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Rice is one of the most important staple plant foods that provide a major source of calories
and nutrients for tackling the global hunger index especially in developing countries. In
terms of nutritional profile, pigmented rice grains are favoured for their nutritional and
health benefits. The pigmented rice varieties are rich sources of flavonoids, anthocyanin
and proanthocyanidin that can be readily incorporated into diets to help address various
lifestyle diseases. However, the cultivation of pigmented rice is limited due to low
productivity and unfavourable cooking qualities. With the advances in genome sequencing,
molecular breeding, gene expression analysis and multi-omics approaches, various
attempts have been made to explore the genetic architecture of rice grain pigmentation.
In this review, we have compiled the current state of knowledge of the genetic
architecture and nutritional value of pigmentation in rice based upon the available
experimental evidence. Future research areas that can help to deepen our understanding
and help in harnessing the economic and health benefits of pigmented rice are also
explored.
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27 Abstract

28 Rice is one of the most important staple plant foods that provide a major source of calories and 

29 nutrients for tackling the global hunger index especially in developing countries. In terms of 

30 nutritional profile, pigmented rice grains are favoured for their nutritional and health benefits. 

31 The pigmented rice varieties are rich sources of flavonoids, anthocyanin and proanthocyanidin 

32 that can be readily incorporated into diets to help address various lifestyle diseases. However, the 

33 cultivation of pigmented rice is limited due to low productivity and unfavourable cooking 

34 qualities. With the advances in genome sequencing, molecular breeding, gene expression 

35 analysis and multi-omics approaches, various attempts have been made to explore the genetic 

36 architecture of rice grain pigmentation. In this review, we have compiled the current state of 

37 knowledge of the genetic architecture and nutritional value of pigmentation in rice based upon 
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38 the available experimental evidence. Future research areas that can help to deepen our 

39 understanding and help in harnessing the economic and health benefits of pigmented rice are also 

40 explored. 

41 Keywords: Pigmented rice, nutrients, secondary compounds, breeding, genetic engineering

42

43 Introduction

44 The sustainable food systems for ever-increasing human population include not only adequate 

45 food but also adequately balanced nutrient rich food. An increased focus on foods that provide 

46 adequate nutrition has resulted from a deeper understanding of the role of nutrition in maintaining 

47 a healthy population, particularly in developing nations. 

48 Rice is an important staple crop that feeds more than half of the world�s population and is 

49 being cultivated on approximately 158 million hectares of land producing around 850 million 

50 tons of grains annually (Krishnan et al., 2020). Asia represents a major rice growing region 

51 amounting for about 85% of the total production, followed by Latin America and Africa. India, 

52 being the second largest producer of rice in the world contributes around134 million metric 

53 tonnes with productivity of 2.8 t/ha and in a total cultivated area of around 46 million hectares 

54 (https://www.statista.com/statistics/agriculture/farming/2022). Rice is a good option for a healthy 

55 diet as it has no cholesterol, fat, or sodium and contains eight essential amino acids in a balanced 

56 proportion. Rice bran oil is rich in linoleic and oleic acid, which are essential for sustaining cell 

57 membranes and nervous system functioning (Bhat et al., 2020). Rice grains come in a variety of 

58 pigmentations, including yellow, green, brown, red, purple, and black. Pigmented rice (or 

59 coloured rice) has long been considered to have nutraceutical benefits resulting in ongoing 

60 production as niche rice in various parts of the world.

61 Pigmented landraces of rice have a higher content of total anthocyanin, total phenol and 

62 polyphenol which signifies high antioxidant potential (Deng et al., 2013). Due to their rich 

63 nutritional profile and high antioxidants, these rice types have the potential to boost human health 

64 by addressing a variety of metabolic disorders (Figure 1). The consumption of coloured rice 

65 reduces oxidative stress while simultaneously increasing antioxidant capacity in animal models, 

66 and this may be linked to a lower risk of chronic diseases like cardiovascular disease, type 2 
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67 diabetes and some cancers (Wongsa, 2020). As a result of their health potential and widespread 

68 demand, several nations have evaluated their coloured rice and created newer types. Varieties of 

69 coloured rice, recognized for their nutritional advantages, have remained a primary crop in 

70 several regions of India (Figure 1). Molecular breeding and biotechnology approaches are 

71 regularly used for increasing the nutritional components in pigmented rice as well as in 

72 transferring these quality traits to conventional white rice. However, there lies a gap between the 

73 research that is available in the form of specific publications and the thoughtful compiled 

74 information that is required to gain an overall understanding of the topic. Hence, the present 

75 review highlights information on the important nutritional components in pigmented rice grains 

76 along with the efforts made to increase the nutritional quality of both pigmented and white rice 

77 through various biotechnological approaches to address nutritional food security. The present 

78 review will serve as a comprehensive review for scholars, scientists and students working in the 

79 area of pigmented rice.

80 Survey Methodology

81 For this article, we have conducted a rigorous literature review and collected information from 

82 research articles, review articles, book chapters, websites (www.statista.com/; 

83 www.agricoop.gov.in/) and databases (http://rice.uga.edu/; https://www.gramene.org/; 

84 https://rapdb.dna.affrc.go.jp/). We have also used Google image for drawing a map of India. We 

85 excluded the studies having abstracts available only with no full-text articles

86 Nutritional Composition of Pigmented Rice

87 Protein and Amino acids

88 Our bodies' healthy condition as well as tissue repair depends on the protein that we take from 

89 foods. Since rice is a staple food for a major part of the global population so rice protein is 

90 important in human nutrition. Rice protein concentrates and isolates are useful components in 

91 many food applications because they offer special nutritional qualities that set them apart from 

92 other cereals and legume proteins, such as a well-balanced amino acid profile and being easily 

93 digestible and non-allergic (Romero, 2014; Sati and Singh, 2019). Rice proteins are also 

94 excellent ingredients for baby food recipes due to their distinct nutritional and hypoallergenic 

95 qualities. Rice protein hydrolysates have the potential to improve food emulsion stability and 

96 serve as a natural antioxidant (Rani et al., 2018). In rice, glutelins dominates seed storage 
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97 proteins, making up to 60�80% of the total protein in the seed by weight. Compared to other 

98 grain seeds, that contains higher prolamine content as a proportion of total protein, they make up 

99 only roughly 20�30% of the protein in rice seeds (Kawakatsu et al., 2008). 

100 Moreover, the amount and quality of protein is much better in pigmented rice as 

101 compared to non-pigmented rice.  Chen et al. (2016) compared pigmented and white rice grains 

102 at five different stages of growth and found 230 differently abundant proteins associated with 

103 several metabolic activities. The pigmented grains were shown to have lower concentrations of 

104 proteins involved in signalling pathways, redox homeostasis, photosynthesis, nitrogen fixation, 

105 and tocopherol synthesis. In contrast, it was discovered that the pigmented grain had higher 

106 levels of proteins necessary for the synthesis of sugars and flavonoids. Pigmented rices were also 

107 found to have a higher concentration of proteinogenic amino acids (histidine, threonine, valine, 

108 iso-leucine, methionine, phenyl alanine, lysine, proline, and tyrosine) and non-proteinogenic 

109 amino acids (glutamic acid, aspartic acid, asparagine, citrulline, and GABA) as compared to non-

110 pigmented rice (Samyor et al., 2017; Kaur et al., 2018).

111 Genetic engineering technology has substantially helped in improving cultivated crops 

112 through improvement of their essential amino acid and protein content. To raise the lysine 

113 content in cereals, lysine may be added at alternative codons during translation using a 

114 recombinant tRNA-lysine. Recombinant production of this tRNA in transgenic rice could greatly 

115 increase the amount of lysine in the seeds (Wu and Chen, 2003). Liu et al. (2016) used an 

116 endosperm-specific promoter for expression of the lysine-rich protein (LRP) gene from 

117 Psophocarpus tetragonolobus that results in 30% more lysine in the transgenic rice seeds as 

118 compared to wild-type plants. Lysine biofortification in rice seeds was also achieveded by over-

119 expressing two endogenous lysine-rich histone proteins (RLRH1 and RLRH2) (Wong et al. 

120 2015). Moreover, it was also found that increased lysine content also increases the threonine 

121 content in the grains through direct regulation (Das et al., 2020). The quantity of free tryptophan 

122 in the seeds increased significantly as a result of expression of an equivalent feedback-insensitive 

123 α-subunit of the rice anthranilate synthase, but other important agronomical variables, including 

124 spikelet fertility, yield, and germination, are negatively correlated (Wakasa et al., 2006).

125 Phytosterols, Carotenoids and Vitamins
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126 Plant sterols and plant stanols are collectively referred to as "phytosterols". The natural 

127 phytosterol dietary intake varies from 150 to 450 mg per day, depending on a person's eating 

128 habits (Ostlund Jr, 2002). Phytosterols have many beneficial effects such as anti-cancer activity, 

129 lowering blood levels of negative lipoproteins and cholesterol absorption (Schaefer, 2002; 

130 Suttuarporn et al., 2015). The three main and prevalent phytosterols found in human diet are β-

131 sitosterol, campesterol, and stigmasterol. β-sitosterol is the most common phystosterol found in 

132 commercial rice cultivars, followed by campesterol, 15-avenasterol, and stigmasterol (Zubair et 

133 al., 2012). Three other sterols, including fucosterol, 24-methylene-ergosta-5-en-3b-ol, and 24-

134 methylene-ergosta-7-en-3b-ol, are also present in the bran of the black rice variety "Riceberry" 

135 (Suttiarporn et al., 2015). 

136 γ-oryzanol, is another class of phytosterols and is made up of a variety of phytosteryl 

137 ferulates, notably cycloartenyl ferulate, 24-methylenecycloartanyl ferulate, b-sitosteryl ferulate, 

138 and campesteryl ferulate. γ-oryzanol seems  to be accumulated at a faster rate in pigmented grain 

139 compared to non-pigmented grain (Chakuton et al., 2012). Moreover, its value is found to be 

140 higher in black and purple rice as compared to red rice in Thai cultivars (Sornkhwan et al., 

141 2022).

142 The essential isoprenoid phytonutrients known as carotenoids, are produced in plastids, 

143 and are known to be lacking in rice endosperm. Provitamin A, found in carotenoids, are also 

144 components that lower the risk of a number of diseases like cancer, heart disease, age-related 

145 muscular degeneration, immune system disorders, and certain other degenerative diseases 

146 (Perera and Yen, 2007; Bollineni et al., 2014). Lutein and zeaxanthin account for more than 90% 

147 of the carotenoids synthesised in rice but trace levels of other carotenes such as lycopenes and 

148 beta-carotene are also present (Pereira-Caro et al., 2013; Melini and Acquistucci, 2017). Most of 

149 these compounds are found in the bran, with milled rice containing little or no carotenoids 

150 (Petroni et al., 2017). The genetically variable feature of grain carotenoid concentration is highly 

151 associated with grain colour. White rice have extremely little carotenoid content, but red and 

152 black grains have much more (Ashraf et al., 2017; Petroni et al., 2017).

153 Vitamins constitute an important component of a balanced diet. Both tocopherols and 

154 tocotrienols (enriched sources of vitamin E) arefound in rice grains (Zubair et al., 2012). The 

155 most prevalent tocotrienols in rice are the β- and γ-tocotrienols (Irakli et al., 2016). According to 

156 Gunaratne et al. (2013), red rice grains contain higher total levels of tocopherol and tocotrienol 
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157 compared to white rice varieties. The quantity of tocopherol in the grain is, however, 

158 dramatically decreased by the processes of dehulling and milling (Zubair et al., 2012). Rice is 

159 deficient in vitamins A, C and D. However, brown rice has been found to contain significant 

160 amounts of vitamin B complex {thiamin (B1), riboflavin (B2), niacin (B3), pantothenic acid 

161 (B5), pyridoxine (B6), biotin (B7), folate (B9)} and E (α-tocopherol) (Juliano, 1985; Samyor et 

162 al., 2017). Through molecular biology and genomic techniques, tremendous progress has been 

163 achieved in the genetic engineering of carotenoid production in plants during the past few 

164 decades. The whole collection of carotenoid biosynthesis pathway genes and related enzymes 

165 have been described. Metabolic engineering of the carotenoid biosynthesis pathway was carried 

166 out by marker assisted backcross breeding of two genes- phytoene synthase (Zmpsy1) from Zea 

167 mays and carotene desaturase (Crtl) from common soil bacterium Pantoea ananatis to create 

168 second generation transgenic rice, which accumulates phytoene, a crucial provitamin A 

169 intermediate (Mallikarjuna et al., 2021; Biswas et al., 2021). Due to their instability and 

170 degradation over time in long-term storage, folates in rice grain are less available. By genetic 

171 engineering a folate-binding protein, which increases the stability of folates by attaching to it 

172 over prolonged storage periods, biofortified high-folate rice grains were created that had 150 

173 times more folate than wild rice (Blancquaert et al., 2015).

174 The mutant TNG71-GE brown rice variety was found to be richer in total tocopherol and 

175 tocotrienol than the wild-type. As a result, this mutant TNG71-GE rice variety could be used to 

176 produce a crop with high vitamin E content (Jeng et al., 2012). Later, it was also found that a 

177 single-point mutation of the giant embryo gene (GE) in Chao2-10 rice led to the development of 

178 a new mutant known as Shangshida No. 5. When compared to Chao2-10, Shangshida No. 5 

179 brown rice contains more total vitamin E and α-tocopherol (Wang et al., 2013). The overall 

180 amount of tocochromanols in rice was very slightly enhanced in transgenic rice created by 

181 constitutive overexpression of the Arabidopsis thaliana r-hydroxyphenylpyruvate dioxygenase 

182 (HPPD) gene (Farre et al., 2012). The elite Japanese rice cultivar Wuyujing 3 (WY3) provides 

183 transgenic brown rice with increased quantities of α-tocotrienol by both constitutive and 

184 endosperm-specific over expression of the Arabidopsis g-TMT (AtTMT) gene (Zhang et al., 

185 2013).

186 Flavonoids
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187 Plants contain large amounts of flavonoids, which are secondary metabolites and play a 

188 significant role in plant development, pigmentation, UV protection, as well as in safeguarding 

189 the interaction with microorganisms (Samanta et al., 2011). Coloured flavonoids (flavanols, 

190 isoflavonoids, and flavones) are the pigments responsible for the colour of leaves, fruits, and 

191 flowers (Yang et al., 2022). Flavonoids play a crucial role in floral colours and fragrance, fruit 

192 pollinator attraction, and fruit dispersion (Panche et al., 2016). Due to the presence of 

193 flavonoids, terpenoids, steroids, and alkaloids, pigmented rice exhibits cytotoxic, anti-tumor, 

194 anti-inflammatory, antioxidant, and neuroprotective activities (Goufo and Trindade, 2014). In a 

195 recent study on thetotal flavonoid content (TFC) of rice, it was found that black and red rice had 

196 a higher TFC when compared to white rice varieties (Chen et al., 2022). Based on the amount of 

197 aromatic compounds, flavonoids can be classified into a wide range of groups such as chalcones, 

198 pro anthocyanidins, anthocyanins, flavones, flavonols, flavanones, and flavanonols (Mbanjo et 

199 al., 2020). However, proanthocyanidins and anthocyanins are the two primary flavonoids present 

200 in pigmented rice. Anthocyanins are responsible for the purple to blue coloration of such grains 

201 (Zhang et al., 2015). Consuming foods high in these substances may reduce inflammation and 

202 lower the risk of developing type-2 diabetes, cancer, and heart disease (Rengasamy et al., 2019). 

203 Eating foods high in anthocyanins on a regular basis also enhanced memory and overall brain 

204 health (Henriques et al., 2020).

205 Red and white rice grains lack anthocyanin (Xiongsiyee et al., 2018), although some red 

206 and brown rice accessions have low levels (Ghasemzadeh et al., 2018). The enzyme anthocyanin 

207 reductase converts unstable anthocyanidins into the colourless flavan-3-ols epiafzelechin, 

208 epicatechin, and epigallocatechin, and when these molecules are glycosylated, a broad variety of 

209 unique compounds are produced (Kim et al., 2015). After examining the transcription of eight 

210 flavonoid biosynthesis genes in various rice cultivars, it was found that pigmented variants had 

211 stronger expression of genes than non-pigmented forms (Mbanjo et al., 2020). At least two 

212 chalcone synthetase-encoding genes CHS2 on chromosome 7 and CHS1 on chromosome 11, 

213 help the production of flavanones in rice (Cheng et al., 2014).  Proanthocyanidins are produced 

214 by three flavone 3-hydroxylases: F3H-1 (on chromosome 4), F3H-2 (on chromosome 10), and 

215 F3H-3 (on chromosome 4) (Park et al., 2016). An effective method for researching genetic 

216 variants and genetic engineering in plants is the recombinant technology (Mackon et al., 2021). 

217 Understanding the function of several genes associated with anthocyanin biosynthesis and the 
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218 development of anthocyanin in the endosperm has become possible due to analysis of the 

219 anthocyanin colouring mechanism in rice. The regulator of a rice prolamin gene was used to 

220 insert the maize C1/R-S regulatory genes into the white rice japonica cultivar Hwa-Young that 

221 resulted in the production of a wide range of flavonoid compounds (Mackon et al., 2021). 

222 Phenolics

223 Polyphenols constitute the most common secondary metabolites of plants and seem to be largely 

224 indigenous to the plant kingdom (Dai et al., 2010). They are essential for the plant's 

225 development, fertilization, and defence against viruses, parasites, and environmental conditions 

226 including light, cold, pollutants, and also impact the plant's colour (Kabera et al., 2014). Phenolic 

227 compounds benefit humans by reducing the risk of contracting chronic diseases, have a high 

228 antioxidant property and make significant contributions to the prevention of many oxidative 

229 stress-related diseases, including malignancy. Furthermore, there has been a lot of focus on 

230 identifying and synthesising phenolic compounds or extracts from diverse plants in the realms of 

231 health care and medicine (Dai et al., 2010).

232 Despite differences in the content of the grains, the amount of phenolic acid in brown, 

233 red, and black rice was found to be nearly the same. The different phenolic acids found in these 

234 pigmented rice varieties include ferulic acid, p-cumaric, sinapic, ferulic, and hydroxybenzoic 

235 acid. While ferulic, protocatechuic, and p-cumaric acids constituted the most prevalent common 

236 cell wall-bound phenolic acids, sinapic, ferulic (28%) and vanillic acids constituted the most 

237 significant soluble phenolic acids in black rice (Blandino et al., 2022). Black rice was found to 

238 possess higher protocatechuic and vanillic acids than brown rice (Zaupa et al., 2015; Shao et al., 

239 2018). Using UV spectroscopy examination, the total phenolic content (TPC) of white, red and 

240 black rice varieties was determined. White rice types had TPCs much lower than those of black 

241 and red rice varieties (Chen et al., 2022). The genes involved in the biosynthesis of polyphenols 

242 interrelate with each other and have particular functions in the control of the polyphenols levels 

243 in rice grain (Galland et al., 2014). OsCHS, OsCHI, OsF3H, OsF3′H, OsDFR, and OsANS genes 

244 from brown rice have the ability to change the yellow seed coat of Arabidopsis thaliana to 

245 purplish. A yeast two-hybrid study revealed that, OsCHS1, OsF3H, OsF3′H, OsDFR, and 

246 OsANS1 interact with one another directly (Shih et al., 2008). The rice mutant Rcrd turns red 
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247 when DFR is introduced, demonstrating that Rd encodes the dihydroflavonol 4-reductase 

248 (Furukawa et al., 2007). 

249 Polysaccharides

250 Starch is the most abundant component which constitutes approximately 90% of rice grain. It is a 

251 polyglucan of two polymers, amylase (linear) and amylopectin (highly branched) with α-1→4-

252 linked linear glucans and α-1→6-linked branches. Starch biosynthesis is a highly regulated 

253 process that requires synchronized activities between various enzymes such as starch synthase 

254 (SS), ADP-glucose pyro-phosphorylase (AGPase), starch branching enzyme (SBE) and de-

255 branching enzyme (DBE). Studies have reported that starch synthesis in all higher plants and 

256 green algae and it is observed in higher plants, that the enzymes have undergone multi-sequential 

257 changes throughout the process of evolution (Qu et al., 2018). Conserved mutations in the 

258 enzymes- starch synthase SSIIIa and branching enzyme IIb (BEIIb) are helpful in breeding of 

259 highly resistant starch with more health benefits (Bao,  2019). Several efforts have been made to 

260 alter the expression and activities of starch biosynthetic enzyme by using various genetic as well 

261 as molecular approaches. Transgenic rice plants have been beneficial for evaluating different 

262 functions of the genes responsible as rice is easily transformed and a single DNA construct can 

263 be used to produce a variety of transformed lines having different expression levels.

264 Amylose and Amylopectin content modification by alteration of single gene function

265 The modification of amylose content has been one among the most significant breeding 

266 objectives because it affects gelatinization and cooking qualities. A lower amylose content rice is 

267 usually selected as the milled grains are more appetizing than those with higher content 

268 (Denardin et al., 2012).  Amylose is synthesized by the granule-bound starch synthases (GBSS) 

269 (Figure 2). The amylose content in Japonica type rice (GBSSIb) in ss3a mutant was found 

270 elevated when it replaced indica type rice (GBSSIa) (Crofts et al., 2012). The regulation of 

271 OsGBSSI expression has been established in rice endosperm at the transcriptional as well as post 

272 transcriptional levels and that accordingly differentiates these two varieties of rice-indica and 

273 japonica in terms of amylose contents (Liu et al., 2013). The amylopectin content and its 

274 structure may be directly altered by the isozymes involved in its biosynthesis and the extent of 

275 such modification depends upon the isozyme�s specificity. The change in amylopectin structure 

276 for example alters the starch to be highly resistant for gelatinization because of more and long 
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277 double helices (Miura et al., 2021). There is also change in the X-ray diffraction patterns from 

278 wild-type to mutant-type because the amylopectin has longer external chains. Similarly the 

279 impact on amylopectin structure was seen when  branching enzyme (BEIIb) activity in japonica 

280 rice was down regulated by the RNAi approach (Tsuiki et al., 2016; Zhang et al., 2022). The 

281 increase in amylopectin longer chains leads to an increase in the resistant starch content rather 

282 than an  increase in amylose content (Tsuiki et al., 2016).

283 Modification of Amylose and Amylopectin Content by Alteration in Multiple Gene Functions

284 Multiple gene functions leads to intense modifications in the starch biosynthesis and thus, the 

285 phenotypes of these mutants exhibit variations.  The changes are more extreme than predicted by 

286 the single gene mutants and the plant usually doesn�t survive. For example, the triple mutants 

287 (ss1/ss2a/ss3a) of japonica rice type referred as null mutants becomes sterile which indicates the 

288 functional properties of each isozyme and importance of  the presence of at least one of these 

289 (SSI, SSIIa, and SSIIIa) for starch biosynthesis in rice endosperm (Fujita et al., 2011). Other 

290 indirect effects are also observed such as the ADP glucose concentrations were found enhanced 

291 in the ss3a mutant as well as in ss3a/ss4b mutants when compared with wild type causing an 

292 increase in the Amylose content (Fujita et al., 2007). Similarly, the BEIIb and BEI gene 

293 inhibition results in the accumulation of  amylose which leads to the different physico-chemical 

294 properties in the rice endosperm providing highly resistant starch. DNA editing with 

295 CRISPR/Cas9 twas  found to be beneficial for specific editing of the BEIIb gene in rice for 

296 improved starch structure (Baysal et al., 2016).

297 Iron, Zinc and Micronutrients

298 Rice grain has trace amounts of several vital micronutrients, including zinc (Zn), magnesium 

299 (Mg), iron (Fe), copper (Cu), potassium (K), manganese (Mn) and calcium (Ca) (Shao et al., 

300 2018). However, the coloured rice possess greater amounts of Zn, Fe, and Mn when compared 

301 with white rice (Hurtada et al., 2018; Shao et al., 2018). Brown rice can deliver up to 75% of the 

302 optimal regular intake of zinc, copper, and iron while white rice only provides 37% (Hashmi and 

303 Tianlin, 2016). Red rice from North-East India has been observed to contain highest content of 

304 micronutrients (Al, K, Zn and Ca) than white rice (Samyor et al., 2016). A recent survey found 

305 that two black rice variants from Korea, Heukjinjubyeo and Heukgwangbyeo possess greater 

306 levels of Ca and K in comparison to a white variety (Hiemori et al., 2009). It has been also 
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307 observed that the ratio of micronutrients between coloured and non-coloured rice also differs. 

308 The important nutrients in polished rice samples were found to be in the order of 

309 K>Na>Mg>Zn>Fe>Mn>Cu>Cr, while in contrary to Brown rice variants, the order is: 

310 K>Mg>Na>Mn>Zn>Fe>Cr>Cu (Hashmi and Tianlin, 2016). A survey was done in North East 

311 India about the mineral content in black, red and white rice varieties and a complementary 

312 investigation was conducted between mineral elements (Zn, Fe, Ca, Ni and Mn). The mineral 

313 elements like Fe, Ca, Ni, Mn, Zn in various varieties of pigmented rice were present in highest 

314 quantity than the white rice varieties (Singh et al., 2022). The growth conditions also affect the 

315 Zn and Fe concentrations in the purple rice varieties. Wetland conditions were found to be more 

316 advantageous than aerobic culture for producing purple rice with vivid coloration and greater 

317 Zn(30 mg kg−1) and Fe contents (15 mg kg−1) (Jaksomsak et al., 2021).

318

319 β-carotene

320 Rice endosperm is not able to synthesize beta-carotene which acts as a precursor for vitamin A 

321 synthesis leading to deficiency in vitamin A especially in the developing countries where rice is 

322 the staple food and is the only way for fulfilling this nutritional requirement (Das et al., 2020). 

323 Vitamin A or β-carotene is a most important micronutrient for proper vision and development in 

324 humans and prevents many diseases such as night blindness, xerophthalmia and keratomalacia 

325 (Klemm et al., 2010). As rice endosperm is lacking β-carotene so it was necessary to make rice 

326 more nutritious by making it able to synthesize β-carotene (Das et al., 2020). In this context, an 

327 experiment was designed by Burkhardt et al. (1997) in which they found, in rice endosperm,  

328 geranyl geranyl diphosphate (GGPP),  an important precursor for β-carotene biosynthesis making 

329 rice endosperm capable of β-carotene synthesis.  The Rice Taipei 309 (japonica variety) was 

330 transformed with phytoene synthase from Narcissus pseudonarcissus by using micro projectile 

331 bombardment leading to β-carotene synthesis (Burkhardt et al., 1997). In another study the β-

332 carotene content of Golden rice was enhanced ∼23-fold by replacing the daffodil psy gene with 

333 its homolog from maize and was named as Golden rice 2 (GR2) (Mallikarjuna et al., 2021) 

334 which is now a good source of vitamin A and might become a part of many breeding programs in 

335 Asia. Furthermore, β-carotene can be converted into the derivative astaxanthin which is keto-

336 carotenoid and red in color with high antioxidant activity but most higher plants are unable to 

337 produce astaxanthin (Ha et al., 2019). Researchers genetically engineered sPaCrtI (phytoene 
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338 desaturase), sZmPSY1 (phytoene synthase), sHpBHY (b-carotene hydroxylase), and sCrBKT (b-

339 carotene ketolase) genes to initiate the astaxanthin biosynthetic pathway to produce endospermic 

340 astaxanthin in rice grains (Zhu et al., 2018). Tian et al. (2019) reported that bioengineering of 

341 three chemically synthesized genes i.e., tHMG1, ZmPSY1, and PaCRTI in rice increased the 

342 endospermic carotenoid biosynthesis through the mevalonate route. This engineering of 

343 astaxanthin biosynthesis in rice endosperm converts Golden rice to aSTARice (Zhu et al., 2018). 

344 These improved rice genotypes contain one more gene for β-carotene hydroxylase that produces 

345 a red coloured Astaxanthin Rice (aSTARice). Therefore, biofortification of rice through 

346 metabolic engineering could prove rice as a health promoting food and can be processed to 

347 produce dietary supplements (Zhu et al., 2018).

348 Folate

349 Folates are a group of water-soluble B vitamins (B9), derived from most reduced folate form 

350 known as tetrahydrofolate (THF) contains three building blocks�the pteridine, p-aminobenzoate 

351 (p-ABA) and glutamate moieties (Re´beille et al., 2006). Living organisms use folates as C1 

352 donors and acceptors and are mainly involved in the biosynthesis and metabolism of nucleotides, 

353 amino acids and vitamin B5 (Blancquaert et al., 2010). However, only plants and micro-

354 organisms can synthesize THF and its derivatives by de novo pathways. Therefore, humans are 

355 dependent on food to meet their daily requirement of folates needed to regulate many 

356 physiological and molecular processes (Blancquaertet al., 2014) for their survival. Many plants 

357 like vegetables, pulses and fruits are loaded with folates but most staple crops such as rice which 

358 is consumed by 1/2 of world�s population; contain low levels of folate leads to folate deficiency 

359 especially in developing countries (Dong et al., 2014). To eradicate folate deficiency worldwide 

360 by biofortification of rice through metabolic engineering is a promising and cost-effective 

361 approach. Moreover, the concept of enhancing folate content by over expressing the folate 

362 biosynthesis genes/ metabolic engineering has been carried out in rice (Strobbe and Van Der 

363 Straeten, 2017) and is an interesting target for improvement (Re´beille et al., 2006). The folate 

364 biosynthesis pathway in plants is a multi-step process occurs in three different subcellular 

365 compartments involves the conversion of chorismate (2 step process) by the action of ADC 

366 synthase (ADCS) into p-aminobenzoate (pABA) in plastids. Genes involved in folate 

367 biosynthesis such as ADCS,GTPCHI, FPGS and folate binding proteins (FBP) originated from 

368 different organisms has been genetically engineered and over expressed in rice to produce higher 
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369 content of folates up to 100 fold (Malik and Maqbool., 2020) but further effective biofortification 

370 strategy is needed. The lists of genes engineered in rice as a single or in combination by different 

371 researchers to increase content of folates till now are mentioned in Table 1.

372 Pigmentation in Rice

373 Pigmented rice grains contain high levels of flavonoids, which are biosynthesized by two genes 

374 (CHS1 and CHS2) encoding chalcone synthetase located on chromosomes 11 and 7, respectively 

375 (Cheng et al., 2014; Lei et al., 2009). Similarly, three flavone 3-hydroxylases, F3H1, F3H2, and 

376 F3H3, contribute to proanthocyanidin production in red rice grains (Park et al., 2016) and the 

377 two anthocyanin synthases are important for anthocyanins synthesis, ANS1 and ANS2 (Shih et 

378 al., 2008). 

379 Red and White Pigmentation of Rice grain

380 Rice grain colour was a major target during domestication and white rice was mostly selected, 

381 while most wild type rice is red. The colour is determined by the functional activities of different 

382 transcription factors. Two complementary genes, Rc and Rd (located on chromosomes 7 and 1, 

383 respectively), encode a basic helix-loop-helix (bHLH) transcription factor and are responsible for 

384 the red pericarp. RcRd genotypes produce red rice grain, while Rcrd genotypes produce brown 

385 rice grain (Furukawa et al., 2007). The Rc gene is also involved in rice grain dormancy and 

386 shattering. White variants have a loss-of-function mutation in the Rc allele (Gross et al., 2010).

387 Purple Rice Pigmentation

388 The purple-pericarp formation in rice is determined by the gene Kala4/OsB2/Pb which produces 

389 anthocyanins (Rahman et al., 2013). Pigmentation variation is under polygenic control (Ham et 

390 al., 2015). The Pl locus on chromosome 4 has three alleles (Plw, Pli, and Plj), each responsible 

391 for a different type of pigmentation. The wild type (Plw) produces anthocyanin in the aerial parts 

392 of the rice plant. Pl locus possesses the two genes- OSB-1&2 encodes a helix loop helix 

393 transcription factor (Sakamoto et al., 2001). Purple colour is characterized by the two dominant 

394 genes Pb and Pp (Ham et al., 2015). A comparative genomics study in different rice lines by 

395 Lachagari et al. (2019) revealed important allelic variants in genes related to flavonoid 

396 synthesis, cytokinin glucosides, and betanidin degradation, and purple rice pigmentation.Black 

397 Rice Pigmentation
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398 The Kala1, Kala3, and Kala4 loci located on chromosomes 1, 3, and 4 express black pericarp 

399 traits in rice (Maeda et al., 2014). The pigments, mostly observed in the aleurone layers of black 

400 rice, are a mixture of anthocyanins and range from black to dark purple. Variations in the Kala4 

401 promoter sequence mostly result in black rice grain phenotypes. Kala4 encodes a Helix Loop 

402 Helix transcription factor which relates to OSB2 gene responsible for the synthesis of 

403 anthocyanins (Sakulsingharoj et al., 2014). Genetic studies, including QTL mapping and GWAS 

404 analysis, have been used to understand the cause of rice pigmentation. Nine QTLs were reported 

405 for flour pigmentation in an inbred line population (Tan et al., 2001), and four QTLs were 

406 observed for red pigmentation (Dong et al., 2008). Twenty-one QTLs for variations in the 

407 composition and content of proanthocyanidins and anthocyanins were identified in a study by Xu 

408 et al. (2017). Twenty-five marker trait associations for grain pigmentation were identified using 

409 GWAS (Shao et al., 2011). GWAS has been more useful than QTL mapping in determining the 

410 cause of rice pigmentation (Korte and Farlow, 2013). With the advance in GWAS, a total of 763 

411 SNPs associated with pericarp pigmentation were reported by Yang et al. (2018) and some 

412 specific SNPs were also identified associated with Rc (Butardo et al., 2017).

413 Marker Trait Association Studies 

414 Quantitative trait locus (QTL) is a part of DNA that affects quantitative trait and QTL mapping is 

415 a powerful and effective approach to analyse the chromosomal regions controlling quantitative 

416 traits for the marker-assisted selection (MAS) strategy in rice (Hu et al., 2021; Islam et al., 

417 2020). Moreover, nutrient biofortification of rice by this method has been proved as a sustainable 

418 strategy to overcome mineral deficiencies (Majumder et al., 2019). Mineral accumulation in 

419 grain being a complex process and highly influenced by environmental factors has made 

420 breeding and early-generation phenotypic-based selections of biofortified rice varieties slow and 

421 less effective (Sharma et al., 2020). However, mapping major-effect QTLs by understanding 

422 genetics of grain mineral elements at the molecular level would be helpful for the rapid 

423 development of nutrient biofortification of rice varieties using marker-assisted breeding (MAB) 

424 (Swamy et al., 2018). To date, different mapping populations derived from biparental inter- or 

425 intra-subspecific and interspecific crosses have been used for identification of a large number of 

426 QTLs in rice genome which are mainly associated with mineral contents (Wang et al., 2020) and 

427 would be helpful in nutrient biofortification of rice varieties (Hu et al., 2021). In milled rice, 20 

428 QTLs has been identified for P, K, Mg, Ca, Zn, Mn, and Cu contents (Yu et al., 2015) and in 
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429 another study 51 QTLs in brown rice and 61 QTLs in rice straw was identified for different 

430 minerals (Wang et al., 2020) by using the RILs from the intra-subspecific cross Zhenshan 

431 97/Miyang 46. Garcia-Oliveira et al. (2009) used introgression lines (ILs) from an interspecific 

432 cross of cultivar �Teqing� and Yunnan wild rice (O. rufipogon) and reported 31 QTLs in brown 

433 rice for P, K, Mg, Ca, Fe, Zn, Mn, and Cu contents. Some other researchers found 134 QTLS in 

434 brown rice for 16 minerals content by using both RILs and backcross introgression lines (BILs) 

435 from an inter-subspecific cross Lemont/Teqing (Zhang et al., 2014). Descalsota-Empleo et al. 

436 (2019) used two sets of doubled haploid (DH) lines from two inter-subspecific crosses 

437 IR64/IR69428 and BR29/IR75862 and reported 50 QTLs in milled rice for 13 minerals (P, K, 

438 Na, Mg, and Ca). Furthermore, Du et al. (2013) showed influence of environmental factors in the 

439 detection of QTL for grain mineral contents. In this study they selected brown rice grown in two 

440 different ecological environments namely Lingshui and Hangzhou and mapped 23 and 9 QTLs 

441 for seven mineral contents respectively and reported only two QTLs for the Mg content were 

442 found in both the environments simultaneously. Several other reports based on QTLs for mineral 

443 accumulation in rices have been detailed in Table 2.

444 Conclusion and Future Prospectus 

445 Population growth and adverse global climatic changes negatively  affect  our  food  and  

446 nutritional  securities  which  has resulted  in  hunger  and  malnutrition  in  our  society.  Rice  

447 being  a staple  food  for  half  of  the  world  can  be  a  source  of energy for our generations 

448 only if it is fortified with balanced nutrients.  Pigmented rice  as a food  contain  many bioactive  

449 compounds  that  display  significant potential  concerning  a  range  of  beneficial  health  effects 

450 like  anti-cancerous,  anti-allergic,  anti-aging, anti-diabetic, and anti-obesity properties and 

451 include many medicinal  properties  like  treating  ulcer,  fracture,  burns, skin lesions, and many 

452 more. The extent of diseases faced  today  may  be  reduced  significantly by  simply replacing  

453 white  rice  with pigmented  rice  in  our  day  to day  diet.  The present limitations of  low  

454 productivity  and  palatability  in pigmented rice can  be  solved  by  framing  efficient  breeding 

455 strategies along with use of multiomics approaches. Development of highly palatable and high 

456 yielding coloured rices will have a great impact in tackling various malnutrition concerns 

457 observed in rice eating countries and this can have great implications in attaining nutritional 

458 security.
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843 Figure 1. The importance of pigmented rice in India with respect to the (a) varieties cultivated in 

844 different parts; (b) elemental content in different coloured-rice and (c) different nutraceutical 

845 benefits of pigmented rice. 

846 Figure 2. Genes Regulating Starch Biosynthesis in the endosperm through various 

847 transcriptional factors, different abbreviations indicates amylose content (AC), eating & cooking  

848 quality (ECQ), nutritional quality (NQ) and appearance quality(AQ), granule-bound starch 

849 synthase (GBSS), soluble starch synthase (SS) and starch branching enzymes (SBE).
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851 Table 1. Genes engineered in rice seed for different nutrients and metabolites

852 Table 2. QTL studies showing different markers trait associations for nutrient enhancement in 

853 rice
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1

2 Table 1. Genes engineered in rice seed for different nutrients and metabolites

Nutrient/ 

Metabolite
Gene Origin

Engineering 

Approach

Genes 

Transformed

Expression Details/ 

Fold change in 

expression

References

Arabidopsis thaliana
Biosynthesis Single-

gene
ADCS (1/6)-fold upregulated

Arabidopsis thaliana Biosynthesis Single GTPCHI 6.1-fold

Arabidopsis thaliana Biosynthesis Single HPPK/DHPS 1.4-fold

Triticum aestivum Biosynthesis Single DHFS 1.27-fold

Arabidopsis thaliana
Biosynthesis Multi-

gene

GTPCHI + other 

biosynthesis genes
6.1-fold

Arabidopsis thaliana
Biosynthesis Multi-

gene
GTPCHI + ADCS 100-fold

Arabidopsis thaliana Polyglutamylation FPGS 1.45-fold

Oryza sativa Polyglutamylation FPGS 4.7-fold

Arabidopsis thaliana
Polyglutamylation GTPCHI + ADCS 

+ FPGS
100-fold

Bos taurus
Folate binding 

proteins
FBP 6.2-fold

Rattus norvegicus
Folate binding 

proteins
GNMT 8.8-fold

Folate

Arabidopsis thaliana (G 

+ A) Bostaurus (FBP)

Folate binding 

proteins

GTPCHI + ADCS 

+ FBP
150-fold

Strobbe and Van 

DerStraeten., 2017

Lysine Arabidopsis thaliana
Manipulation of 

lysine content
DHDPS Feedback inhibition Das et al. 2020
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Carotenoids Zea mays

Agrobacterium 

mediated DNA 

transfer
OsLCYB

1.9-fold upregulated Tian et al. 2019

Pantoea ananatis

Agrobacterium 

mediated DNA 

transfer

OsBCH2 1.1-fold upregulated Tian et al. 2019

Carotenoids

Saccharomyces 

cerevisiae

Agrobacterium 

mediated DNA 

transfer

OsPDS 1.6-fold upregulated Tian et al. 2019

Vitamin A
Narcissus 

pseudonarcissus

Transformation by 

microprojectile 

bombardment

pCPsyH

Expression observed 

in only the 

transformed plants.

Burkhardt et al. 

1997

Oryza sativa
Single point 

mutation

Giant embryo gene 

(ge)
2.2-fold upregulated Wang et al. 2013

Vitamin E

Arabidopsis thaliana

Transformation by 

particle 

bombardment

PDS1 upregulated Farre et al. 2012

Solanum tuberosum

Agrobacterium-

mediated 

transformation

StGWD1

9-fold higher 6-

phospho (6-P) 

monoesters and 

double amounts of 3-

phospho (3-P) 

monoesters.

Chen et al. 2017
Starch

Zea mays

Agrobacterium-

mediated 

transformation

OsSUS1-6

Upregulatedstarch 

accumulation for 

improved grain filling.

Fan  et al. 2019
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Oryza sativa

Map-based cloning-

Mutation of T-

DNA(gamma-

radiated hybrid-rice)

SSIII and Waxy 

(Wx)

High in resistant 

starch (RS) Zhou et al. 2016

Arabidopsis thaliana

RNA interference 

approach

Starch Excess 4 

(SEX4)

improved bioethanol 

yield, with a 50% 

increase in ethanol 

production

Huang et al.  2020

Oryza sativa 

RNA interference 

approach 

(antisenseWx gene)

Wx

amylose content in 

transgenic caryopsis 

was  downregulated

Chen et al. 2006; 

Khandagale et al. 

2018

Thermoan

aerobacter

ethanolicus

Agrobacterium

tumefaciens 

mediated  transfer

APU 

(amylopullulanase)

Reduction of amylose, 

altered starch 

properties

Chiang et al. 2005

Nitrogen Arabidopsis thaliana Constitutive 

overexpression

MYB12, MYC, 

WD40
Upregulated Lee et al. 2016

Phosphorus Arabidopsis thaliana Constitutive 

overexpression
OsMYB3R-2 Upregulated Huang et al. 2018

3

4

5

6

7
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1 Table 2. QTL studies showing different markers trait associations for nutrient enhancement in rice

Grain Traits QTL Trait marker References

Zinc (Zn)

qZN-5, qZN-7, qSZn2, qSZn12, qZn7, qZn3.1, 

qZn7.1, qZn7.2, qZn7.3, qZn12.1, qZn4, qZn6, 

qZn1-1, qZn12-1, qZn5-1, qZn8-1, qZn12-1, 

qZn2.1, qZn2.1, qZn3.1, qZn6.1, qZn6.2, 

qZn8.1, qZn11.1, qZn12.1, qZn12.2, qZn2.2, 

qZn8.3, qZn12.3, qZn3.1, qZn7, qZn8.3, qZn3-

1, qZn1.1, qZn5.1, qZn9.1, qZn12.1, qZn1.1, 

qZn6.1, qZn6.2, qZn2-1, qZn2-2, qZn5, 

qZn10, qZn2.1, qZn3.1, qZn5.1, qZn5.2, 

qZn7.1, qZn9.1, qZn11.1, qZn 1.1, qZn2.1, 

qZn3.1, qZn3.2, qZn5.1, qZn6.1, qZn8.1, 

qZn8.2, qZn9.1, qZn12.1, QTL.Zn.4, QTL.Zn.5

RMID2009463, RM2147095, 

RM2785595, RM6047367, 

RMID6006214, RM8832534, 

RMID11000778,RM12985052, 

RM13057679,RM34-RM237, 

RM7-RM517, RZ398-RM204 

RM501-OsZip2, RM152, RM25-

R1629, RM235-RM17, RM260-

RM7102, RM551, RM413

Das et al. 2020; Islam et 

al. 2020; Thangadurai et 

al. 2020; Swamy et al. 

2018

Iron (Fe)

qFE-1, qFE-9, qGFe4, qSFe1, qSFe12, qFe1, 

qFe3, qFe6, qFe2-1, qFe9-1, qFe4.1, qFe3.3, 

qFe7.3, Fe8.1, qFe12.2, qFe3-1, qFe9.1, 

qFe12.1, qFe1.1, qFe1.2, qFe6.1, qFe6.2, 

qFe5, qK6.1, qFe2.2, qFe3.1, qFe4.1., qFe6.1, 

qFe8.1, qFe11.2, qFe11.3, qFe12.1,

RM4743351, RM574-RM122, 

RM234-RM248, RM137-

RM325A, RZ536-TEL3, RM270-

RM17, RM260-RM7102, RM17-

RM260, RM452, RM215

Das et al. 2020; Islam et 

al. 2020; Thangadurai et 

al. 2020; Swamy et al. 

2018

Manganese (Mn)

qMn1-1, qMn2-1, qMn3-1, qMn10-1, 

qMn2.1, qMn2.1, qMn7.1, qMn1.1, 

qMn1.2, qMn3.1, qMn3.2, qMn4.1

RM243-RM312, RM6367, 

RM227-R1925, RM214, 

RMID2009186, RMID2009463, 

RM7592793

Das et al. 2020; 

Mahender et al. 2016; 

Swamy et al. 2018

Calcium

qCa1-1, qCa4-1, qCa5-1, qCa9-1, qCa10-1, 

qCa11-1, qCa12-1, qCa1.1, qCa1.1, qCa2.1, 

qCa2.1, qCa3.1, qCa3.2,

RM403585, RMID1013855, 

RMID2009186, RM2131264, 

RM2499734, RM2733626, 

RM598, RM5626-RM16, 

RM200-RM227,

Das et al. 2020; 

Mahender et al. 2016; 

Swamy et al. 2018
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Magnesium (Mg)

qMg1-1, qMg3-1, qMg5-1, qMg9-1, qMg12-1, 

qMg3.1, qMg3.2, qMg5.1, qMg8.1, qMg9.1, 

qMg1.1, qMg7.1, qMg8.1, qMg11.1

RM2499734, RM3460782, 

RM5522491, RM8892951, 

RM9886119,OSR 21, RM467, 

RM332,

Das et al. 2020; 

Mahender et al. 2016; 

Swamy et al. 2018

Phosphorus (P)

qP1-1, qP3-1, qP8-1, qP9-1, qP12-1, qP1.1, 

qP2.1, qP2.2, qP5.1, qP6.1, qP11.1, qP11.2

RM,119519, RMID2009186, 

RM2181296, RM5430212, 

RMID6009257, RM3411, 

RM495, RM212, RM70-RM172, 

RM201,

Das et al. 202; 

Mahender et al. 2016; 

Swamy et al. 2018

Potassium (K)

qK1-1 qK.1, qK4-1, qK8-1, qK9-1, qK2.1, 

qK4.1, qK4.2, qK5.1, qK9.1, qK3.1, qK3.2, 

qK3.3, qK4.1, qK5.1,

RM2094246, RM4285667, 

RM4668476, RM5430212, 

RM9858839, RM3572, RM5501,

Das et al. 2020; 

Mahender et al. 2016; 

Swamy et al. 2018

Boron (B)
qB2.1, qB3.1, qB4.1, qB4.2, qB10.1

RMid2009186, RM2645329, 

RM4314701,

Das et al. 2020; Swamy 

et al. 2018

Cobalt (Co)

qCo1.1, qCo3.1, qCo4.1, qCo12.1, qCo7.1, 

qCo10.1

RM827062, 

RM2785595,RM4572241, 

RM12958034

Das et al. 2020; Swamy 

et al. 2018

Copper (Cu)

qCu3.1, qCu4.1, qCu4.2, qCu1.1, qCu1.2, 

qCu2.1, qCu6.1, qCu8.1

RM3330180, RM4314701, 

RM4761773

Das et al. 2020; Swamy 

et al. 2018

Molybdenum 

(Mo)

qMo1.1, qMo1.2, qMo1.3, qMo2.1, qMo11.1, 

qMo12.1, qMo12.1, qMo12.1

RM854218, RMID1014853, 

RM1191519, RM1725183, 

RMID11006537, RM13030749, 

RM13044018

Das et al. 2020; Swamy 

et al. 2018

Sodium (Na)

qNa1.1, qNa1.2, qNa7.1, qNa7.2, qNa10.1, 

qNa3.1, qNa11.1, qNa11.2

RM267954, 

RM784044,RMID7003294,RM7

962882, RM10635878

Das et al. 2020; Swamy 

et al. 2018
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Phytic 

acid 

(PA)

qPA.12 RM247-RM179 Thangadurai et al. 2020

Grain protein 

content (GPC)

qPC1, qPC2, qPC3, qPC6.1, qPC6.2, qPC8, 

qPC12.1, qPC1.1, qPC11.1, and qPC11.2, 

qPC-3, qPC-4, qPC-5, qPC-6 and qPC-10, 

qPr1 and qPr7, qPro-8, qPro-9 and qPro-10, 

qGPC1.1, qSGPC2.1 and 

qSGPC7.1,QTL.pro.1

RM493-RM562, 1008-RM575, 

RM472-RM104, RM5619-

RM1211, RM12532-RM555, 

RM251-RM282, RM190-RZ516, 

RM190-RZ516, RM270-C751, 

R1245-RM234, RM445-RM418, 

RM184-RM3229B, RM24934-

RM25128, 1027-RM287, 

RM287-RM26755, RM5

Thangadurai et al. 2020; 

Islam et al. 2020; 

Mahender et al. 2016

Amino acid 

content (AAC)

qAa1, qAa7, qAA.8, qAA.4, qAA.3, qAA.2, 

qAA.1, qAa9, qAA.10

RM493-RM562, RM472-RM104, 

RM324-RM301, RM322-RM521, 

RM520-RM468, RM348-RM131, 

RM125-RM214, RM137-RM556, 

RM447-RM458, RM328-RM107, 

RM467-RM271

Thangadurai et al. 2020; 

Mahender et al. 2016

Amylose (amy)

QTL.amy.6, QTL.amy.7, QTL.amy.8, 

QTL.amy.11

RM190, RM125, RM284, 

RM144
Islam et al. 2020
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Figure 1
Figure 1

The importance of pigmented rice in India with respect to the (a) varieties cultivated in
different parts; (b) elemental content in different coloured-rice and (c) different nutraceutical
benefits of pigmented rice.
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Figure 2
Figure 2

Genes Regulating Starch Biosynthesis in the endosperm through various transcriptional
factors where, different abbreviations indicates amylose content (AC), eating & cooking
quality (ECQ), nutritional quality (NQ) and appearance quality(AQ), granule-bound starch
synthase (GBSS), soluble starch synthase (SS) and starch branching enzymes (SBE).
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