metabolic DEGs in a mice model
using RT-PCR analysis
To further elucidate the relationship between SLC39A8 and the seven key genes. We
presented the expression of these genes in PH patients and controls in the merged dataset
and performed correlation analysis between these genes. As shown in Fig. 5A, PH patients
lowly expressed six genes: ACAT2, NSDHL, FDPS, FASN, ACLY, and ACSS2. However, the
expression of FDFT1 did not differ between PH and NC, this was indeed the case that the
actual differences were small and not significant though there was a significant difference
when differential analysis was performed, which attributed to different statistical methods
used. Meanwhile, the correlation between SLC39A8 and these genes were shown in Fig.
5B. Interestingly, the expression of these genes was positively correlated with SLC39A8.
Finally, we identified 6 genes that are most likely correlated with SLC39A8, such as ACAT2,
NSDHL, FDPS, FASN, ACLY, and ACSS2.

To further verify the results of bioinformatics analysis, we examined the expression of
these genes in PH mice and control mice. RT-PCR was used to validate the 6 key genes
(NSDHL, ACAT2, ACLY, and FASN) expression in PH mice and control mice. As shown
in Fig. 5C, the expression of Acat2, Nsdhl, Fasn, and Acly were significantly low in PHmice,
which was consistent with the results of bioinformatics analysis. However, the expression of
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Figure 4 Identification of hub genes SLC39A8-correlated metabolic DEGS between PH and NC. (A)
Venn diagram of common genes in three groups (1,600 transcripts of metabolic genes, 6083 SLC39A8-
correlated DEGs, and 5,228 DEGs). (B) PPI network was constructed by the STRING database and visu-
alized by cytoscape software (v3.9.1), and each blue filled node represents a SLC39A8-related gene; (C–E)
The top 15 Hub genes were identified via cytoscape software (cytohubba) using MCC (C), degree (D), and
closeness (E). (F) Venn diagram of common genes in these three hub gene sets.

Full-size DOI: 10.7717/peerj.15939/fig-4

Fdps and Acss2 did not differ between the two groups (Fig. S1). These data provided strong
evidence that SLC39A8 expression in PH was associated with cholesterol metabolism.

DISCUSSION
Pulmonary hypertension (PH) is a fatal rare disease that is characterized by pulmonary
vascular remodeling, involving pulmonary artery endothelial cells, smooth muscle cells,
and fibroblasts (Humbert et al., 2019; Rabinovitch, 2012). ZIP8 has recently been identified
as a membrane transporter of essential and toxic divalent metals. The important role
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Figure 5 Verification of hub genes expression at the mRNA level. (A) The expression of 7 key
SLC39A8-correlated metabolic DEGs in the merged dataset. (B) The correlations between 7 key SLC39A8-
correlated metabolic DEGs and SLC39A8 were presented independently. (C) RT-PCR analysis of the
expression of Acat2, Nsdhl, Acly and Fasn in lungs of normoxia and Su/Hx treated PH mice. n = 10 for
each group. Data are shown as mean± SEM; ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001; ns, no significance.

Full-size DOI: 10.7717/peerj.15939/fig-5
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of ZIP8 in the lung has been demonstrated, however, the role of ZIP8 in PH and the
mechanism involved are unknown. In recent years, the rapid evolution of high-throughput
sequencing technologies has provided a new perspective for PH research. The contribution
of transcriptome technology in revealing the role of gene expression has long been
appreciated.

In this study, we performed DEGs analysis between PH patients and controls, and
found SLC39A8 expression was significantly reduced in PH patients. Furthermore, the
low expression of SLC39A8 was confirmed in PH mice by using RT-PCR. These findings
suggested that SLC39A8 may play a pivotal role in the progression of PH.

The results of GSEA analysis of all DEGs between PH and NC showed that the top five
KEGG pathways were all associated with PH, and 3 of the top 5 Reactome pathways were
also involved in the pathogenesis of PH. These results demonstrated the validity of the
selected datasets. To further elucidate the potential role of SLC39A8 in PH, we identified
SLC39A8-correlated genes in DEGs and performed a GSEA analysis of the correlated DEGs.
The results of enrichedWikipathways, Reactome pathways, and KEGG pathways suggested
that SLC39A8 was intimately linked to cholesterol metabolism.

Studies have shown that metabolic dysfunction is associated with PAH (He et al.,
2022; He et al., 2020; Wang et al., 2022; Xu, Janocha & Erzurum, 2021). A recent review
highlighted the role of obesity and lipid metabolism in the development of high-altitude
pulmonary hypertension (HAPH), which suggests that triglycerides (TGs) and low-density
lipoprotein (VLDL) could be predictors of HAPH in early stages, and high BMI is an
important contributor to the development of HAPH (Siques et al., 2020). Furthermore, the
role of imbalanced fatty acid metabolism in pulmonary arterial hypertension (PAH) also
has been discussed (Xu, Janocha & Erzurum, 2021). It was interesting that body mass index
(BMI) (Speliotes et al., 2010), obesity (Berndt et al., 2013; Speliotes et al., 2010) high-density
lipoprotein (HDL) cholesterol levels (Teslovich et al., 2010; Waterworth et al., 2010; Willer
et al., 2013) were correlated with rs13107325 SNP (results in Ala-Thr amino acid change
at position 391 of the protein) of the Solute Carrier Family 39 Member 8 (SLC39A8) gene
in several genome-wide association studies (GWAS).

Considered together, we speculated that SLC39A8 may play a role in PH by regulating
cholesterol and/or lipid metabolism, and subsequently identified SLC39A8-related
metabolic DEGs by using a Venn diagram. Next, seven hub SLC39A8-related metabolic
DEGs were identified, after analyzing the expression of these genes and the correlation of
these genes and SLC39A8, six hub genes were selected for further study. Finally, of the six
hub genes, only four hub genes such as Acat2, Nsdhl, Fasn, and Acly were downregulated
in PH mice, while the other two genes such as Fdps and Acss2 were equivalent between the
two groups.

Of the four genes, NSDHL gene encodes a sterol dehydrogenase or decarboxylase enzyme
involved in cholesterol biosynthesis (Caldas & Herman, 2003), ACLY is a key fatty acids
synthesis enzyme, FASN is a key enzyme for the de novo synthesis of fatty acids, and ACAT2
is an ER membrane-spanning enzyme converting cholesterol and fatty acid to cholesteryl
esters (CEs) (Chang, Chang & Cheng, 1997).
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It is known that fatty acid metabolism involves fatty acid synthesis, fatty acid oxidation,
and cholesterol metabolism (Yang et al., 2019). The importance of lipid mechanism in PH
(Siques et al., 2020; Xu, Janocha & Erzurum, 2021) has been demonstrated, and imbalanced
fatty acid metabolism is reported in the heart and lungs of PAH patients (Hernandez-
Saavedra et al., 2020; Zhao et al., 2014b; Zhuang et al., 2019). A higher rate of de novo
fatty acid synthesis was found in PAH-HPASMC, and increased expression of FASN was
observed in the lungs of MCT-treated rats (Singh et al., 2016) and human PAH pulmonary
arterial vascular smooth muscle cells (PAVSMC) (Jiang et al., 2022). In addition, another
fatty acid synthesis enzyme ACLY was also upregulated in PAVSMC (Jiang et al., 2022).
Furthermore, another study reveals that inhibition of FASN is beneficial for endothelial
function in PH (Singh et al., 2017) and improves cardiac function associated with PH
(Singh et al., 2019). These results demonstrated that the increased FASN is correlated with
PH. However, in this study, our results indicated that the expression of FASN and ACLY
in PH patients and PH mice were decreased. We speculate that the discrepancy might
arise from the difference between the cell sample and tissue sample and need to be further
studied.

Although cholesterol and fatty acids (FA) are essential lipids that play a wide range of
physiological roles, excessive polar lipids, such as free cholesterol (FC) and free FA (FFA),
are the major risk factors in the body. The stabilized ACAT2 converts cholesterol and
FAs to CEs, thereby reducing the lipotoxicity of polar lipids. Previous studies have found
HDL-cholesterol reduced (Heresi et al., 2010) in PAH patients, and loss of membrane
cholesterol contributes to impaired pulmonary endothelial store-operated Ca2+ entry
(SOCE) in chronic hypoxia-induced PH (Zhang et al., 2017).

Those findings suggested the protective properties of HDL in PAH (Jonas & Kopeć,
2019). In this study, the expression of NSDHL and ACAT2 was decreased, which can
decrease the production of cholesterol and increase the toxicity of cholesterol, finally
participate in the procession of PH.

Collectively, the results of the present study revealed that SLC39A8 expression is low in
pH patients and mice, we first identified its potential target genes associated with fatty acid
metabolism through bioinformatic prediction, and validated the expression of these genes
in PH patients and mice. Finally, we conclude that SLC39A8 may play a pivotal role in the
progression of PH by regulating fatty acid and/or cholesterol metabolism.

However, some limitations should also be noted in this study. First, the sample size
of the included datasets in this study is not big enough. Second, the specific regulatory
mechanism between SLC39A8 and the 4 hub genes has not been explored. Therefore, a
more detailed investigation of the protective role of SLC39A8 in PH and whether these
four hub genes were involved will be required.

CONCLUSIONS
Our data presented here was the first, to our knowledge, to show that the expression of
SLC39A8 was low in the lung of PH patients by analyzing four publicly available microarray
datasets retrieved from the GEO database. This result was validated in PH mice by using
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RT-PCR. Furthermore, based on our current study, our research provided a bioinformatic
analysis of SLC39A8 and its correlated metabolic DEGs. The screened hub genes, NSDHL,
ACLY, ACAT2, and FASN may be downstream target genes of SLC39A8. However, further
study about PH is required for a better understanding of the role of ZIP8 in PH.
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