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Background. Fusarium head blight (FHB) is a disease aûecting wheat spikes caused by
Fusarium species, which leads to cases of severe yield reduction and seed contamination.
Therefore, identifying resistance genes/QTLs from various wheat germplasm is always of
importance for improving the wheat FHB resistance in wheat production. Methods. Our
study using a high-density genetic map created with 90K single nucleotide poly-morphism
(SNP) arrays in a panel of 205 elite winter wheat accessions, a genome-wide association
study (GWAS) with a focus on FHB was carried out in three environments. Results. Sixty-
six signiûcant marker3trait associations (MTAs) were identiûed (P<0.001) on ûfteen
chromosomes with explaining phenotypic variation ranging from 5.4 to 11.2%. Some
important new MTAs in genomic regions involving FHB resistance were found on
chromosomes 2A, 3B, 5B, 6A, and 7B. On chromosome 7B, 6 MTAs at 92 cM were found in
two environments. Moreover, there were 11 MTAs consistently associated with diseased
spikelet rate and diseased rachis rate as pleiotropic eûect loci, and D_contig74317_533 on
chromosome 5D was novel for FHB resistance. Eight new candidate genes of FHB
resistance were predicated in wheat. Of which, three candidate genes,
TraesCS5D02G006700, TraesCS6A02G013600, and TraesCS7B02G370700 on chromosome
5DS, 6AS, and 7BL, respectively, were perhaps important in defending against FHB by
regulating intramolecular transferase activity, GTP binding, chitinase activity in wheat by
blasting their functions, but this needs further validation in future. In addition, a total of
ûve favorable alleles associated with wheat scab resistance were discovered. These results
provide important genes/loci for enhancing FHB resistance in wheat breeding by marker-
assisted selection.
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19 Abstract

20 Background. Fusarium head blight (FHB) is a disease affecting wheat spikes caused by 

21 Fusarium species, which leads to cases of severe yield reduction and seed contamination. 

22 Therefore, identifying resistance genes/QTLs from various wheat germplasm is always of 

23 importance for improving the wheat FHB resistance in wheat production.  

24 Methods. Our study using a high-density genetic map created with 90K single nucleotide poly-

25 morphism (SNP) arrays in a panel of 205 elite winter wheat accessions, a genome-wide 

26 association study (GWAS) with a focus on FHB was carried out in three environments.

27 Results. Sixty-six significant marker-trait associations (MTAs) were identified (P<0.001) on 

28 fifteen chromosomes with explaining phenotypic variation ranging from 5.4 to 11.2%. Some 

29 important new MTAs in genomic regions involving FHB resistance were found on chromosomes 

30 2A, 3B, 5B, 6A, and 7B. On chromosome 7B, 6 MTAs at 92 cM were found in two 

31 environments. Moreover, there were 11 MTAs consistently associated with diseased spikelet rate 

32 and diseased rachis rate as pleiotropic effect loci, and D_contig74317_533 on chromosome 5D 

33 was novel for FHB resistance. Eight new candidate genes of FHB resistance were predicated in 

34 wheat. Of which, three candidate genes, TraesCS5D02G006700, TraesCS6A02G013600, and 

35 TraesCS7B02G370700 on chromosome 5DS, 6AS, and 7BL, respectively, were perhaps 

36 important in defense against FHB by regulating intramolecular transferase activity, GTP binding, 

37 chitinase activity in wheat by blasting their functions, but this needs further validation in future. 

38 In addition, a total of five favorable alleles associated with wheat scab resistance were 
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39 discovered. These results provide important genes/loci for enhancing FHB resistance in wheat 

40 breeding by marker-assisted selection.

41 Keywords

42 Wheat; Fusarium head blight; GWAS; SNP; MTA.

43

44 Introduction

45 Wheat (Triticum aestivum L.), one of the three major food crops, is grown worldwide as an 

46 important source of food and fodder. Therefore, maintaining consistent wheat production has 

47 become a frequent focus of agricultural experts worldwide. Wheat is susceptible to both biotic 

48 (diseases, insect pests, etc.) and abiotic (drought, freezing damage, etc.) stresses because of its 

49 long growing phase. Fusarium head blight (FHB), also known as scab, is an infection of wheat 

50 spikes mainly brought on by a Fusarium species. FHB is a quantitative trait controlled by 

51 multiple genes that is affected by both the environment and genetics (Buerstmayr et al. 2015; Liu 

52 et al. 2016b; Bai et al. 1994). This disease has become an important disease in the Yellow and 

53 Huai River Valleys of China (Zhu et al. 2018), and seriously threatens wheat production and 

54 processing.This disease not only causes severe wheat yield reduction but also contaminates 

55 wheat seeds with deoxynivalenol (DON) toxins (Bai et al. 1994).  DON, also known as 

56 vomitoxin, is regards as a teratogen, neurotoxin and immunosuppressant, which could cause 

57 adverse health effects (Ennouari et al., 2013). In order to control human exposure to DON, the 

58 Food and Drug Administration (FDA, 2010) has set an advisory limit of 1 mg/kg for finished 

59 wheat products. In addition to negatively affecting wheat production in the middle and lower 

60 Yangtze River Valley region of China, FHB has become more common during the past 20 years 

61 in the Yellow and Huai River Valley regions as a result of climatic and tillage system changes. 

62 Moreover, it has become the most destructive spike disease in the world because no completely 

63 resistance varieties have been found so far, which seriously threatens food production and food 

64 security. Breeding resistant or complete resistance varieties and discovering resistant genes are 

65 the most effective ways to solve the problem of FHB.

66 The interactions between genotype and environment have a substantial impact on FHB, a 

67 complex trait with a quantitative nature. Previous research has demonstrated that FHB resistance 

68 is influenced by plant height, heading date, blooming period, another extrusion, etc. The weather 

69 (sunny or wet) during blossoming is crucial for the development of this illness. Genetic linkage 

70 analysis has been used to study FHB resistance extensively in wheat, and numerous QTL 

71 (Quantitative Trait Loci) (more than 400 scattered on 21 chromosomes) related to FHB 

72 resistance have been reported (Ma et al. 2020). Five categories of FHB resistance exist at the 

73 moment: type I resistance to initial spike infection, type II resistance to spread spike infection, 

74 type III resistance to accumulation of mycotoxins, type IV resistance to kernel infection, and 

75 type V resistance to yield reduction (Mesterházy 1995). Type I resistance and type II resistance 

76 were distinguished in the seminal study by Schroeder and Christensen (1963). Almost all reports 

77 on FHB resistance have been type II. Recently, numerous small-effect Type II FHB QTLs are 

78 reviewed by Buerstmayr et al. (2019). Seven genes (Fhb1 to Fhb7) for FHB resistance have been 
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79 found, and Fhb1, Fhb2, Fhb4, and Fhb5 were on chromosomes 3BS, 6BS, 4BL, and 5A, 

80 respectively in common wheat; however, the remaining genes, Fhb3, Fhb6, and Fhb7, were 

81 derived from wheat relative species (Cainong et al., 2015; Jia et al., 2018; Li et al., 2019; Qi et 

82 al., 2008; Su et al., 2019; Wang at al., 2020; Xue et al., 2010; Xue et al., 2011). The Fhb1 gene 

83 has been widely dissected and sequenced to find a pore-forming toxin-like (PFT) gene that is 

84 responsible for FHB resistance (Rawat et al. 2016). Later, another new gene was discovered for 

85 Fhb1, encoding a putative histidine-rich calcium-binding protein (His or TaHRC) that was 

86 adjacent to PFT (Li et al. 2019; Su et al. 2019). These research have led to the development of 

87 Fhb1 function markers that are being employed in molecular breeding to improve scab 

88 resistance. However, it appears that the mechanisms by which His and TaHRC impart resistance 

89 are distinct. Because of this, more research on this gene is still required to understand its 

90 molecular mechanisms (Li et al. 2019; Su et al. 2019). Recently the candidate gene for Fhb7 was 

91 determined and cloned, which revealed that it encoded a glutathione (GST) that can detoxify 

92 trichothecene toxins (Wang et al. 2020). Its resistance depends on a reduction of pathogen 

93 growth in spikes, which is different from the resistance of Fhb1. The remaining five FHB genes, 

94 however, have not yet been cloned.

95 Some significant loci for resistance have been discovered in addition to these seven FHB 

96 genes. For instance, QFhb.mgb-2A was identified as a WAK2 gene (Giancaspro et al. 2016), and 

97 the function of WAK2 for FHB resistance was validated (Gadaleta et al. 2019). Another 

98 important locus on chromosome 2DL was considered to be transcription factor TaWRKY70, 

99 which regulates the expression of metabolite biosynthetic genes including TaACT, TaDGK, and 

100 TaGLI to influence FHB resistance (Kage et al. 2017a, b). Using two Recombinant Inbred Lines 

101 (RILs) populations with one common parent, named AC Barrie, from Canadian spring wheat, 

102 QFhb.mcb-3B, QFhb.mcb-6B, and QFhb.mcb-5A.1 were mapped to the expected location of 

103 Fhb1, Fhb2, and Fhb5, respectively (Thambugala et al. 2020). On chromosome 5B, the 

104 prominent resistance gene, QFhb.mbr-5B was found to explain up to 36% of the phenotypic 

105 variation (Thambugala et al. 2020).

106 With the development of genomics, growing research has been done on the use of genome-

107 wide association study (GWAS) to analyze wheat FHB resistance. One study (Zhu et al. 2020) 

108 used a mixed linear model (MLM) to consistently identify five quantitative trait loci (QTL) 

109 related with FHB on chromosome arms 1AS, 2DL, 5AS, 5AL, and 7DS. These QTLs accounted 

110 for 5.6, 10.3, 5.7, 5.4, and 5.6% of the variation in phenotype, respectively. Tessmann et al. 

111 (2019) used GWAS (based on 2-yr entry means) identified 16 significant (p < 0.001) single 

112 nucleotide polymorphisms (SNPs) associated with disease traits on multiple chromosomes. 

113 Single nucleotide polymorphism association ranged from 22.14 to 4.01% of the mean of a given 

114 trait. Another GWAS identified 26 loci (88 marker-trait associations), which explained 6.65�

115 14.18% of the phenotypic variances. The associated loci distributed across all chromosomes 

116 except 2D, 6A, 6D and 7D (Hu et al. 2020). In addition to this there have been numerous studies 

117 using GWAS in FHB resistance recently (Verges et al. 2021; Gaire et al. 2021; Ghimire et al. 
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118 2022; Wu et al. 2019). It appears that using GWAS to investigate wheat FHB is a very promising 

119 endeavor.

120 Therefore, our study using a high-density genetic map created with 90K single nucleotide 

121 polymorphism (SNP) arrays in a panel of 205 elite winter wheat accessions, a genome-wide 

122 association study (GWAS) with a focus on FHB was carried out in three environments.  The 

123 objective of this study was to identify some novel genomic regions associated with the type II 

124 resistance of wheat in different environments, and to predict candidate genes for loci associated 

125 with these traits, which could improve wheat FHB resistance by molecular breeding in the future.

126

127 Materials & Methods

128 Plant materials

129 The association mapping panel of 205 wheat accessions for GWAS comprised 77 released 

130 cultivars, 55 founder parents including 2 lines from Mexico and France, and 73 breeding lines 

131 from 10 provinces that represent the major winter wheat production regions in China (Chen et al. 

132 2015).

133 Sumai 3 was selected as an FHB high resistant check, Yangmai158 as a moderately 

134 resistant check, and Ningmaizi 22 as a moderately susceptible check.

135 Growth conditions

136 The materials were grown in the field and greenhouse of Shandong Agricultural University 

137 (117°162 E, 36°172 N) during the 2015�2016 and 2016�2017 cropping seasons, hereafter referred 

138 to as 2016 and 2017, respectively. The terms E1, E2, and E3 represent the experimental field of 

139 Shandong Agricultural University in 2017, the greenhouse of Shandong Agricultural University 

140 in 2017, and the experimental field of Shandong Agricultural University in 2016, respectively. In 

141 the field, the randomized block design was used, with two replications. All lines were planted in 

142 2 m plots with three rows uniformly spaced at 25 cm intervals. Each row contained 70 seeds 

143 evenly distributed. The local recommended field crop management practices were followed and 

144 no pests or diseases were found in the field. But in the greenhouse, the seeds of materials were 

145 germinated and vernalized for an additional 4 weeks (4#, 12 h light/dark regime) before being 

146 transferred to the greenhouse. Plants were potted in a mixture of compost, sand chalk and 

147 common soil. Each plant was planted in an individual pot (the diameter is 30cm and the depth is 

148 25cm, with four seedlings) and in three replications (pots). The temperatures of greenhouse were 

149 gradually increased from 15#/13# during day/night to 20#/18#, and a 16 h/day photoperiod at 

150 the time of anthesis. The growing conditions in the greenhouse have been described in our 

151 previous article (Zhao et al. 2023).

152 Inoculum preparation and Inoculation 

153 In this study, the conidiospore suspension of 7136, F301, F609, and F15 virulent strains of 

154 F. graminearum used, was obtained with the courtesy of Nanjing Agricultural University. The 

155 pathogen was propagated in a mung bean medium (Buerstmayr et al. 2000) and incubated on a 

156 shaker at 150 rpm under 25 # for 4�5 days. After culturing and filtering, the mass of conidia 

157 was examined under a microscope, and then, the four pathogen strains were mixed equally and 

PeerJ reviewing PDF | (2022:05:74108:1:2:CHECK 27 Feb 2023)

Manuscript to be reviewed

2016 in the references

The genetic map used here is from Wang et al. 2014 (https://doi.org/10.1111/pbi.12183) and was created combining 8 mapping populations.



158 stored at 4# for later use. The preparation of F. graminearum was also the same as our previous 

159 study (Zhao et al. 2023).

160 Wheat was inoculated with 10 ¿l of the F. graminearum conidia suspension (50,000 

161 spores/mL) applied to a pair of florets in the middle of the spikeduring flowering (Guo et al. 

162 2015). Ten spikes were inoculated per line from each replication. The whole wheat spike was 

163 then covered with a self-sealing bag to retain moisture, and had the self-sealing bag removed 

164 after 3 days. The disease symptoms were investigated on day 21 after inoculation, and the 

165 diseased spikelet rate (DSR), diseased spike rachis rate, and disease index (DI) were calculated. 

166 Both the field nursery and greenhouse point adopt this method. All spikes were classified into 

167 five classes of disease severity according to the diseased spikelet rate (DSR): 0% (class 0), 1�

168 25% (class 1), 26�50% (class 2), 51�75% (class 3), and 76�100% (class 4) (Lu et al. 2001). The 

169 disease index (DI) was calculated based on the rules for monitoring and forecasting wheat head 

170 blight (Chinese Standard: GB/T 15796-2011).

171

100%
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 spikeletsinfectedofNumber
rate spikeletsDiseased ôý

172

100%
 spikeperrachisTotal
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173
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i
100
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ô
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174 where i is the class of disease severity, hi is the number of wheat spike in each class, and H 

175 is the number of all investigated wheat spikes.

176 The standard of wheat FHB resistance was as follows: Immune (DI=0), High resistant (DI< 

177 Sumai 3), Moderately resistant (Sumai 3< DI< Yangmai 158), Moderately susceptible (Yangmai 

178 158< DI< Ningmaizi 22), High susceptible (DI> Ningmaizi 22).

179 Genome-wide association analysis

180 SNP markers, genotyping, and the population structure of the samples have been previously 

181 reported (Chen et al. 2015; Chen et al. 2016; Chen et al. 2017). A total of 24,355 mapped SNPs 

182 was used for MTA analysis. According to Chen et al (2017), the association population was 

183 divided into four categories using STRUCTURE's maximum membership probability (comprised 

184 of 43, 32, 105 and 25 varieties, respectively). Chen et al. (2016) also reported LD values for 

185 different chromosomes.

186 Based on this information, significant marker-trait associations (MTAs) were identified 

187 using a mixed linear model (MLM) in TASSEL3.0. The P-value was used to determine whether 

188 a QTL was associated with a marker, while the phenotypic variation explained (PVE) was used 

189 to evaluate the magnitude of the MTA effects. SNPs with Pf10-3 were considered to be 

190 significantly associated with phenotypic traits, SNPs with Pf10-4 were considered to be 

191 extremely significantly associated with phenotypic traits. Further, when the marker was detected 

192 in two or more environments at the same time, it was considered a stable MTA.

193 Statistical analysis 
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194 Analysis of variance (ANOVA) and correlations among phenotypic traits were carried out 

195 using the statistical software SPSS version 17.0 (SPSS Inc., Chicago, IL, USA).

196 Forecasting candidate genes for FHB resistance

197 A BLAST (Basic Local Alignment Search Tool) search was performed on the International 

198 Wheat Genome Sequencing Consortium database (RefSeq v1.0; https://urgi.versailles.inra.fr/blast/)  

199 using the sequence of the significant SNP markers identified by GWAS. When an SNP marker 

200 sequence from the IWGSC was 100% identical to any wheat contig, the sequence was extended 

201 by 2Mb for each marker using the IWGSC BLAST results. Afterwards, the extended sequence 

202 was used to run a BLAST search on the National Center for Biotechnology Information (NCBI) 

203 database (http: //www.ncbi.nlm.nih.gov) and on Ensembl Plants 

204 (http://plants.ensembl.org/Triticum_aestivum/ Tools/Blast) to confirm possible candidate genes 

205 and functions.

206 Analysis of marker haplotype

207 The effect of resistance genes was calculated by using the average diseased spikelet rate of 

208 various gene combinations. Effect of resistance genes=(Average diseased spikelet rate of 

209 materials carrying resistance gene - Average diseased spikelet rate of materials without 

210 resistance gene)/Average diseased spikelet rate of materials without resistance gene.

211

212 Results

213 Phenotypic variation analysis of wheat FHB resistance

214 The variation coefficient of diseased wheat spikelet rate (DSR) was the highest in E2 

215 (52.96%), followed by that in E3 (44.30%), and E1 (36.55%) (Table 1), indicating that DSR 

216 genetic variation was abundant. The variance analysis of FHB resistance of the spikelet and 

217 spike rachis indicated that significant differences were present between cultivars and 

218 environments, and their interactions (Table 2). This illustrated that the FHB resistance was a 

219 quantitative trait affected not only by genotype but also by the environment. Furthermore, there 

220 were significant positive correlation coefficients between spikelet and spike rachis in the three 

221 environments, indicating that the resistance trend of FHB was consistent between spikelet and 

222 spike rachis (Table 3).

223 Marker�trait associations (MTAs) of FHB resistance 

224 Sixty-six MTAs associated with FHB resistance were distributed on chromosomes 1A, 1B, 

225 2A, 2B, 2D, 3B, 3D, 4A, 5A, 5B, 5D, 6A, 6B, 7A, and 7B (Table S1; Table S2; Figure 1). The 

226 phenotypic variation explained (PVE) of MTA loci to FHB resistance ranged from 5.45% to 

227 11.20%, of which, 11 MTA loci were detected in both spikelet and spike rachis. On chromosome 

228 7B, a novel genomic region from genetic position 92 to 103, significantly associated with FHB 

229 resistance, was detected in all three environments. Moreover, there was one major locus at 

230 genetic position 92 of chromosome 7B accounting for 11.20% of the phenotypic variation in the 

231 spikelets, namely locus BS00025286_51, which was also detected for the spike rachis, explaining 

232 7.07% of its phenotypic variation. In E3, four loci on chromosome 7B were found to be 

233 associated with both diseased spikelet rate and diseased spike rachis rate, but these MTAs are 
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234 located in the same region and may represent one QTL (Table 4; Table S2). In addition, there 

235 were some genomic regions associated with FHB resistance on chromosomes 5B, 6A, 2A, and 

236 3B, but they were found only in a single environment. The other six loci, including 

237 D_contig74317_533 on chromosome 5D, Kukri_c14239_1995 on chromosome 6A, 

238 Kukri_c7087_896 on chromosome 3B, RAC875_c35801_905 on chromosome 3D, 

239 BS00099729_51 on chromosome 5B, and RAC875_c68525_284 on chromosome 6B, were also 

240 identified to be associated with both the diseased spikelet rate and the diseased spike rachis rate. 

241 The remaining MTA loci were detected only for a single trait in a single environment.

242 The allelic variation analysis of MTAs loci

243 According to the PVE of MTA loci (Table S2), we selected 10 of them and analyzed their 

244 allelic variation (Table 4).. Alleles T and C of the marker, Kukri_c14239_1995 on chromosome 

245 6A were associated with the largest phenotypic difference (0.2297). Specifically, the phenotypic 

246 value of the diseased spikelet rate associated with Kukri_c14239_1995-T was significantly 

247 higher than that associated with Kukri_c14239_1995-C, indicating that Kukri_c14239_1995-C 

248 was better than Kukri_c14239_1995-T for FHB resistance (Table 4). Furthermore, because allele 

249 C of D_contig74317_533 showed a significantly higher diseased spikelet rate than 

250 D_contig74317_533-T, allele T was deemed to be better for improving FHB resistance. On 

251 chromosome 7B, allele C of BS00025286_51 had a higher diseased spikelet rate than allele T; 

252 thus, allele T for this locus was favorable for FHB resistance. Nevertheless, for the other four 

253 loci on this chromosome, significant differences between the two alleles for the diseased spikelet 

254 rate seemed to be at 5%. The least difference for diseased spikelet resistance was observed 

255 between Kukri_c7087_896-G and Kukri_c7087_896-A, which indicated that this locus affected 

256 FHB resistance to a smaller degree. Moreover, on chromosome 3D, RAC875_c35801_905-G 

257 yielded better results than RAC875_c35801_905-A for FHB resistance.

258 Prediction of candidate genes for some important loci

259 Eight important candidate genes were screened for important loci significantly associated 

260 with diseased spikelet rate and diseased spike rachis rate in wheat (Table S3). Of which, one 

261 candidate gene, TraesCS3D02G326700 located on chromosome 3D is found associated with 

262 actin-binding in wheat. The candidate gene, TraesCS5D02G006700 of the marker, 

263 D_contig74317_533 on 5DS was predicated in wheat, whose function was intra-molecular 

264 transferase activity. Two candidate genes TraesCS6A02G013700 and TraesCS6A02G013800, 

265 predicated by IAAV9150, participate in the ubiquitin-dependent ER-associated degradation 

266 (ERAD) pathway in wheat. The candidate gene, TraesCS6A02G013600 of 

267 Excalibur_c20597_509 has the function of GTP binding in wheat. On chromosome 7BL, 

268 TraesCS7B02G370700 of BS00025286_51 is involved in the biological process of defense 

269 response to fungi. There is one candidate gene, TraesCS7B02G340200, for the three loci, 

270 RAC875_c18043_369, RAC875_c18043_411, and Kukri_c4143_1055, on chromosome 7BL 

271 identified because of being in the same physical location. The candidate gene, 

272 TraesCS7B02G340100 of RAC875_c5646_774 is associated with the carbohydrate metabolic 

273 process in Triticum aestivum. By analyzing the homologous genes of these candidate genes, we 
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274 found the functions or biological processes of most homologous genes in other crops, such as 

275 Japonica rice, Hordeum vulgare, Oryza sativa Indica, Oryza sativa Japonica, Arabidopsis 

276 thaliana, etc., are involved in the defense response of fungi, which indicate that these candidate 

277 genes perhaps relate to the FHB resistance, but this needs further verification in wheat.

278 Analysis of marker haplotype and resistance

279 Among the alleles at the marker-trait associations, the alleles with decreasing diseased 

280 spikelet rate were assumed to be the resistance alleles at this site. In this study, five important 

281 SNP loci were selected to evaluate the effect of aggregation of their favorable alleles on 

282 decreasing diseased spikelet rate (Table 5). In general, with the increase in the number of 

283 favorable alleles, the effect of reducing the rate of diseased spikelets showed more obvious, 

284 which could improve the FHB resistance. By gene combination analysis (Table 6), two samples, 

285 B202 and B34, had four favorable alleles with TCTAC and TTTGC haplotypes, respectively. 

286 The haplotype TCTAC showed high resistant to FHB (Table 6). Six haplotypes with three 

287 favorable alleles were found. Of which, the materials with the haplotypes TCCGA and TTTAC 

288 showed high resistant to FHB, including B70, B72 and B179. The residue haplotypes showed 

289 moderate resistant or moderate susceptible to FHB. This result indicated that multiple haplotype 

290 of the materials played an important role in the screening of anti-scab materials. In addition, by 

291 comparing the reported GWAS results for plant height using the same panel materials (Chen et 

292 al. 2015), these five loci had no significant effect on plant height (Table S4, Table S5).

293

294 Discussion

295 The majority of earlier researchers focused on finding the significant genes/loci of FHB via 

296 QTL mapping or association mapping in order to improve the resistance of FHB in wheat 

297 cultivars (Loeffler et al. 2009; Li et al. 2011; Venske et al. 2019). The previous findings 

298 suggested that practically all of wheat's chromosomes were implicated (Yu et al. 2007; Ma et al. 

299 2020), but the chromosomes 3B, 4B, 5A, and 6B seemed to be important because of the Fhb1, 

300 Fhb2, Fhb4, and Fhb5 genes (Loeffler et al. 2009; Zhang et al. 2018). Five QTLs were 

301 discovered by GWAS analysis on chromosome arms 1AS, 2DL, 5AS, 5AL, and 7DS (Zhu et al. 

302 2020). Of which, the locus on chromosome 5B for decreasing the amount of deoxynivalenol may 

303 be novel. However, in our study, fifteen chromosomes were involved in the MTA loci, and some 

304 important genomic regions involving FHB resistance were found on chromosomes 2A, 3B, 5B, 

305 6A, and 7B. The significance of chromosome 3B for FHB resistance was further supported by 

306 this result. Six MTAs at 92 cM were also discovered on chromosome 7B in two different 

307 contexts. Of this, the BS00025286 51 locus could explain 11.20% of the phenotypic variation 

308 and five MTAs consistently associated with diseased spikelet rate and diseased rachis rate. It 

309 appeared that FHB resistance was relevant in this region. What's more intriguing is that five SNP 

310 markers (Kukri_c14239_1995 on chromosome 6A, Kukri_c7087_896 on chromosome 3B, 

311 RAC875_c35801_905 on chromosome 3D, BS00099729_51 on chromosome 5B, and 

312 RAC875_c68525_284 on chromosome 6B) in this study have appeared in previous reports 
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313 (Venske et al. 2019), which proved the reliability of our results. There was one novel locus 

314 D_contig74317_533 on chromosome 5D found for FHB resistance.

315 According to previous research, plant height had an impact on FHB resistance under field 

316 conditions. QTL mapping showed that approximately 40% of the QTL for plant height 

317 overlapped with the QTL for FHB resistance on 14 chromosomes (Buerstmayr et al. 2019). Five 

318 QTLs for FHB resistance were discovered by Zhu et al. (2020), among which QFhb.hbaas-5AS 

319 had a significant correlation with plant height. 38 MTAs loci for plant height were discovered on 

320 chromosomes 1B, 2A, 2B, 3A, 3B, 3D, 4A, 4B, 5A, and 6D by Chen et al. (2015) using a panel 

321 of 205 wheat accessions for the GWAS analysis of plant height. Of which, there were 11 loci 

322 detected on chromosome 6D in two or more environments (Chen et al. 2015). But in this study, 

323 there were five MTAs loci for FHB resistance showed no significant relationship with plant 

324 height, that is, D_contig74317_533 on chromosome 5D, Kukri_c14239_1995 on 6A, 

325 RAC875_c35801_905 on 3D, Kukri_c4143_1055 and BS00025286_51 on 7B, which indicated 

326 these loci can be flexible use in breeding. Additionally, wheat materials with the aforementioned 

327 loci were screened, and by using molecular markers-assisted selection, they can be incorporated 

328 into Chinese major planted varieties without compromising plant height.

329 In fact, plant disease resistance is a complex molecular process controlled by genes (Ma et 

330 al. 2020). Only a few significant genes were found, despite the fact that researchers have 

331 discovered hundreds of QTLs scattered across wheat, including 21 chromosomes from common 

332 wheat varieties or related species (Buerstmayr et al. 2009; Liu et al. 2009). Nevertheless, it has 

333 gotten simpler to find additional genes as a result of the advancement of molecular technology 

334 and the wheat genome sequence (both major and minor). Moreover, the isolation and functional 

335 verification of FHB resistance genes are beneficial to understanding the pathogenesis and 

336 resistance mechanism of wheat FHB at the molecular level (Liu et al. 2016b). Previous research 

337 has demonstrated that the mechanism of the genes/loci identified in FHB resistance could 

338 involve a complicated signal transduction pathway and be associated with the synergistic effect 

339 of many protein factors (Zhang et al.  2018; Liu et al. 2016a; Dweba et al. 2017). For example, 

340 the genes encoding a 12-oxophytodienoate reductase-like protein identified in the region of 

341 QFh.hbaas-1AS may be related to the biosynthesis or metabolism of signaling molecules, 

342 oxylipins, such as jasmonic acid (JA) (Ding et al. 2011; Qi et al. 2016). These genes were 

343 discovered to encode several different proteins, including receptor-like kinase, UDP-

344 glycosyltransferase, pathogenesis-related protein 1, and glucan endo-1,3-beta-glucosidase (PR2). 

345 (Anand et al. 2003; Pan et al. 2018; Ma et al. 2020).

346 In this study, the candidate genes on chromosome 3D encoded UDP-glycosyltransferase 

347 activity and were related to the defense response to biotic stimulus (Li et al. 2017). This 

348 indicated that this gene may enhance resistance to FHB because this protein could detoxify both 

349 DON and NIV produced by F. graminearum (Poppenberger et al. 2003; Zhu et al. 2020). By 

350 performing homologous gene detection on the D_contig74317_533 locus of chromosome 5D, the 

351 genes were found to have homologous in nucleic acid binding and defense function in barley, 

352 Arabidopsis, Indica rice, Japonica rice, and wild rice. Of these, the AT2G39510 gene is related to 
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353 the activity of glutamine transmembrane transporter protein. Previous studies have shown that 

354 the glutamine-gated ion channel is related to the function of the Fhb5 gene, which can control 

355 Ca2+ influx (Dennison et al. 2000; Kugler et al. 2013). It was also found that Ca2+ was involved 

356 in early signaling defense to FHB (Ding et al. 2011). Recent research has revealed that wall-

357 associated kinase (WAK) is a kind of receptor-like protein kinase, which is involved in signal 

358 transduction and the defense response of plants (Zhang et al. 2006; Hu et al. 2010). In this study, 

359 it was shown that the gene Traescs6A02G013600 contains homologous genes in Arabidopsis and 

360 Japonica rice, some of which encoded members of the receptor-like cytoplasmic kinase (RLCK) 

361 and wall-associated kinase (WAK) families. Therefore, it is possible that this gene contributes to 

362 wheat FHB resistance, but more research is needed. Additionally, earlier research has 

363 demonstrated that the pathogenesis-related protein (PR) chitinase participates in the plant's 

364 fundamental defense mechanism and starts to accumulate during pathogen infection (Ma et al. 

365 2020). Fortunately, the gene, TraesCS7B02G370700 of BS00025286_51 on the 7BL 

366 chromosome was also found to be associated with the chitinase activity and the defense response 

367 for fungi in our study. Meanwhile, the eight candidate genes identified were associated with 

368 either calcium ion binding or GTP binding, which has been shown to be involved in the early 

369 response of wheat to F. graminearum infection by salicylic acid (SA) and Ca2+ signals (Ding et 

370 al. 2011). Given that Ca2+ signal transduction was discovered to be crucial for the transcriptional 

371 reprogramming of innate plant immunity (Boudsocq et al. 2010), it is possible that these 

372 candidate genes associated with Ca2+ signals will be crucial in protecting against FHB in wheat.

373 Conclusions

374 In this study, sixty-six significant marker-trait associations (MTAs) were identified 

375 (P<0.001) on fifteen chromosomes with explaining phenotypic variation ranging from 5.4% to 

376 11.2%. Some genomic regions involving FHB resistance were found on chromosomes 2A, 3B, 

377 5B, 6A and 7B. There were eleven MTAs consistently associated with disease spikelet rate and 

378 disease rachis rate as pleiotropic effect locus. Eight new candidate genes of FHB resistance were 

379 predicated in wheat. Of which, three genes TraesCS5D02G006700, TraesCS6A02G013600 and 

380 TraesCS7B02G370700 on chromosome 5DS, 6AS and 7BL, respectively were important to 

381 defend FHB by regulating intramolecular transferase activity, GTP binding, chitinase activity in 

382 wheat. In addition, a total of five favorable alleles associated with wheat scab resistance were 

383 discovered in this study. In the materials with multiple favorable alleles, the resistance was 

384 mostly moderately resistant or moderately susceptible.

385
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Figure 1
Whole genome association analysis QQ map (left) and Manhattan plot of disease
spikelet rate (right).

E1: the experimental ûeld of Shandong Agricultural University in 2017; E2: the greenhouse of
Shandong Agricultural University in 2017; E3: the experimental ûeld of Shandong Agricultural
University in 2016. 1-21ÿ 1A, 1B, 1D, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 5D, 6A, 6B,
6D, 7A, 7B, 7D.
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Table 1(on next page)

Phenotypic variation of wheat diseased spikelets rate
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1 Table 1 Phenotypic variation of wheat diseased spikelets rate

Environment Change Mean Standard deviation Coefficient of variation

E1 0.06110� 0.7721 0.28 36.55%

E2 0.04770� 0.6388 0.34 52.96%

E3 0.01110� 0.7494 0.25 44.30%

2 a E1: the experimental field of Shandong Agricultural University in 2017; E2: the greenhouse of Shandong Agricultural 

3 University in 2017; E3: the experimental field of Shandong Agricultural University in 2016.

4
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Table 2(on next page)

ANOVA of wheat diseased spikelet and spike rachis rate in diûerent environments

* indicated signiûcant at the 0.05 level (2-tailed).
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1 Table 2 ANOVA of wheat diseased spikelet and spike rachis rate in different environments

Source

Dependent variable Type III Sum of Squares Degree of freedom Mean 

Square

F-value

Spikelet 94.062 204 0.461 16.421*

Varieties

Spike rachis 88.842 204 0.435 19.698*

Spikelet 5.262 2 2.631 93.709*

Environment

Spike rachis 5.505 2 2.752 124.493*

Spikelet 85.307 406 0.21 7.483*

Varieties * Environment

Spike rachis 83.735 406 0.206 9.329*

Spikelet 34.425 1226 0.028

Error

Spike rachis 27.105 1226 0.022

Spikelet 1128.175 1839

Total

Spike rachis 1182.519 1839

2 * indicated significant at the 0.05 level (2-tailed). 

3
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Table 3(on next page)

The correlation coeûcients of spikelet and spike rachis in three environments,
respectively

a E1, E2 and E3 were the same as the Table 1. ** Correlation is signiûcant at the 0.001
level(2-tailed); * Correlation is signiûcant at the 0.05 level(2-tailed).
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1 Table 3 The correlation coefficients of spikelet and spike rachis in three environments, respectively

E1 E2 E3

Environmenta

Variable Spikelet Spike rachis Spikelet Spike rachis Spikelet Spike rachis

Spikelet 1

E1

Spike rachis 0.881** 1

Spikelet 0.318** 0.203** 1

E2

Spike rachis 0.355** 0.239** 0.902** 1

Spikelet 0.263** 0.205** 0.224** 0.142** 1

E3

Spike rachis 0.233** 0.202* 0.205** 0.118* 0.986** 1

2 a E1, E2 and E3 were the same as the Table 1. �� Correlation is significant at the 0.001 level(2-tailed); � Correlation is 

3 significant at the 0.05 level(2-tailed).
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Table 4(on next page)

Phenotypic eûect of alleles for the relatively stable loci of disease spikelet rate
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1 Table 4 Phenotypic effect of alleles for the relatively stable loci of disease spikelet rate

Environmenta

Locus Chromosome Allele

Variety

number E1 E2 E3

Average Differenceb

CC 177 0.7829 0.7585 0.764 0.7685Aa

D_contig74317_533 5D

TT 28 0.6983 0.6519 0.6586 0.6696Bb

0.0989

TT 192 0.795 0.754 0.762 0.7703Aa

Kukri_c14239_1995 6A

CC 11 0.4593 0.619 0.5435 0.5406Bb

0.2297

CC 125 0.8001 0.7584 0.7484 0.7689a

BS00025286_51 7B

TT 52 0.6529 0.6632 0.7025 0.6729b

0.096

GG 14 0.8014 0.8043 0.7106 0.7721a

Kukri_c7087_896 3B

AA 191 0.7691 0.7393 0.7524 0.7536a

0.0185

AA 186 0.7841 0.7521 0.7547 0.7636Aa

RAC875_c35801_905 3D

GG 19 0.6463 0.6635 0.699 0.6696Bb

0.094

AA 22 0.7774 0.7489 0.7525 0.7596a

RAC875_c68525_284 6B

GG 183 0.7209 0.7018 0.725 0.7159b

0.0437

AA 104 0.7907 0.7624 0.7661 0.7731a

Kukri_c4143_1055 7B

CC 101 0.7505 0.7244 0.7306 0.7352b

0.0379

CC 104 0.7915 0.763 0.768 0.7741a

RAC875_c18043_369 7B

TT 100 0.7502 0.7229 0.7287 0.7339b

0.0402

AA 105 0.7914 0.764 0.7695 0.7749a

RAC875_c18043_411 7B

GG 100 0.7502 0.723 0.7287 0.7339b

0.041

GG 104 0.7915 0.763 0.768 0.7742a

RAC875_c5646_774 7B

AA 101 0.7505 0.7244 0.7306 0.7351b

0.0391

2 a E1, E2 and E3 were same as Table 1. b Difference between alleles. A and B: Different capital letters indicate significant 

3 difference between alleles at one locus at Pf0.01; a & b: Different lowercase letters indicate significant difference between 

4 alleles at one locus at Pf0.05
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Table 5(on next page)

Disease resistance statistics of diûerent resistant QTL combinations

<+= represents the allele for improving scab resistance; <-= represents the allele that
reduces the resistance.
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1 Table 5 Disease resistance statistics of different resistant QTL combinations

D_contig7

4317_533

Kukri_c14

239_1995

BS000252

86_51

RAC875_c

35801_905

Kukri_c41

43_1055

Variety

number

Mean 

DSR

Effect 

of 

resistanc

e genes

Standard 

deviation
F-value P-value

- - - - - 38 0.848 . 0.148

+ - - - - 9 0.866 0.022 0.081

- + - - - 3 0.815 -0.038 0.088

- - + - - 28 0.713 -0.159 0.237

- - - + - 2 0.922 0.087 0.047

- - - - + 62 0.777 -0.084 0.230

+ - + - - 1 0.725 -0.145 .

+ - - - + 1 0.330 -0.611 .

- - + + - 2 0.905 0.068 0.089

- - + - + 10 0.684 -0.193 0.343

- - - + + 2 0.892 0.052 0.051

+ + - + - 2 0.186 -0.781 0.017

+ + - - + 1 0.726 -0.144 .

+ - + - + 2 0.498 -0.413 0.491

+ - - + + 3 0.609 -0.281 0.304

- + + + - 2 0.617 -0.272 0.068

- + + - + 1 0.844 -0.005 .

- - + + + 3 0.593 -0.300 0.270

+ + + - + 1 0.210 -0.752 .

Genotype

+ - + + + 1 0.40 -0.524 .

2.551 0.001**

2 �+� represents the allele for improving scab resistance; �-� represents the allele that reduces the resistance.
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Table 6(on next page)

Haplotype of marker associated with FHB resistance and corresponding carrier materials
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1 Table 6 Haplotype of marker associated with FHB resistance and corresponding carrier materials

D_contig74317_533 Kukri_c14239_1995 BS00025286_51 RAC875_c35801_905 Kukri_c4143_1055

Number of 

resistance 

alleles

Variety
Disease spikelet 

rate
FHB resistance

B70 0.1979 HR
T C C G A 3

B72 0.1739 HR

T C C A C 3 B97 0.7256 MS

T T T A C 3 B179 0.1501 HR

B131 0.3217 MR
T T C G C 3

B200 0.5782 MS

B44 0.6654 MS
C C T G A 3

B196 0.5691 MS

B16 0.3519 MR
C T T G C 3

B68 0.5425 MS

T C T A C 4 B202 0.2100 HR

T T T G C 4 B34 0.4037 MS

2

3
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