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ABSTRACT
Background. In this research, we propose probabilistic approaches to identify pairwise
patterns of species co-occurrence by using presence-absence maps only. In particular,
the two-by-two contingency table constructed from a presence-absence map of two
species would be sufficient to compute the test statistics and perform the statistical tests
proposed in this article. Some previous studies have investigated species co-occurrence
through incidence data of different survey sites. We focus on using presence-absence
maps for a specific study plot instead. The proposedmethods are assessed by a thorough
simulation study.
Methods. A Chi-squared test is used to determine whether the distributions of two
species are independent. If the null hypothesis of independence is rejected, the Chi-
squared method can not distinguish positive or negative association between two
species. We propose six different approaches based on either the binomial or Poisson
distribution to obtain p-values for testing the positive (or negative) association between
two species. When we test to investigate a positive (or negative) association, if the p-
value is below the predetermined level of significance, then we have enough evidence
to support that the two species are positively (or negatively) associated.
Results. A simulation study is conducted to demonstrate the type-I errors and the
testing powers of our approaches. The probabilistic approach proposed byVeech (2013)
is served as a benchmark for comparison. The results show that the type-I error of the
Chi-squared test is close to the significance level when the presence rate is between
40% and 80%. For extremely low or high presence rate data, one of our approaches
outperforms Veech (2013)’s in terms of the testing power and type-I error rate. The
proposed methods are applied to a tree data of Barro Colorado Island in Panama and a
tree data of Lansing Woods in USA. Both positive and negative associations are found
among some species in these two real data.

Subjects Ecology, Plant Science, Statistics, Environmental Impacts, Forestry
Keywords Chi-squared, Binomial, Poisson, Pairwise patterns

INTRODUCTION
Incidence-based data are common in biology and ecology (Gotelli & Chao, 2013). This
kind of data ease a lot of fieldwork and reduce cost because only presence or absence needs
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to be recorded. It may be the only option in some circumstances, especially when it is hard
to count individual members of a species. The main objective of this article is to examine
species co-occurrence (also called ‘‘co-existence’’) by using presence-absence maps only. In
particular, the presence-absence map of two species can be used to construct the two-way
contingency table containing the four frequencies related to the presence and absence
combinations of two species, and these frequencies would be sufficient to compute the six
new test statistics proposed in this article.

The investigation of species co-occurrence plays an important role in studying gene
expression, community assembly, local–regional species diversity relationship, and meta-
community concept (Gotelli & Ulrich, 2010; Veech, 2014). The co-occurrence patterns are
typically categorised into three associations: (i) positive, (ii) negative, and (iii) random.
Methods of analysis for these data can broadly be divided into the classes of matrix-level
and pairwise approaches. The matrix-level approaches investigate the entire assemblage
as a unit of analysis, whereas the pairwise approaches focus on determining patterns of
positive, negative, or random association between two species. The methods proposed in
this article belong to the pairwise class of approaches.

Several pairwise approaches have been proposed in the last twenty-five years (Veech,
2006; Veech, 2013; Sanderson, 2000; Sanderson, Diamond & Pimm, 2009; Sfenthourakis,
Giokas & Tzanatos, 2004; Sfenthourakis, Tzanatos & Giokas, 2006; Gotelli & Ulrich, 2010;
Pitta, Giokas & Sfenthourakis, 2012). See Veech (2014) for an overview of pairwise
approaches used in various applications of species co-occurrence. When determining
species co-occurrence, it is crucial to avoid misinterpreting it as species interaction
or causality. The analysis results of Cazelles et al. (2016) revealed the difficulty of the
interpretation of species interactions from co-occurrence data. Blanchet, Cazelles &
Gravel (2020) mentioned that both theory and experimental evidence support the
idea that ecological interactions may affect co-occurrence, but co-occurrence is not
evidence of ecological interactions. Dormann et al. (2018) provided ten questions to guide
interpretation and avoid false conclusions.

In this article, we use the Chi-squared statistic to test the null hypothesis that the
distributions of two species are independent; see Lindgren (2017, Ch 10) for an overview
of the Chi-squared test of independence. If the null hypothesis is rejected, the Chi-squared
method can not determine whether there is a positive or negative association.We propose a
few different combinations of random variables under binomial and Poisson distributions
to construct several test statistics; consequently, six different approaches are developed to
compute p-values for inferring positive (or negative) association. If the computed p-value
is smaller than the chosen level of significance (typically chosen to be 5%), we conclude
that there is sufficient evidence to reject the null hypothesis and support the alternative
hypothesis of positive (or negative) association between two species.

To assess the performance of the six newly proposed tests, we perform an extensive
simulation study (details are given in the next section). Moreover, we have included the
probabilistic approach proposed byVeech (2013) in the simulation study as the benchmark.
The results of the simulation study show that one of our approaches outperforms Veech
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(2013)’s approach in terms of statistical power. Veech (2013) investigated species co-
occurrence through incidence data of different survey areas. We focus on using presence-
absence maps on a certain study plot instead. To illustrate the applicability of our proposed
methods, we have analysed two real-life datasets of the presence-absence of several tree
species from Barro Colorado Island in Panama and Lansing Woods in the USA.

The rest of this article is organized as follows. The following section introduces the
six different approaches proposed in this article and the probabilistic approach proposed
by Veech (2013). The simulation settings and the two example datasets of tree species are
also presented in the next section. The results of the simulation study are reported in
section Results. The Results section also illustrates the analysis of the two example datasets.
The article ends with a discussion in the final section.

MATERIALS AND METHODS
Example datasets
We have analysed two real-life datasets using several pairwise approaches to determine
the species-by-species co-occurrence patterns of tree species in Panama and the USA. The
first dataset consists of the tree locations, recorded in 2015, from Barro Colorado Island
(BCI) in Panama; it is downloaded from ‘‘https://forestgeo.si.edu’’. The dataset contains
248,835 tree locations capturing 296 tree species of Panama inside a study area of 50 hectare
(500×1000m2). In this article, we have selected eight most abundant species to investigate
their co-occurrences. See Condit (1998), Hubbell et al. (1999), Condit et al. (2019b), and
Condit et al. (2019a) for further details about this dataset.

The second dataset is the famous Lansing dataset from the R package spatstat.data.
This dataset provides the locations of 2,251 trees and their botanical classification into six
types: black oak, hickory, maples, red oak, white oak, and miscellaneous. These data were
collected by Gerrard (1969) from a plot in Lansing Woods, Clinton County, Michigan,
USA, that measures 924 ft × 924 ft (19.6 acre). The original plot size has been rescaled to
the unit square.

Statistical tests
Let W ⊂R2 denote the study area. We divide the study area into a regular grid, and let
N denote the total number of grid cells. We are interested in investigating the association
between species A and species B. Let Na be the number of cells in which species A is
present andNb be the number of cells in which species B is present. Under the randomness
assumption, the expected number of cells in which both species A and B are present is
E1=NaNb/N , in which neither of them is present is E2= (N −Na)(N −Nb)/N , in which
species A is present but species B is absent is E3=Na(N −Nb)/N , and in which species
A is absent but species B is present is E4 = (N −Na)Nb/N . For each Ei, i= 1,...,4, let
Oi denote the corresponding random variable. Therefore, the random variables O1, O2,
O3, and O4 represent the number of grid cells (out of N cells) containing both species A
and B, containing neither of them, containing only species A, and containing only species
B, respectively. Furthermore, let oi, i= 1,...,4, denote the observed value corresponding
to the random variable Oi. A Chi-squared test is used to test the null hypothesis that the
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occurrences of species A and B are independent, and the corresponding test statistic can be
computed as

χ2
=

4∑
i=1

(oi−Ei)2

Ei
. (1)

Under the null hypothesis of independence, the test statistic Eq. (1) follows the Chi-
squared distribution with 1 degree of freedom (d.f.). If at least one expected frequency Ei
is smaller than ten, then the above test statistic is replaced by the Yates’ corrected version
(Yates, 1934):

χ2
Yates=

4∑
i=1

(|oi−Ei|−0.5)2

Ei
. (2)

When (|oi−Ei|−0.5) is negative in Eq. (2), it is set equal to zero. The main disadvantage
of the Chi-squared test approach is the lack of information. When the null hypothesis is
rejected, we need some other method to investigate whether the alternative hypothesis of
positive (or negative) association between the two species can be supported.

To develop new approaches for testing associations between species, we utilise the
following key results. Under the assumption that every individual is randomly distributed
in each cell with equal probability, the random variableOi follows the binomial distribution
withN ‘‘trials’’ and ‘‘success’’ probability Ei/N , which is expressed asOi∼Bin(N ,Ei/N ). If
N is large and the ‘‘success’’ probability Ei/N is small, thenOi is approximately distributed
as Poisson distribution with expected value Ei, and this is expressed as Oi∼̇Poi(Ei) for
i= 1,...,4. Similarly, if the randomness assumption holds true, for large N and small Ei
(i= 1,...,4), we also have Oi+Oj∼̇Poi(Ei+Ej) for i 6= j.

We use the random variablesOi, i= 1,...,4, to construct six new test statistics for testing
non-random associations between two species. If the occurrences of species A and species
B are positively associated, O1 and O2 tend to be large, but O3 and O4 tend to be small.
In contrast, if they are negatively associated, O1 and O2 tend to be small, but O3 and O4

tend to be large. For testing positive association, we use the following five rejection rules:
(i) O1 is large, (ii) both O1 and O2 are large (iii) O1+O2 is large, (iv) both O3 and O4

are small, and (v) O3+O4 is small. Note that the test statistics for (i), (iii), and (v) are
scaler-valued, whereas the test statistics for (ii) and (iv) are random vectors, given by
(O1,O2)> and (O3,O4)>, respectively. We define the test statistics for assessing negative
association by replacing the term large with the term small and vice versa in (i)–(v). Because
the random variables O1,...,O4 follow either binomial or Poisson distributions under the
null hypothesis, we show below that it is straightforward to compute the p-values using
our proposed test statistics.

For testing the alternative hypothesis of positive association, we propose the following
six methods to compute the p-values. Let CN

r (read N choose r) denote the number
of combinations of N things taken r at a time. The quantity CN

r is computed as
N !/(r !(N − r)!), where N ! is 1×2×···×N .

• Under binomial distribution, the test statistic O1 is used to compute the p-value as
follows: P1=Pr(O1≥ o1|H0)=

∑
j≥o1C

N
j (E1N )j(1− E1

N )N−j .
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• Under binomial distribution, the test statistic (O1,O2)> is used to compute
the p-value as follows: P2 = Pr(O1 ≥ o1andO2 ≥ o2|H0)≈

∏2
i=1Pr(Oi ≥ oi|H0)=∏2

i=1[
∑

j≥oiC
N
j ( EiN )j(1− Ei

N )N−j].
• Under binomial distribution, the test statistic (O3,O4)> is used to compute
the p-value as follows: P3 = Pr(O3 ≤ o3andO4 ≤ o4|H0)≈

∏4
i=3Pr(Oi ≤ oi|H0)=∏4

i=3[
∑

j≤oiC
N
j ( EiN )j(1− Ei

N )N−j].
• Under Poisson distribution, O1 is used to compute the p-value as follows: P4=Pr(O1≥

o1|H0)=
∑

j≥o1
exp(−E1)E

j
1

j! .
• Under Poisson distribution, the test statistic O1+O2 is used to compute the p-value as
follows: P5= P(O1+O2≥ o1+o2|H0)=

∑
j≥o1+o2

exp[−(E1+E2)](E1+E2)j
j! .

• Under Poisson distribution, the test statistic O3+O4 is used to compute the p-value as
follows: P6= P(O3+O4≤ o3+o4|H0)=

∑
j≤o3+o4

exp[−(E3+E4)](E3+E4)j
j! .

If the p-value is below the significance level, we conclude that the occurrences of species
A and species B are positively associated. These six methods of computing p-values can
be used for testing negative association by changing the directions of the inequalities in
P1−P6. For example, if P1= Pr (O1≤ o1|H0)=

∑
j≤o1C

N
j (E1N )j(1− E1

N )N−j is lower than the
significance level then we have enough evidence to support that the occurrences of the two
species are negatively associated.

Besides these six approaches to calculating p-values, we also consider the probabilistic
approach of Veech (2013), which in our simulation study has been used as a benchmark
for comparison with the other approaches. The p-value corresponding to this probabilistic
approach is given by

P7= Pr (O1≥ o1|H0)=
∑
j≥o1

CN
j ×C

N−j
Nb−j×C

N−Nb
Na−j

CN
Nb
×CN

Na

,

where max{0,Na+Nb−N } ≤ j ≤min{Na,Nb}, is used as p-value for testing positive
association. It is notable that this method is similar to binomial test but not equivalent.
The numerator of the equation is the total number of ways that species A and B could be
distributed among N cells for a given Na, Nb and j. The denominator represents the total
number of ways that species A and B can be arranged among N cells without regard for
j (Veech, 2013). This quantity P7 can be served as p-value for testing negative association
through the same modification used for P1.

Griffith, Veech & Marsh (2016) developed an R package, cooccur, to implement
Veech (2013)’s method. It is highly accessible and handles large datasets with high
performance. All computational procedures in this research were implemented in R
software. The R source code is provided in the Supplemental Files and the repository at
https://github.com/Yamei628/Prob-Cooccur.

Simulation scenarios
We conduct a simulation study to compare the performance of our methods with the
method proposed by Veech (2013). Functions runifpoint and rpoispp in spatstat, an R
software package developed by Baddeley & Turner (2005), are used to simulate spatial
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Figure 1 Illustration of a uniform point pattern and its presence-absence map. (A) Randomly dis-
tribute 400 points in a 1×1 plot (B) convert the point pattern process into a presence-absence map where
the grid size is 0.05×0.05.

Full-size DOI: 10.7717/peerj.15907/fig-1

point patterns. The spatial point patterns are simulated in a 1×1 plot. The plot is divided
into a regular grid where the cell size is 0.05× 0.05 and the number of cells is 400.
Function lets.presab.points in letsR, a R software package developed by Vilela & Villalobos
(2015), is used to convert spatial point patterns into presence-absence maps. The test for
investigating the association between two species is based on the presence-absence map.
Figure 1 illustrates an example of a uniform point pattern and its presence-absence map.

The spatial point patterns are simulated under the following five scenarios.

• Scenario 1: The occurrences of species A and species B are independent. The
abundances of these two species are the same and given at various values, na = nb =
20,40,100,200,300,...,1000.
• Scenario 2: The occurrences of species A and species B are positively associated. The
intensities of these two species are the same and given in various settings. The average
presence cells of these two species are similar.
• Scenario 3: The occurrences of species A and species B are positively associated. The
intensity of species A is fixed, but the intensity of species B is given in various settings.
The average presence cells of these two species are dissimilar.
• Scenario 4: The occurrences of species A and species B are negatively associated. The
intensities of these two species are both given in various settings. The average presence
cells of these two species are similar.
• Scenario 5: The occurrences of species A and species B are negatively associated. The
intensity of species A is fixed, but the intensity of species B is given in various settings.
The average presence cells of these two species are dissimilar.

For Scenario 1, the function runifpoint is used to simulate two random point patterns of
given abundances. The Chi-squared statistic Eq. (1) (or Eq. (2) when the Yates’ correction is
applicable is used to determine whether these two species are independent. For the rest four
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Figure 2 Presence-absence maps of species A and species B where the intensities of these two species
are λa(x,y)= 400x and λb(x,y)= 800x respectively. The occurences of species A and species B are pos-
itively associated.

Full-size DOI: 10.7717/peerj.15907/fig-2

scenarios, the intensities are given and the occurrences of two species are either positively
or negatively associated. Function rpoispp is used to generate point patterns under these
scenarios. Let λa(x,y) and λb(x,y) be the intensity function of species A and species B,
respectively, where (x,y) are the spatial coordinates of any location in (0,1)2⊂R2. Figure 2
shows the presence-absence maps of species A and species B where λa(x,y)= 400x and
λb(x,y)= 800x . This figure demonstrates an example that the occurrences of two species
are positively associated. In contrast, Fig. 3 shows an example that the occurrences of two
species are negatively associated, where λa(x,y)= 400x and λb(x,y)= 400−400x .

The level of significance is set at 0.05. For evaluating the proposed methods, the
proportion of rejecting the null hypothesis is evaluated based on 500 simulations generated
using the true underlying intensity functions.

RESULTS
Simulation results
Table 1 presents the simulation results of the Chi-squared test of random association
(i.e., the null hypothesis states that the two point patterns are independent of each other)
corresponding to Scenario 1 based on the test statistic defined in Eq. (2). The first two
columns of the table present the abundance values na and nb considered for two species
A and B, respectively. The next two columns present the average number of cells (N̄a and
N̄b) that are associated with species presence, and the last column presents the estimated
type-I error rate based on 500 simulations.

When the abundance is between 200 and 700, the presence rate (the proportion of
the number of presence cells to the number of the overall cells) is between 39.3% and
82.5%. It is an ideal range to use the Chi-squared statistic for testing independence since
the estimated type-I error rates are close to the nominal significance level of 5%. When
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Figure 3 Presence-absence maps of species A and species B where the intensities of these two species
are λa(x,y) = 400x and λb(x,y) = 400− 400x respectively. The occurrences of species A and species B
are negatively associated.

Full-size DOI: 10.7717/peerj.15907/fig-3

Table 1 Simulation results for Scenario 1. The abundances of two species are the same and given in the
first two columns. The occurrences of two species are independent and simulated in a 1× 1 plot. The plot
is divided into a regular grid where the cell size is 0.05× 0.05, and the number of cells is 400. The average
presence cells and the type-I error rates of the Chi-squared test are evaluated over 500 simulations.

Species
abundance

Average
pres. cells

Proportion of
rejecting H0

type-I error ratena nb N̄a N̄b

20 20 19 19 0.020
40 40 39 39 0.024
100 100 89 89 0.040
200 200 158 157 0.054
300 300 211 211 0.056
400 400 253 253 0.040
500 500 285 286 0.050
600 600 311 310 0.050
700 700 330 330 0.056
800 800 346 346 0.036
900 900 358 358 0.022
1000 1000 367 367 0.018

the abundances are outside the range of 200 to 700, the estimated type-I error rates are
lower than the nominal significance level. These low estimated type-I error rates indicate
that the Chi-squared test of independence may produce high type-II error rates (thus,
low statistical powers) when the two species are not independent and have presence rates
outside the range of 40% to 80%.

The simulation results of Scenario 2–5 are listed in Tables 2, 3, 4 and 5, respectively. The
intensities λa(x,y) and λb(x,y) are listed in the first two columns of the tables when the two
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Table 2 Scenario 2 results: intensities used in generating locations of two species for 500 simulations, average abundances, average presences,
and the estimated powers 1−βi (highest values in bold) corresponding to the tests based on Pi for i= 1,...,7.

Intensity Average
abundance

Average
pres. cells

Proportion of rejectingH0 (power of the test)

λa, λb n̄a n̄b N̄a N̄b 1- β1 1- β2 1- β3 1- β4 1- β5 1- β6 1- β7
100x 50 50 46 46 0.102 0.254 0.064 0.098 0.000 0.006 0.154
200x 100 101 85 86 0.254 0.552 0.386 0.232 0.012 0.128 0.386
300x 150 151 118 119 0.426 0.784 0.728 0.398 0.236 0.382 0.674
400x 200 199 148 147 0.566 0.928 0.912 0.482 0.520 0.612 0.856
500x 250 250 172 172 0.736 0.982 0.980 0.624 0.832 0.858 0.958
600x 301 301 193 193 0.826 0.990 0.990 0.712 0.924 0.936 0.976
700x 351 351 212 211 0.916 0.998 0.998 0.784 0.978 0.982 0.996
800x 401 400 227 227 0.950 1.000 1.000 0.818 0.992 0.992 1.000
900x 450 451 241 241 0.952 1.000 1.000 0.770 0.996 1.000 1.000
1000x 500 498 253 253 0.962 1.000 1.000 0.788 1.000 1.000 1.000
2000x 1000 999 321 320 0.980 1.000 1.000 0.198 0.996 1.000 1.000
3000x 1501 1502 347 347 0.928 1.000 1.000 0.000 0.906 1.000 1.000
4000x 2002 2002 361 360 0.800 1.000 1.000 0.000 0.504 1.000 1.000
5000x 2500 2501 368 368 0.594 1.000 1.000 0.000 0.122 0.990 1.000

intensities are different; otherwise, the common intensity is presented in the first column
(e.g., in Table 2). In the last seven columns of Tables 2–5, we report the proportions of
null hypothesis rejection corresponding to the seven approaches described in the previous
section. Note that for Scenario 2–5, these proportions are estimated statistical powers
corresponding to the seven approaches. For the ith approach (i= 1,...,7), we have used
the notation 1−βi to denote the corresponding statistical power, where βi is the estimated
type-II error rate.

Tables 2–5 show that the estimated powers of the approaches that use binomial
distributions to compute p-values are usually higher than those that use Poisson
distributions. In particular, the results show that 1−β1 is higher than 1−β4 for all
the scenarios reported in Tables 2–5. The two approaches use the same random variableO1

to compute the p-values; however, 1−β1 is computed assuming a binomial distribution,
whereas 1−β4 is computed assuming a Poisson distribution. The second and third
approaches, both of which used two variables to compute p-values, performed better than
the first approach. Overall, the second approach performed best and produced the highest
estimated power in most scenarios.

In the scenarios with positive associations (i.e., Scenario 2 and 3), the approaches based
on P2, P3, and P7 performed equally well when the average abundances were large for both
species. For example, in Scenario 2, the estimated powers of the three approaches are unity
for all the cases with large abundances. However, the second approach performed better
than the other two in the cases with low abundances. When the average abundance is 50,
Table 2 shows that 1−β2 is 0.254, which is higher than 1−β3 (0.064) and 1−β7 (0.154).
Similarly, when the average abundance n̄b is 50 in Table 3, the estimated power of the
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Table 3 Scenario 3 results: intensities used in generating locations of two species for 500 simulations, average abundances, average presences,
and the estimated powers 1−βi (highest values in bold) corresponding to the tests based on Pi for i= 1,...,7.

Intensity Average
abundance

Average
pres. cells

Proportion of rejecting H0 (power of the test)

λa λb n̄a n̄b N̄a N̄b 1−β1 1−β2 1−β3 1−β4 1−β5 1−β6 1−β7
100x 50 46 0.164 0.452 0.372 0.150 0.000 0.034 0.362
200x 100 85 0.336 0.712 0.656 0.306 0.126 0.244 0.602
300x 150 118 0.512 0.876 0.848 0.454 0.390 0.502 0.786
400x 199 147 0.566 0.928 0.912 0.482 0.520 0.612 0.856
500x 249 171 0.710 0.956 0.952 0.612 0.736 0.782 0.910
600x 299 192 0.712 0.972 0.972 0.614 0.786 0.810 0.948

400x 700x 200 350 148 211 0.736 0.974 0.974 0.598 0.856 0.860 0.962
800x 399 227 0.772 0.992 0.994 0.608 0.910 0.902 0.982
900x 449 240 0.800 0.988 0.990 0.632 0.920 0.908 0.968
1000x 499 253 0.798 0.998 0.998 0.642 0.940 0.924 0.994
2000x 1000 320 0.588 1.000 1.000 0.228 0.956 0.858 1.000
3000x 1499 347 0.172 1.000 1.000 0.008 0.864 0.620 1.000
4000x 1999 360 0.014 0.998 0.998 0.000 0.546 0.198 0.998
5000x 2499 369 0.000 0.986 0.994 0.000 0.184 0.028 0.990

Table 4 Scenario 4 results: intensities used in generating locations of two species for 500 simulations, average abundances, average presences,
and the estimated powers 1−βi (highest values in bold) corresponding to the tests based on Pi for i= 1,...,7.

Intensity Average
abundance

Average
pres. cells

Proportion of rejectingH0 (power of the test)

λa λb n̄a n̄b N̄a N̄b 1−β1 1−β2 1−β3 1−β4 1−β5 1−β6 1−β7
100(1−x) 100x 50 50 46 46 0.082 0.224 0.020 0.078 0.000 0.000 0.114
200(1−x) 200x 100 101 85 86 0.262 0.532 0.338 0.250 0.002 0.056 0.370
300(1−x) 300x 150 151 119 119 0.448 0.756 0.712 0.394 0.182 0.304 0.664
400(1−x) 400x 200 199 147 147 0.634 0.932 0.926 0.570 0.572 0.622 0.870
500(1−x) 500x 250 250 172 172 0.708 0.954 0.956 0.610 0.794 0.790 0.918
600(1−x) 600x 300 301 193 193 0.768 0.990 0.990 0.654 0.884 0.870 0.966
700(1−x) 700x 351 351 212 211 0.824 0.994 0.994 0.686 0.940 0.936 0.986
800(1−x) 800x 399 400 227 227 0.842 1.000 1.000 0.604 0.958 0.954 0.998
900(1−x) 900x 450 451 241 241 0.872 0.998 0.998 0.598 0.966 0.972 0.996
1000(1−x) 1000x 499 498 253 253 0.848 1.000 1.000 0.492 0.974 0.978 0.998
2000(1−x) 2000x 1000 999 321 320 0.036 1.000 1.000 0.000 0.404 0.966 1.000
3000(1−x) 3000x 1499 1502 348 347 0.000 1.000 0.964 0.000 0.000 0.048 0.998
4000(1−x) 4000x 1999 2002 360 360 0.000 0.996 0.062 0.000 0.000 0.000 0.970
5000(1−x) 5000x 2499 2501 369 368 0.000 0.784 0.000 0.000 0.000 0.000 0.222

second approach is 0.452, which is higher than 0.372 and 0.362, estimated powers of the
third and seventh approaches, respectively.

In the scenarios with negative associations (i.e., Scenario 4 and 5), the top three
performers with high estimated powers are the approaches based on P2, P3, and P7. These
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Table 5 Scenario 5 results: intensities used in generating locations of two species for 500 simulations, average abundances, average presences,
and the estimated powers 1−βi (highest values in bold) corresponding to the tests based on Pi for i= 1,...,7.

Intensity Average
abundance

Average
pres. cells

Proportion of rejectingH0 (power of the test)

λa λb n̄a n̄b N̄a N̄b 1−β1 1−β2 1−β3 1−β4 1−β5 1−β6 1−β7
100x 50 46 0.214 0.496 0.372 0.204 0.002 0.014 0.384
200x 100 85 0.390 0.738 0.682 0.364 0.114 0.202 0.632
300x 150 118 0.502 0.854 0.828 0.456 0.312 0.418 0.752
400x 199 147 0.634 0.932 0.926 0.570 0.572 0.622 0.870
500x 249 171 0.638 0.938 0.938 0.560 0.658 0.670 0.894
600x 299 192 0.688 0.966 0.968 0.576 0.764 0.756 0.918

400(1−x) 700x 200 350 147 211 0.692 0.976 0.976 0.596 0.804 0.768 0.944
800x 399 227 0.700 0.968 0.968 0.578 0.824 0.782 0.942
900x 449 240 0.684 0.982 0.982 0.548 0.838 0.790 0.962
1000x 499 253 0.704 0.984 0.992 0.562 0.880 0.816 0.966
2000x 1000 320 0.376 0.976 0.984 0.168 0.786 0.602 0.960
3000x 1499 347 0.100 0.930 0.954 0.012 0.558 0.284 0.922
4000x 1999 360 0.018 0.882 0.928 0.000 0.286 0.072 0.886
5000x 2499 369 0.000 0.802 0.884 0.000 0.140 0.024 0.810

three approaches consistently outperformed the other approaches for the cases reported in
Tables 4–5. For Scenario 4, the second approach performed best, especially in the extreme
cases where there are very low abundances or very high abundances. For example, when
the average abundance is considered to be 50, the estimated power based on P2 is 0.224,
which is higher than the estimated powers 0.02 and 0.114 based on P3 and P7, respectively.
Moreover, when the average abundance is high (approximately 2,500), the estimated power
based on P2 equal to 0.784 (in the last row of Table 4), which is significantly higher than the
estimated powers 0.000 and 0.222 based on P3 and P7, respectively. For Scenario 5, when
large abundance values are considered for species B, the third approach performed slightly
better than the second and seventh approaches. For example, in Table 5, the estimated
power 1−β3 is the highest when the species abundance n̄b is between 500 and 2500. As
with the other scenarios, the second approach performed best for Scenario 5 with low
abundance values.

We investigated the type-I error rates of the seven approaches using the nominal
significance level 0.05. Table 6 shows the estimated type-I error rates, each calculated based
on 500 null samples simulated using Scenario 1. The first two rows and the last row of
the table shows that the estimated type-I error rates of the second approach (based on
P2) for testing against positive associations are close to the nominal level of 5%. Thus, the
second approach will be the most powerful for testing positive association between two
species when both presence rates are either below 22.5% or above 90%. When the presence
rates are between 22.5% and 90% (i.e., average presence cells are between 90 and 360),
the use of the second approach may lead to inflated type-I error rates. In this scenario,
we recommend to use either the third or the seventh approach. In the case of assessing
negative associations, the estimated type-I error rates of the second approach are close to
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the nominal level when the presence rates of both species exceed 85% (i.e., presence cells
are more than 340). Because estimated powers of the second approach for these presence
rates are highest among the approaches considered in this article, we recommend using
the second approach to assess negative associations in the case of large presence rates.
Although the estimated powers are high for the second approaches when the presence rates
are between 22.5% and 85%, the type-I error estimates for this approach are higher than
the nominal level of 5%. In contrast, the type-I error estimates of the seventh approach are
below the nominal level. Thus, we recommend using the seventh approach for assessing
negative associations when both presence rates are between 22.5% and 85%.

Data examples
BCI data analysis
We analyse the popular tropical tree data from Barro Colorado Island (BCI), Panama. The
eight most abundant tropical tree species are selected. Our objective is to investigate all 28
pairwise co-occurrence patterns among these eight species. The dataset corresponding to
each species is originally stored as a point pattern where each point corresponds to a tree
location within the study region. For investigating the co-occurrence pattern of any two
given species, we convert the corresponding point patterns into two 5 m × 5 m gridded
presence-absence maps, which allowed us to compute important presence/absence rates
for performing statistical tests based on the p-values P1−P7. Figure 4 shows the 5m×5m
gridded presence-absence maps of these eight tree species.

Table 7 provides the names and identifiers of the eight species from BCI, along with
some key summary measures of them, namely, the total number of trees within the study
region (abundance), the total number of cells that are presences (presence cells), and
the presence rate (computed as the percentage of total number of cells). For performing
pairwise comparisons, we first use the Chi-squared test to test the null hypothesis of
independence, and then, if the null hypothesis is rejected, we use the p-values Pi,i =1
,...,7, to determine whether there is any significant association between two species. Table
8 shows the results of the statistical tests for alternative hypotheses of positive and negative
associations. This table also reported the p-values corresponding to the Chi-squared test of
independence.

Table 8 shows that the Chi-squared test of independence is rejected for all but three pairs:
(i) Faramea occidentalis and Alseis blackiana (No. 2 and 5), (ii) Trichilia tuberculata and
Alseis blackiana (No. 4 and 5), and (iii) Trichilia tuberculata andMouriri myrtilloides (No. 4
and 7). Moreover, the results indicate that the six out of eight species (No. 1, 2, 3, 4, 7, and
8) are positively associated; all the pairwise comparisons except the one between the species
No. 4 and 7 have produced statistically significant p-values at the 5% significance level.
The positive association between the species Hybanthus prunifolius (No. 1) and Swartzia
simplex (No. 8) is visible in Fig. 4, as they are nearly absent in the middle-left region. The
species Alseis blackiana (No. 5) also exhibits positive associations with the four (No. 1, 3,
7, and 8) out of six species in the above mentioned group.

From Fig. 4, we observe that species No. 1 distributes densely on both left-hand
and right-hand sides. Species No. 4 and 7 only aggregates on either of the two sides.
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Table 6 Scenario 1 simulation results: species abundances, average presence cells, and the type-I error rates α1–α7 corresponding to the approaches P1–P7, respec-
tively, based on 500 simulations from the null hypothesis for testing against the alternative hypotheses of positive and negative associations.

Species
abundance

Average pres.
cells

H1: positive association H1: negative association

na nb N̄a N̄b α1 α2 α3 α4 α5 α6 α7 α1 α2 α3 α4 α5 α6 α7

20 20 19 19 0.020 0.054 0.006 0.020 0.000 0.000 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000
40 40 39 39 0.024 0.064 0.006 0.024 0.000 0.000 0.028 0.036 0.076 0.000 0.036 0.000 0.000 0.036
100 100 89 89 0.010 0.072 0.032 0.008 0.000 0.002 0.032 0.012 0.094 0.026 0.010 0.000 0.000 0.032
200 200 158 157 0.002 0.078 0.066 0.000 0.004 0.008 0.048 0.008 0.078 0.074 0.008 0.010 0.012 0.034
300 300 211 211 0.002 0.092 0.092 0.000 0.008 0.010 0.050 0.000 0.064 0.066 0.000 0.012 0.012 0.034
400 400 253 253 0.000 0.078 0.066 0.000 0.002 0.004 0.038 0.000 0.074 0.064 0.000 0.000 0.002 0.032
500 500 285 286 0.000 0.078 0.048 0.000 0.000 0.004 0.032 0.000 0.076 0.056 0.000 0.002 0.002 0.040
600 600 311 310 0.000 0.088 0.050 0.000 0.000 0.004 0.052 0.000 0.086 0.040 0.000 0.000 0.002 0.040
700 700 330 330 0.000 0.076 0.036 0.000 0.000 0.002 0.042 0.000 0.082 0.016 0.000 0.000 0.000 0.038
800 800 346 346 0.000 0.106 0.026 0.000 0.000 0.002 0.058 0.000 0.060 0.004 0.000 0.000 0.000 0.024
900 900 358 358 0.000 0.082 0.004 0.000 0.000 0.002 0.026 0.000 0.052 0.000 0.000 0.000 0.000 0.018
1000 1000 367 367 0.000 0.052 0.008 0.000 0.000 0.000 0.024 0.000 0.048 0.000 0.000 0.000 0.000 0.010

C
hang

etal.(2023),PeerJ,D
O

I10.7717/peerj.15907
13/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.15907


Figure 4 Presence-absence maps of the eight most abundant species in BCI tree data. (A) Hybanthus
prunifolius. (B) Faramea occidentalis.(C) Desmopsis panamensis. (D) Trichilia tuberculata. (E) Alseis
blackiana. (F) Oenocarpus mapora. (G) Mouriri myrtilloides (H) Swartzia simplex. The area is 50-ha (
500×1000m2). The corresponding presence-absence maps are at cell size 5×5 m.

Full-size DOI: 10.7717/peerj.15907/fig-4

Consequently, the testing results show No. 1 is positively associated with species No. 4 and
7, but the latter two species are not positively associated. This example demonstrates that
we can not guarantee the positive association between two species if they are positively
associated with the same species.

Table 7 reveals that the species Oenocarpus mapora (No. 6) possesses a unique feature
of a high abundance but low presence. This may be evident from the spatial distribution
displayed in Fig. 4F. While it exhibits clustering at the local scale, there appear to be large
distances between clusters at the global scale (i.e., within the entire study region). The
results in Table 8 show that Oenocarpus mapora is negatively associated with all the other
species.
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Table 7 Eight most abundant species in BCI tree data. The data contains tree locations and the study
area is 50-ha (500× 1000 m2). The data are converted into 5× 5m gridded presence-absence maps. The
presence cells and the presence rates are computed from the presence-absence maps.

No. Species Abundance Presence
cells

Presence
rate

1 Hybanthus prunifolius 37123 12053 60.3%
2 Faramea occidentalis 26420 12060 60.3%
3 Desmopsis panamensis 13048 7901 39.5%
4 Trichilia tuberculata 11779 6521 32.6%
5 Alseis blackiana 8700 5737 28.7%
6 Oenocarpus mapora 7947 1623 8.1%
7 Mouriri myrtilloides 7538 5305 26.5%
8 Swartzia simplex 6103 4991 25.0%

Lansing data analysis
Table 9 shows the identification number (No.), species name, total number of tree locations,
total number of presence cells, and presence rate for the six tree species in the Lansing
dataset. Figure 5 shows the 0.05×0.05 gridded presence-absence maps. We examine all 15
pairwise co-occurrence patterns that are possible among the six species.

The results of the Chi-squared tests, the tests of positive associations, and the tests of
negative associations are presented in Table 10. The results of the Chi-squared test in the
third column show that the null hypothesis of random association can be rejected for
six pairs at the 5% significance level. These pairs are: (i) black oak and maple (p-value:
0.015); (ii) black oak and miscellaneous (p-value < 0.001); (iii) hickory and maple (p-
value < 0.001); (iv) hickory and miscellaneous (p-value: 0.017); (v) hickory and white
oak(p-value: 0.006); and (vi) maple and miscellaneous (p-value < 0.001).

Based on most of the p-values reported in Table 10, we conclude that, except for the
pair maple and miscellaneous, all other pairs mentioned above are negatively associated.
Note that all the p-values (shown in columns 4–10 in Table 10) obtained from testing the
positive co-occurrence between maple and miscellaneous are smaller than the standard
significance level of 0.05, indicating that this pair has a strong positive co-occurrence
pattern. The presence-absence maps in Fig. 5 can also be used to informally verify that the
pair maple and miscellaneous exhibit similar presence-absence patterns within the study
window. Both categories are rare in the top-left part of the study window, while they are
relatively abundant in the bottom and top-right parts.

Both the species black oak and hickory are negatively associated with the same two
species, namely, maple and miscellaneous, one may suspect that they form a positive
co-occurrence pattern. However, based on the Chi-squared test result, we can conclude
that the species black oak and hickory are randomly co-occurring (p-value: 0.22).

Many of the aforementioned negative associations can also be verified by visually
comparing the point patterns or presence-absence maps between two species. For example,
Figure 5 illustrates that, while both maple and miscellaneous are sparse in the upper-left
and upper-right corners of the study window, the species black oak and hickory are
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Table 8 Using eight most abundant species in BCI tree data for testing positive association. The first two columns are the identity numbers (given in Table 7) of two
species. The p-values by using the Chi-squared statistic to test the null hypothesis of independence are listed in the third column. The rest columns are the p-values of Pi

for testing positive or negative association, i= 1,...,7.

Species
No.

Chi-sq.
test
p-value

p-values for testing positive association p-values for testing negative association

A B P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7

1 2 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000
1 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 4 0.000 0.002 0.000 0.000 0.005 0.000 0.001 0.000 0.998 0.994 0.991 0.995 1.000 0.999 1.000
1 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 6 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 8 0.002 0.037 0.003 0.002 0.050 0.028 0.041 0.001 0.965 0.889 0.890 0.952 0.973 0.959 0.999
2 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 4 0.000 0.001 0.000 0.000 0.003 0.000 0.000 0.000 0.999 0.996 0.993 0.997 1.000 1.000 1.000
2 5 0.242 0.250 0.071 0.064 0.269 0.223 0.243 0.124 0.756 0.545 0.558 0.736 0.780 0.760 0.882
2 6 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
3 4 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 1.000 0.988 0.992 0.999 0.999 1.000 1.000
3 5 0.000 0.002 0.000 0.000 0.003 0.006 0.003 0.000 0.998 0.970 0.976 0.997 0.994 0.997 1.000
3 6 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.996 0.998 1.000 1.000 1.000 1.000
3 8 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.000 1.000 0.985 0.990 1.000 0.998 0.999 1.000
4 5 0.376 0.744 0.483 0.463 0.733 0.691 0.720 0.816 0.264 0.094 0.106 0.274 0.312 0.284 0.193
4 6 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 7 0.992 0.501 0.251 0.252 0.500 0.499 0.500 0.502 0.509 0.257 0.255 0.509 0.505 0.504 0.511
4 8 0.024 0.049 0.009 0.016 0.056 0.117 0.078 0.013 0.953 0.783 0.765 0.946 0.885 0.924 0.988
5 6 0.000 1.000 0.997 0.998 1.000 0.999 1.000 1.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
5 7 0.000 0.000 0.000 0.000 0.000 0.006 0.001 0.000 1.000 0.974 0.986 1.000 0.994 0.999 1.000
5 8 0.000 0.004 0.000 0.002 0.006 0.039 0.014 0.000 0.996 0.914 0.921 0.995 0.962 0.986 1.000
6 7 0.000 1.000 0.992 0.996 1.000 0.997 1.000 1.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000
6 8 0.000 1.000 0.996 0.998 1.000 0.998 1.000 1.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000
7 8 0.000 0.003 0.000 0.001 0.004 0.038 0.012 0.000 0.997 0.919 0.929 0.997 0.963 0.989 1.000

Notes.
The bold font indicates the p-value (by using Chi-squared statistic) which is lower than the 5% significance level.
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Table 9 Lansing data contains locations of six tree species. The study plot is 19.6-acre (924× 924 ft2).
The plot has been re-scaled to the unit square. We converted it into 0.05× 0.05 gridded presence-absence
maps. The presence cells and the presence rates are computed from the presence-absence maps.

No. Species Abundance Presence
cells

Presence
rate

1 black oak 135 93 23.3%
2 hickory 703 285 71.3%
3 maple 514 212 53.0%
4 miscellaneous 105 72 18.0%
5 red oak 346 198 49.5%
6 white oak 448 247 61.8%

Figure 5 Presence-absence maps of Lansing data: (A) black oak. (B) hickory. (C) maple. (D) miscella-
neous. (E) red oak. (F) white oak. The study plot has been re-scaled to the unit square. We converted the
original data into 0.05×0.05 gridded presence-absence maps.

Full-size DOI: 10.7717/peerj.15907/fig-5

dense in these two corners. The statistical tests become indispensable when other simpler
methods, such as visual inspection of point patterns, do not provide a clear picture of the
co-occurrence pattern for any given species pair. For example, the patterns of hickory and
white oak do not provide any clear indication about their co-occurrence pattern; however,
the p-values obtained from testing the negative co-occurrence reveal that hickory and white
oak might be negatively associated with each other.

DISCUSSION
The Chi-squared test is simple and intuitive. Its type I error rates are close to the significance
level when the presence rates are around 40%∼ 80%. The simulation results reveal
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Table 10 Using Lansing data for testing positive association. The first two columns are the identity numbers (given in Table 9) of two species. The p-values by using the
Chi-squared statistic to test the null hypothesis of independence are listed in the third column. The rest columns are the p-values of Pi for testing positive or negative asso-
ciation, i= 1,...,7.

Species
No.

Chi-sq.
test
p-value

p-values for testing positive association p-values for testing negative association

A B P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7

1 2 0.215 0.281 0.085 0.067 0.296 0.233 0.286 0.133 0.762 0.562 0.598 0.744 0.790 0.736 0.916
1 3 0.015 0.953 0.829 0.825 0.942 0.937 0.927 0.995 0.065 0.010 0.010 0.078 0.073 0.083 0.010
1 4 0.000 1.000 0.929 0.942 1.000 0.958 0.991 1.000 0.000 0.000 0.001 0.000 0.048 0.011 0.000
1 5 0.472 0.705 0.452 0.459 0.693 0.675 0.683 0.799 0.352 0.140 0.135 0.362 0.351 0.343 0.274
1 6 0.186 0.800 0.593 0.616 0.780 0.804 0.777 0.925 0.244 0.072 0.060 0.262 0.218 0.243 0.115
2 3 0.000 0.984 0.983 0.982 0.955 0.998 0.998 1.000 0.021 0.000 0.000 0.053 0.002 0.003 0.000
2 4 0.017 0.908 0.772 0.791 0.893 0.924 0.858 0.993 0.120 0.022 0.010 0.137 0.089 0.156 0.014
2 5 0.190 0.284 0.062 0.063 0.320 0.209 0.213 0.115 0.750 0.615 0.613 0.709 0.810 0.808 0.922
2 6 0.006 0.896 0.879 0.869 0.826 0.953 0.964 0.998 0.123 0.004 0.007 0.194 0.055 0.042 0.004
3 4 0.000 0.014 0.001 0.000 0.019 0.027 0.028 0.000 0.990 0.920 0.924 0.987 0.977 0.977 1.000
3 5 0.556 0.649 0.424 0.432 0.626 0.671 0.677 0.755 0.394 0.154 0.149 0.412 0.356 0.348 0.312
3 6 0.985 0.515 0.266 0.274 0.508 0.504 0.514 0.533 0.527 0.283 0.274 0.526 0.524 0.515 0.549
4 5 0.868 0.570 0.311 0.322 0.565 0.545 0.555 0.616 0.500 0.248 0.237 0.502 0.483 0.473 0.486
4 6 0.885 0.489 0.242 0.253 0.488 0.477 0.489 0.498 0.574 0.314 0.309 0.572 0.553 0.537 0.607
5 6 0.502 0.656 0.446 0.454 0.628 0.688 0.693 0.781 0.385 0.141 0.136 0.407 0.338 0.332 0.285

Notes.
The bold font indicates the p-value (by using Chi-squared statistic) which is lower than the 5% significance level.
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that it may suffer high type II error rates for extremely low or high presence rate data.
Moreover, when the null hypothesis is rejected, it can not distinguish the positive or
negative association between two species. We suggest to use it as a preliminary tool for
supporting evidence.

Veech (2013)’s method is also easy to implement. It is recommended when the presence
rate is around 22.5%∼ 85%. Within this range, its testing powers achieve 90%, and the
type I error rates are below or close to the significance level. But outside this range, our
second approach (P2 which uses O1 and O2 under binomial distribution) serves as a useful
alternative since it not only has the closest type I error rates to the significance level but
also outperforms the others in terms of testing powers among most scenarios.

Under the assumption that every individual is randomly distributed in each cell with
equal probability, (O1+O2) follows a binomial distribution with Bin(N ,(E1+E2)/N )
since they are count variables of two mutually exclusive events. We attempted to compute
p-values by using the sum of O1+O2 under this binomial distribution. The results
were similar to Veech’s method when the presence rate was moderate, but inferior to
Veech’s method when the presence rate was either low or high. However, our P2 method
outperforms Veech’s in situations of low or high presence rates. We assumed that O1

and O2 were approximately independent while constructing P2. Although (O1,O2,O3,O4)
follows a multinomial distribution with Cov(Oi,Oj)=−(Ei∗Ej)/N , i 6= j. WhenN is large
and either E1 or E2 is small, O1 and O2 are approximately uncorrelated. That explains why
our P2 method outperforms Veech’s when the presence rate is either low (small E1) or high
(small E2).

Our methods, as well as Veech’s (Veech, 2013), solely use information from the two-way
contingency table, lacking any spatial context. However, we applied these methods to
presence-absence data over a spatial grid as this type of data is commonly encountered
in ecology. Both our simulation and application studies were conducted under this
setting. Although we have made efforts to incorporate spatial context into our analysis,
the corresponding results were disappointing. We are actively working on refining our
methods and striving to achieve more satisfactory outcomes. For references that have
considered the spatial context in their analysis, please refer to Rizzo et al. (2023) and Sallam
et al. (2023).

The simulated data were initially generated as spatial point patterns, as it is easier
to construct two independent or associated species within this framework. The two real
datasets are also originally classified as spatial point patterns since they are readily accessible.
To implement our methods and Veech’s method (Veech, 2013), we converted these spatial
point pattern data into presence-absence maps.

The application results of these probabilistic approaches were consistent. If the Chi-
squared test was rejected, then our six approaches andVeech (2013)’s method all confirmed
that there was a significant association between two species. These two data examples
illustrate that if two species are positively or negatively associated with the same species,
it does not imply the two species are associated. The results show that we can provide
statistical evidence to support concepts of existing phenomena or provide additional
information.
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The proposed methods did not take false absences/presences or missing values into
account. Veech (2013) referred that false absences/presences simply represent a source
of type-I and II errors and the neglect of them probably does not bias the model toward
finding positive or negative association. As formissing values, if they aremissing at random,
it is seasonable to use zero, median, or k-nearest neighbor (KNN) to impute. But missing
patterns normally are not randomly distributed. We need to modify these imputation
methods to improve its efficiency.

The probabilistic methods discussed in this article did not use spatial statistics
approaches. The kernel estimation method (Diggle, 1985; Silverman, 1986; Baddeley,
Rubak & Turner, 2015) is useful to estimate the occurrence rate for each cell. The cross-K
function (Baddeley, Rubak & Turner, 2015) which investigate the dependence between two
point patterns can also be considered. How to implement these spatial statistics methods
into co-occurrence research also became our research interests.
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