Analyzing genetic diversity and molecular

characteristics of wild centipedegrass using

sequence-related amplified polymorphism (SRAP)

4 markers

- 5 Xiaoyun Wang¹, Wenlong Gou², Ting Wang¹, Yanli Xiong¹, Yi Xiong¹, Qingqing Yu¹, Zhixiao
- 6 Dong¹, Xiao Ma¹, Nanqing Liu³, * and Junming Zhao¹, *
- 7 1 College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang,
- 8 Chengdu 611130, Sichuan, China.
- 9 2 Sichuan Academy of Grassland Sciences, Pidu, Chengdu 611731, Sichuan, China
- 10 3 Jiangsu Vocational College Agriculture and Forestry, Gourong 212400, Jiangsu, China
- * Correspondence: Liunanqing@jsafc.edu.cn and junmingzhao163@163.com

Abstract

2

3

12

- 13 Centipedegrass [Eremochloa ophiuroides (Munro) Hack.] is commonly used as a low-
- maintenance warm-season turfgrass owing to its excellent adaptation to various soil types. A
- better understanding of the genetic diversity pattern of centipedegrass is essential for the
- efficient development and utilization of accessions. In this study, fifty-five pairs of primers were
- 17 used to detect the genetic variation and genetic structure of twenty-three wild centipedegrass
- accessions by SRAP markers. A total of 919 reliable bands were amplified, among which 606
- 19 (65.80%) were polymorphic. The average polymorphic information content (PIC) value was
- 20 0.228. The unweighted pair group method with arithmetic mean (UPGMA) clustering analysis
- 21 grouped the twenty-three accessions into two clusters. Meanwhile, the structure analysis
- showed that the tested accessions possessed two main genetic memberships (K = 2). The Mantel
- 23 test showed a significant correlation between the genetic and geographic distance matrices (r =
- 24 0.3854, p = 0.000140). Furthermore, geographical groups showed moderate genetic
- 25 differentiation, and the highest intragroup genetic diversity was found in the Sichuan group (He
- = 0.201). Overall, the present research findings could promote the protection and collection of
- 27 centipedegrass and provide comprehensive information to develop novel breeding strategies.
- 28 **Keywords:** Eremochloa ophiuroides; SRAP; genetic diversity; phenotype

Introduction

- 30 Centipedegrass [Eremochloa ophiuroides (Munro) Hack.] is a perennial warm-season diploid
- 31 grass species (2n = 2x = 18) that belongs to the genus *Eremochloa* in the family Poaceae.
- 32 Centipedegrass originated in southwest China, and the wild population is reportedly mainly
- distributed in the southern Yangtze River region of China (Hanna & Burton, 1978; He et al.,

2022). With beautiful leaves, low plant height, drought and barren tolerance, high coverage rate, and strong disease resistance (Cai et al., 2022; Li et al., 2020), the centipedegrass is a relatively ideal broad-leaved grass species, suitable for building sports and leisure lawn, requiring low maintenance and management. In addition, it can consolidate soil, protect slopes and embankments, and prevent soil and water loss, which plays an important role in slope vegetation restoration (Islam & Hirata, 2010; Liu et al., 2008). Therefore, centipedegrass is a pioneer plant for slope ecological restoration. Although centipedegrass is widely distributed in China, with diverse populations and enormous potential for development, there are few varieties adapted to specific regional climates, which poses a real challenge to the demand for new centipedegrass varieties with long green periods, high overwintering rates, and adaptation to climate change in non-local environments. Evaluation of genetic diversity in germplasm resources can provide useful information for plant breeding programs (Gawali et al., 2006). Analysis of the genetic variation in various markers such as morphology, agronomic traits and DNA molecular markers showed significant differences between different accessions and populations (Xuan et al., 2005; Zhao et al., 2011; Milla-Lewis et al., 2012). Compared with other biochemical markers, DNA molecular markers have superior characteristics, such as higher polymorphism, more accurate experimental results, and independence from environmental conditions and developmental stages (Massa et al., 2001). Furthermore, they represent a robust and quick approach to detecting the genetic variability of germplasm. Over the years, several molecular markers like amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD), and inter-simple sequence repeat (ISSR) have been used to elucidate the genetic diversity of centipedegrass accessions (Xuan et al., 2005; Zhao et al., 2011; Milla-Lewis et al., 2012; Massa et al., 2001). Sequence-related amplified polymorphism (SRAP) is a new PCR-based approach whereby two sets of primers are designed based on the G and C contents in gene exons to amplify the open reading frame (Li & Quiros, 2001; Robarts & Wolfe, 2014). Compared with other common dominant markers, it is easier to operate, low-cost and more functional. Therefore, in recent years, SRAP molecular marker technology has been widely used for the study of genetic diversity in a large number of grass species, such as Russian Alfalfa (Shamustakimova et al., 2021), Buchloe dactyloides (Wu et al., 2019), Dactylis glomerata (Zeng et al., 2008). Few studies have hitherto used SRAP to explore the genetic diversity of centipedegrass accessions. This study combined SRAP molecular markers with the seven morphological indexes to reveal the genetic and morphological diversity of twenty-three centipedegrass accessions. This study aimed to reveal the population genetic structure of these materials at the molecular level. Besides, morphological diversity analysis was conducted to obtain more comprehensive information, which is of great significance for preserving valuable genetic resources, selecting high-quality germplasm resources, and developing new varieties.

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

5556

57

58 59

60

61

62

63

64 65

66

67

68

69

Materials and Methods

71

72

Plant Samples and DNA Extraction

- A total of 23 wild centipedegrass accessions were collected in this study collected from Sichuan
- province (n = 9), Chongqing municipality (n = 6), abroad (n = 1), and other parts of China (n = 1)
- 75 7) (Table S1, Fig. S1). In early May 2016, seven morphological traits were measured and scored
- in the experimental field of Hanchang town, Chengdu city in China (30°35′24″N, 103°31′48″E),
- which were erect branch leaf length (EBLL), erect branch leaf width (EBLW), stolon leaf length
- 78 (SLL), stolon leaf width (SLW), stolon internode length (SIL), stolon internode diameter (SLD),
- and grass height (GLH) (Table S2). We divided the twenty-three accessions into three groups
- according to their geographical origins: Sichuan (9 accessions), Chongqing (6 accessions), and
- 81 other areas (8 accessions). Dispersed geographical groups with few individuals were classified
- 82 into the same group.
- 83 Genomic DNA was extracted using a plant Genomic DNA Extraction Kit (DP305, Beijing
- 84 Tiangen). The concentration of DNA was detected by ultra-micro spectrophotometer.
- 85 Completely assessed DNA samples were diluted to 10 ng/µL with sterile ddH₂O and stored at
- -20°C for PCR amplification.

87 SRAP Analysis

- A total of 215 pairs of SRAP primers were randomly combined to screen polymorphic primers
- 89 for twenty-three wild centipedegrass accessions. SRAP amplification system: 15 μL SRAP
- 90 reaction system: DNA template 3 μL (10 ng μL⁻¹), MIX 7.5 μL (dNTP 240 μmol L⁻¹, Taq
- 91 enzyme 1.0 U μL⁻¹, Mg²⁺ 2.5 mmol L⁻¹), upstream and downstream primer 0.3 μL (10 μmol L⁻¹
- 92 1) each, ddH₂O 3.6 μL, and Taq enzyme 0.3 μL. The SRAP-PCR reaction was performed as
- 93 follows: predenaturation at 94°C for 5 min, 5 cycles of denaturation at 94°C for 1 min, annealing
- at 35°C for 1 min, stretching at 72°C for 1 min, 35 cycles of denaturation at 94°C for 1 min,
- annealing at 50°C for 1 minute, 72°C for 1 minute, final extension at 72°C for 10 minutes and
- 96 storage at 4°C. The PCR products were separated by 6% modified polyacrylamide gel and
- 97 detected by silver staining. Gel clear photographs were used for the following analysis.

Data Analysis

- 99 The polymorphic bands were statistically analyzed according to the electrophoresis results. The
- presence and absence of stripes were recorded as 1 and 0, respectively. Finally, a (0, 1) matrix
- was generated for statistical software analysis. The number of polymorphic bands (NPB),
- 102 percentage of polymorphic bands (PPB), marker index (MI) and resolution (RP) were
- 103 calculated to evaluate the ability of SRAP primers to identify marker differences. PIC was used
- to evaluate the value of markers for detecting population polymorphism. PIC was calculated by
- the following formula:

 $PIC = 1 - \sum P_i^2$

Where Pi is the frequency for the i th microsatellite allele (Riek *et al.*, 2001). The GenAlex 6.51 procedure (Peakall, 2012) was used to estimate the effective number of alleles (Ne), Shannon information index (I) and pairwise population PhiPT values (Fst) among the geographical groups. At the same time, principal coordinates analysis (PCoA) was used to analyze the information quality of specific SRAP primers. In addition, NTSYS-pc software was used for cluster analysis of the unweighted pair group method with arithmetic mean (UPGMA), and a tree diagram was generated. The relationship between morphological indexes, climatic data and genetic similarity coefficients of all germplasms was determined by the Mantel test (Zeller Katherine *et al.*, 2016). Otherwise, we further evaluated the genetic structure of the population of 23 germplasm resources using the STRUCTURE 2.3.3 software (Pritchard *et al.*, 2000), with population K set to 1 - 10. The number of iterations for the burn-in and post-burn periods was set to 10⁴ and 10⁵ for the Markov chain Monte Carlo simulations. Then the online program was used to determine the optimal K value (Dent A & Bridgett M, 2012).

Results

Primer polymorphism analysis

Fifty-five pairs of qualified primers were screened from 215 pairs of primers, and the polymorphism of twenty-three wild centipedegrass accessions germplasm resources was evaluated. The results showed that the number of reliable bands amplified by each primer pair was 7 (M14E07) - 23 (M01E07), and a total of 919 reliable bands were amplified. The polymorphic bands per primer pair ranged from 16.67% (M07E07) to 90% (M01E20 and M17E10), with an average of 65.8%. The polymorphism and recognition ability of primers were evaluated by PIC, MI and RP. The average PIC value was 0.228, and the PIC value of primer M12E19 was the highest (0.312). The average MI and RP values were 1.85 and 5.40, respectively, indicating the high utility of the primers.

Clustering, PCoA, and Population Structure Analysis

Based on the (0, 1) matrix, UPGMA analysis showed that all accessions could be divided into two clusters (Fig. S3). Cluster I was mainly from Chongqing and other areas, and cluster II was mainly from Sichuan. Through principal coordinates analysis, another clustering of twenty-three wild centipedegrass accessions was performed to generate a scatter plot (Fig. 1). The results showed that PCoA divided twenty-three accessions into two clusters. The molecular variation explained by principal coordinate one was 14.31%, which was the same as the result of UPGMA tree. A tree map was constructed based on morphological trait data, and all accessions could be divided into two groups at an average distance of 30.399, indicating that they could be grouped independently regardless of geographic distribution (Fig. S4). The

- population structure of twenty-three wild centipedegrass germplasms was analyzed by the
- Bayesian method. When the Evanno method was performed, the optimal ΔK was 2 (Fig. S5).
- Accordingly, the optimal number of subpopulations in this study was two (namely, two genetic
- members) (Table S4 and Fig. 1). Assuming that the accessions with a Q value more than 0.8
- were "pure" (Forsberg et al., 2014), 69.56 % of the germplasm was attributed to the pure
- subgroup. The proportion of mixed germplasm resources in Sichuan was the largest (Table S5).

Genetic Structure of the Inferred Geographic Groups and Mantel Analysis

- 148 The twenty-three wild centipedegrass accessions could be divided into three categories:
- 149 Sichuan, Chongqing and other areas. It was found that Sichuan had the highest genetic diversity
- 150 (He = 0.201, I = 0.312) (Table 2). The analysis of molecular variance (AMOVA) showed that
- genetic variation within geo-groups accounted for 88% of the total variation, and the Fst among
- geo-groups was 0.115, indicating a moderate degree of genetic differentiation among geo-
- groups (Table 3). The genetic distance between the three geographic groups was evaluated. We
- found that the differentiation between Chongqing and Sichuan was the lowest (Fst = 0.051)
- 155 (Table 4).

147

- 156 Mental analysis showed no correlation between the genetic and morphological distance
- matrices (r = -0.0003, p = 0.5093). When the genetic distance matrix correlated with climate
- factors, BIO14 (precipitation in the driest month) (r = 0.2513, p = 0.0063), BIO15 (precipitation
- seasonality) (r = 0.2623, p = 0.0434) and BIO17 (precipitation in the arid region) (r = 0.2354,
- 160 p = 0.0141) were highly correlated with genetic distance (Fig. 2, Table S6). At the same time,
- a correlation was observed between geographical distance and genetic matrix (r = 0.385352, p
- 162 = 0.000140).

163

164

Discussion

Genetic polymorphism and identification ability of SRAP primers

- 165 Compared with other molecular markers, SRAP has the advantages of simplicity, high
- efficiency, high yield and good repeatability (Budak et al., 2004; Gao et al., 2020; Li et al.,
- 167 2019). In the present study, 55 SRAP markers were used to evaluate the genetic diversity of
- twenty-three wild centipedegrass accessions. Using 55 SRAP markers, 919 scorable fragments
- were obtained with an average of 16.7 fragments per marker, higher than reported in a study by
- Theng et al. (2017) in 80 bermudagrass accessions (13.08 fragments per marker) but lower than
- detected by Yuan et al. (2018) in 73 Kentucky bluegrass accessions (18.6 fragments per marker).
- 172 This finding indicates that the primers screened in this study have particularly good
- practicability in the study of genetic diversity. Among the 919 fragments, 606 polymorphic

- bands were found, higher than in an RAPD study (42.41%) by Xuan et al.(2005). This finding
- indicated that centipedegrass germplasm has high genetic diversity.
- 176 It is widely acknowledged that the primer efficiency index represents the overall utility of a
- specific primer during the identification of many accessions; higher values are associated with
- higher efficiency and amount of information on primers. In this study, the average MI (1.85)
- and RP (5.40) values of primers were higher than the SRAP and EST-SSR markers in prairie
- grass (MI = 1.348, RP = 1.897 and MI = 0.67, RP = 1.14) (Yi et al., 2021; Sun et al., 2021).
- Besides, the primer pairs M11E01 (MI = 4.58, RP = 9.91) and M11E09 (MI = 3.74, RP = 9.39)
- had the highest MI and RP values, indicating that these primers had high genetic identification
- values for centipedegrass germplasm. Besides, the average PIC value of SRAP markers was
- 184 0.228, indicating the high utility of selected primers.

Genetic Diversity of Centipedegrass

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

- In this study, the overall genetic diversity of centipedegrass was higher (He = 0.165) than the average value (0.104) of *Hemarthria compressa* (Huang et al., 2012), since the accessions collected in the latter study were concentrated in Yunnan-Guizhou-Sichuan region, the geographical distribution range is limited. Xuan et al. (2005) used RAPD to study the genetic diversity of centipedegrass and reported an average value lower than in the present study (0.04 vs. 0.165), which may be attributed to the collection of resources from only five provinces, and these provinces were from the southeast region, which led to low genetic diversity. In the present study, the twenty-three wild centipedegrass accessions were collected from a wide geographical distribution, which accounted for their higher genetic diversity. Accordingly, the high genetic diversity of centipedegrass germplasm may be related to its geographical distribution and biological characteristics. Indeed, centipedegrass is a perennial crosspollination plant with self-incompatibility (Hanna & Burton, 1978). Furthermore, its wide geographical distribution accounts for its adaptability to different ecological environments. In addition, the seed-setting rate of wild centipedegrass germplasm is low. Accordingly, the characteristic of stolon asexual reproduction derived from long-term adaptation and evolution can help maintain the population's genetic diversity (Hanna, 1995; Liu et al., 2003).
- Genetic differentiation of populations is caused by geographical isolation and climatic differences.
- The clustering results showed that there were significant differences between the Sichuan population and the non-Sichuan population, and other materials except Sichuan were clustered into one group. The reason for this result may be due to human factors, that is, the species resources in a certain area are brought to another place to grow, and then the gene exchange occurs, which is consistent with the research results of *Elymus nutans*(Chen *et al.*, 2009). Our AMOVA results showed a certain degree of genetic differentiation among different geographic

210 populations (Fst = 0.115), which was higher than previous studies (0.0643) (Susana R et al., 211 2012), it is also higher than Yi et al. (2021) in prairie grass species (0.045). Usually, genetic 212 differentiation is caused by the lack of effective gene exchange. Centipedegrass has a wide 213 geographical distribution, including Jiangsu, Zhejiang, Fujian, Hunan, Hubei and other regions, 214 which limits the gene exchange between distant germplasm and may lead of genetic 215 differentiation between different geographical populations. Our results also substantiated a 216 significant correlation between geographical and genetic distances (r = 0.385352, p = 0.000140), 217 indicating that geographical isolation led to genetic differentiation, similar to findings reported 218 by Chen et al. (2020). The geographical distribution of the twenty-three accessions collected in 219 this study was dispersed, and the geographical distance was heterogeneous. These factors 220 affected the gene exchange between geographical groups, resulting in greater genetic 221 differences. In addition, climate can lead to genetic variation through natural selection, and 222 environmental adaptability is a key factor in genetic differentiation. Our results showed a 223 significant correlation between BIO14, BIO15, BIO17 and genetic distance, and these three 224 climatic factors are associated with rainfall. This finding may be due to the fact that only some 225 genotypes may survive and prevail with rainfall, which may lead to a decrease in genetic 226 diversity among species populations and even altered gene interactions, consistent with findings 227 reported by Tan et al. (2018).

Conclusion

228

235

- In this study, we evaluated the genetic diversity and population genetic structure of twenty-
- three wild centipedegrass accessions by SRAP, PCoA, UPGMA and AMOVA. The UPGMA
- tree map divided all accessions into two clusters, which was roughly consistent with the results
- of PCoA. AMOVA revealed that the genetic variation within geographical groups was greater
- 233 than between geographical groups. Overall, the findings of this study can help better understand
- 234 the genetic diversity of centipedegrass and lay the groundwork for future research.

Additional files

- Table S1. Accession number and collection source of the centipedegrass.
- Table S2. Seven morphological traits measured in twenty-three centipedegrass.
- Table S3. Primer name and sequence of SRAP.
- Table S4. Q value of 23 cetipedegrass accessions in two groups.
- Table S5. Distribution of the Q value of cetipedegrass germplasm in the three geographical
- 241 groups.
- Table S6. Correlation data of climate data and geographical groups mental analysis.
- Fig. S1. Geographical distribution of twenty-three wild centipedegrass species used in this
- study.

- Fig. S2. Amplification profiles of 23 cetipedegrass accessions with primer combination M15 +
- 246 E03 (left), M15 + E08 (right), M9 + E14 (left) and M9 + E20 (right) (accessions 1 to 23 from
- left to right).
- 248 Fig. S3 UPGMA dendrogram of twenty-three centipedegras accessions based on genetic
- 249 distance.

254

- 250 Fig. S4. UPGMA dendrogram delineating twenty-three wild cetipedegrass accessions based on
- seven morphological traits.
- 252 Fig. S5. STRUCTURE estimation of the number of subgroups for the K values ranging from 1
- 253 to 10, by delta K (Δ K) values.

Author Contributions

- Xiaoyun Wang performed the experiments, analyzed the data, prepared figures and/or tables, and drafted the work or revised it critically for important content.
- Wenlong Gou performed the experiments, analyzed the data, and drafted the work or
- revised it critically for important content.
 Ting Wang performed the experiments, analyzed the data, and prepared figures and/or
- 260 tables.
- Yanli Xiong analyzed the data, and drafted the work or revised it critically for important content.
- Yi Xiong performed the experiments, and prepared figures and/or tables.
- 264 Qingqing Yu performed the experiments, and prepared figures and/or tables.
- Zhixiao Dong analyzed the data, and prepared figures and/or tables.
- Xiao Ma conceived and designed the experiments, and drafted the work or revised it critically for important content.
- Nanqing Liu conceived and designed the experiments, and drafted the work or revised it critically for important content.
- Junming Zhao conceived and designed the experiments, analyzed the data, and drafted the work or revised it critically for important content.

272 Funding

- 273 This research was supported by Seed Industry Vitalization Research Projects of Jiangsu
- 274 Province (JBGS[2021]096) and National Natural Science Foundation of China (32071885).

275 **References**

- Budak H, Shearman RC, Parmaksiz I, and Dweikat I. 2004. Comparative analysis of seeded
- and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs,
- SSRs, RAPDs, and SRAPs. Theoretical and Applied Genetics 109(2):280-288 DOI
- 279 10.1007/s00122-004-1630-z.
- 280 Cai XY, Fu JY, Li X, Peng LL, Yang LQ, Liang YH, Jiang MY, Ma J, Sun LX, Guo BM,
- and Yu XF. 2022. Low-molecular-weight organic acid-mediated tolerance and Pb

- 282 accumulation in centipedegrass under Pb stress. *Ecotoxicology and Environmental Safety*283 **241**:113755-113755
- 284 DOI 10.1016/J.ECOENV.2022.113755.
- Chen ZH, Miao JM, Zhong JC, Ma X, Chen SY, and Zhang XQ. 2009. Genetic diversity
 of wild Elymus nutans germplasm detected by SRAP markers. *Acta Pratacultural Science* 18:192-200 DOI CNKI:SUN:CYXB.0.2010-01-025.
- Chen G, Bo PT, Yu SH, Lu AJ, Wang QC, Wang JX, and Feng J. 2020. Study on Genetic
 Diversity of Natural Quercus mongolica Populations in Liaoning Province Revealed by
 SSR Markers. *Journal of Shenyang Agricultural University* 51(6):727-733 DOI
 10.3969/j.issn.1000-1700.2020.06.012.
- Dent AE, and Bridgett MV. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genetics Resources* 4(2):359-361
- 295 DOI 10.1007/s12686-011-9548-7.
- Forsberg NEG, Russell J, Macaulay M, Leino MW, and Hagenblad J. 2014. Farmers without borders—genetic structuring in century old barley (Hordeum vulgare). *Heredity* 114:195-206 DOI 10.1038/hdy.2014.83.
- Gawali CW, Bhoite KD, Pardeshi SR. 2006. Genetic divergence in sesame (Sesamum indicum L.). *Research on Crops* **7**(3):758-759
- Gao SM, Cong RC, Gao L, Zhu YY, and Zhou Y. 2020. Genetic diversity analysis of phenotypic character and SRAP molecular markers in 45 tree peony cultivars. *Brazilian Journal of Botany* 43:1-12 DOI 10.1007/s40415-020-00596-6.
- 304 **Hanna WW. 1995.** Centipedegrass—Diversity and Vulnerability. *Crop Science* **35(2)**:332-344 305 DOI 10.2135/cropsci1995.0011183X003500020007x.
- Hanna WW, and Burton GW. 1978. Cytology, Reproductive Behavior, and Fertility
 Characteristics of Centipedegrass1. *Crop Science* 18(5):835-837
 DOI 10.2135/cropsci1978.0011183X001800050038x.
- He QQ, Liu CQ, Li JJ, Wang JJ, Yao X, Zhou SJ, Chen Y, and Wang HR. 2022. Cloning of EoNLA gene in Eremochloa ophiuroides and the transgenic Arabidopsis phenotypic characterization under various phosphorus levels. *Journal of Nanjing Forestry University* (Natural Science Edition) 46(3):134-142
- Huang LK, Zhang XQ, Xie WG, Zhang J, Cheng L, and Yan HD. 2012. Molecular diversity and population structure of the forage grass Hemarthria compressa (Poaceae) in south China based on SRAP markers. *Genetics and Molecular Research* 11(3):2441-50 DOI 10.4238/2012.May.24.3.
- Islam MA, and Hirata M. 2010. Centipedegrass (Eremochloa ophiuroides (Munro) Hack.):
 Growth behavior and multipurpose usages. *Grassland Science* 51(3):183-190 DOI 10.1111/j.1744-697X.2005.00014.x.
- Li G, and Quiros CF. 2001. Sequence-related amplified polymorphism (SRAP), a new marker
 system based on a simple PCR reaction: its application to mapping and gene tagging in
 Brassica. *Theoretical and Applied Genetics* 103(2-3):455-461
- 323 DOI 10.1007/s001220100570.
- 324 Li J, Guo H, Zong J, Chen J, Li D, and Liu J. 2020. Genetic diversity in centipedegrass

- [Eremochloa ophiuroides (Munro) Hack.]. *Horticulture Research* **7**:4 DOI 10.1038/s41438-019-0228-1.
- Li RF, Ding HF, Wang CN, Lu LY, and Zhang XD. 2019. Genetic Diversity of Clover by
 SRAP. Agricultural Biotechnology 8:10-12
- 329 DOI CNKI:SUN:AGBT.0.2019-05-002.
- Liu MX, Yang SY, Guo ZF, Lin XP. 2008. Somatic embryogenesis and plant regeneration in centipedegrass (Eremochloa ophiuroides [Munro] Hack.). In Vitro Cellular & Developmental Biology: Plant 44(2):100-104
- 333 DOI 10.1007/s11627-008-9115-4.
- Liu J, Hanna W, and Elsner E. 2003. Morphological and Seed Set Characteristics of Centipedegrass Accessions Collected in China. *Economic Botany* 57(3):380-388 DOI 10.1663/0013-0001(2003)057[0380:MASSCO]2.0.CO;2.
- Massa AN, Larson SR, Jensen KB, and Hole DJ. 2001. AFLP Variation in Bromus Section
 Ceratochloa Germplasm of Patagonia. *Crop Science* 41(5):1609-1616
 DOI 10.2135/cropsci2001.4151609x.
- Milla-Lewis SR, Kimball JA, Zuleta MC, Harris-Shultz KR, Schwartz BM, and Hanna
 WW. 2012. Use of sequence-related amplified polymorphism (SRAP) markers for
 comparing levels of genetic diversity in centipedegrass (Eremochloa ophiuroides (Munro)
 Hack.) germplasm. Genetic Resources and Crop Evolution 59(7):1517-1526 DOI
 10.1007/s10722-011-9780-8.
- Peakall ER. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. *Bioinformatics* 28:2537-2539
- Pritchard JK, Stephens M, and Donnelly P. 2000. Inference of Population Structure Using
 Multilocus Genotype Data. *Genetics* 155(2):9197-9201
 DOI 10.1093/GENETICS/155.2.945.
- Riek JD, Calsyn E, Everaeart I, Loose MD, and Bockstaele EV. 2001. Alternatives for the assessment of Distinctness, Uniformity and Stability of sugar beet varieties based on AFLP data. *Theoretical and Applied Genetics* 103(8):1254-1265

 DOI 10.1007/s001220100710.
- Robarts DWH, and Wolfe AD. 2014. Sequence-Related Amplified Polymorphism (SRAP)
 Markers: A Potential Resource for Studies in Plant Molecular Biology. *Applications in Plant Sciences* 2(7):1400017-1400017
 DOI 10.3732/apps.1400017.
- Shamustakimova AO, Mavlyutov Y, and Klimenko IA. 2021. Application of SRAP Markers
 for DNA Identification of Russian Alfalfa Cultivars. *Russian Journal of Genetics* 57(5):540-547 DOI 10.1134/S1022795421050112.
- Sun M, Dong Z, Yang J, Wu W, and Ma X. 2021. Transcriptomic resources for prairie grass (Bromus catharticus): expressed transcripts, tissue-specific genes, and identification and validation of EST-SSR markers. BMC Plant Biology 21(1):264

 DOI 10.1186/S12870-021-03037-Y.
- Susana R M, Jennifer A K, Zuleta MC, Harris-Shultz KR, Schwartz BM, and Hanna WW.

 2012. Use of sequence-related amplified polymorphism (SRAP) markers for comparing levels of genetic diversity in centipedegrass (Eremochloa ophiuroides (Munro) Hack.)

- 368 germplasm. Genetic Resources and Crop Evolution **59(7)**:1517-1526 DOI 369 10.1007/s10722-011-9780-8.
- 370 Tan J, Wan J, Luo F, and Yu FH. 2018. Relationships between Genetic Diversity of Vascular 371 Plant Species and Climate Factors. Journal of Resources and Ecology 9(6):663-672 DOI 372 10.5814/j.issn.1674-764x.2018.06.009.
- 373 Wu FF, Chen JH, Wang JL, Wang XG, Lu Y, Ning YM, and Li YX. 2019. Intra-population 374 genetic diversity of Buchloe dactyloides (Nutt.) Engelm (buffalograss) determined using 375 morphological traits and sequence-related amplified polymorphism markers. 3 Biotech 376 **9(3)**:97
- 377 DOI 10.1007/s13205-019-1632-9.
- 378 Xuan JP, Gao H, and Liu JX. 2005. RAPD analysis of a population of Eremochloa 379 ophiuroides in China. Acta Pratacul. Sci 4:47-52
- 380 DOI 10.3321/j.issn:1004-5759.2005.04.008.
- 381 Yi LM, Dong ZX, Lei Y, Zhao JM, Xiong YL, Yang J, Xiong Y, Gou WL, and Ma X. 2021. 382 Genetic Diversity and Molecular Characterization of Worldwide Prairie Grass (Bromus 383 catharticus Vahl) Accessions Using SRAP Markers. Agronomy 11(10):2054-2054 DOI 384 10.3390/AGRONOMY11102054.
- 385 Yuan X, Tu MY, He YL, Wang W, Li J, and Zhou S. 2018. Analysis of Genetic Diversity 386 in 73 Kentucky Bluegrass Materials by SSR and SRAP Markers. Notulae Botanicae Horti 387 Agrobotanici Cluj-Napoca 46(2):327
- 388 DOI 10.15835/nbha46210916.
- 389 Zeller Katherine A, Creech Tyler G, Millette Katie L, Crowhurst Rachel S, Long Robert 390 A, Wagner Helene H, Niko BN, and Landguth Erin L. 2016. Using simulations to 391 evaluate Mantel-based methods for assessing landscape resistance to gene flow. *Ecology* 392 and Evolution 6(12):4115-28 DOI 10.1002/ece3.2154.
- 393 Zeng B, Zhang XQ, Lan Y, and Yang WY. 2008. Evaluation of genetic diversity and 394 relationships in orchardgrass (Dactylis glomerata L.) germplasm based on SRAP markers. 395 Canadian Journal of Plant Science 88(1):53-60 396 DOI 10.4141/CJPS07017.
- 397 Zhao QL, Bai C, and Liang X. 2011. An analysis by ISSR of genetic diversity in Eremochloa 398 ophiuroides in China. Chinese Journal of Tropical Crops 32(1):110-115 DOI 399 10.3969/j.issn.1000-2561.2011.01.023.
- 400 Zheng YO, Xu SJ, Liu J, Zhao Y, and Liu JX. 2017. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based 401 402 on SRAP markers. Plos One 12(5):e177508
- 403 DOI 10.1371/journal.pone.0177508.