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ABSTRACT

Centipedegrass (Eremochloa ophiuroides (Munro) Hack.) is commonly used as a low-
maintenance warm-season turfgrass owing to its excellent adaptation to various soil
types. A better understanding of the genetic diversity pattern of centipedegrass is
essential for the efficient development and utilization of accessions. This study used
fifty-five pairs of primers to detect the genetic variation and genetic structure of twenty-
three wild centipedegrass accessions by Sequence-related amplified polymorphism
(SRAP) markers. A total of 919 reliable bands were amplified, among which 606
(65.80%) were polymorphic and 160 (2.91%) were the monomorphic loci. The average
polymorphic information content (PIC) value was 0.228. The unweighted pair group
method with arithmetic mean (UPGMA) clustering analysis grouped the twenty-
three accessions into two clusters. Meanwhile, the structure analysis showed that the
tested accessions possessed two main genetic memberships (K = 2). The Mantel test
significantly correlated the genetic and geographic distance matrices (r =0.3854, p =
0.000140). Furthermore, geographical groups showed moderate genetic differentiation,
and the highest intragroup genetic diversity was found in the Sichuan group (He
= 0.201). Overall, the present research findings could promote the protection and
collection of centipedegrass and provide comprehensive information to develop novel
breeding strategies.

Subjects Biodiversity, Genetics, Plant Science, Population Biology
Keywords Eremochloa ophiuroides, SRAP, Genetic diversity, Morphological traits

INTRODUCTION

Centipedegrass [Eremochloa ophiuroides (Munro) Hack.] is a perennial warm-season
diploid grass species (2n = 2x = 18) that belongs to the genus Eremochloa in the family
Poaceae. Centipedegrass originated in southwest China, and the wild population is
reportedly mainly distributed in the southern Yangtze River region of China (Hanna

¢ Burton, 1978; He et al., 2022). Centipedegrass has the characteristics of beautiful leaf
color, low plant height, drought and barren resistance, high coverage, strong disease
resistance, and strong adaptability in acidic and slightly alkaline soils (Liu et al., 2023; Li et
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al., 2022). Tt is an ideal broad-leaved grass species, suitable for the construction of sports
and leisure lawns, and low maintenance and management requirements (Cai et al., 2022;
Li et al., 2020). It grows slowly, has short stolons and many leaves, and can form a denser
lawn. It is one of the early excellent lawn grasses in southern China (Xu et al., 2023; Cai et
al., 2022). In addition, it can consolidate soil, protect slopes and embankments, and prevent
soil and water loss, which plays an important role in slope vegetation restoration (Islam
¢ Hirata, 20105 Liu et al., 2008). Therefore, centipedegrass is a pioneer plant for slope
ecological restoration. Although centipedegrass is widely distributed in China, with diverse
populations and great potential for development, there are few varieties adapted to specific
regional climates, which poses a real challenge to the demand for new centipedegrass
varieties with long green periods, high overwintering rates, and adaptation to climate
change in non-local environments.

Evaluation of genetic diversity in germplasm resources can provide useful information
for plant breeding programs (Gawali, Bhoite ¢» Pardeshi, 2006; AlKhayri et al., 2023;
AlKhayri et al., 2022). Analysis of the genetic variation in various markers such as
morphology, agronomic traits, and DNA molecular markers showed significant differences
between different accessions and populations (Xuan, Gao ¢ Liu, 2005; Zhao, Bai ¢ Liang,
2011; Milla-Lewis et al., 2012). Compared with other biochemical markers, DNA molecular
markers have superior characteristics, such as higher polymorphism, more accurate
experimental results, and independence from environmental conditions and developmental
stages (Massa et al., 2001). Furthermore, they represent a robust and quick approach to
detecting the genetic variability of germplasm. Over the years, several molecular markers like
amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA
(RAPD), and inter-simple sequence repeat (ISSR) have been used to elucidate the genetic
diversity of centipedegrass accessions (Xuan, Gao ¢ Liu, 2005; Zhao, Bai & Liang, 2011;
Milla-Lewis et al., 2012; Massa et al., 2001). Sequence-related amplified polymorphism
(SRAP) is a new PCR-based approach whereby two sets of primers are designed based on
the G and C contents in gene exons to amplify the open reading frame (Li ¢» Quiros, 2001;
Robarts & Wolfe, 2014). Compared with other common dominant markers, it is easier to
operate, low-cost, and more functional. Therefore, in recent years, SRAP molecular marker
technology has been widely used for the study of genetic diversity in a large number of grass
species, such as Russian Alfalfa (Shamustakimova, Mavlyutov ¢ Klimenko, 2021), Buchloe
dactyloides (Wu et al., 2019), Dactylis glomerata (Zeng et al., 2008).

Few studies have hitherto used SRAP to explore the genetic diversity of centipedegrass
accessions. This study combined SRAP molecular markers with the seven morphological
indexes to reveal the genetic and morphological diversity of twenty-three centipedegrass
accessions. This study aimed to reveal the population genetic structure of these materials
at the molecular level. In addition, morphological diversity analysis was conducted to
obtain more comprehensive information, which is of great significance for preserving
valuable genetic resources, selecting high-quality germplasm resources, and developing
new varieties.
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MATERIAL AND METHODS

Plant samples and DNA extraction

A total of twenty-three wild centipedegrass accessions were collected from Sichuan province
(n=9), Chongqing municipality (n=6), abroad (n= 1), and other parts of China (n=7)
(Table S1, Fig. S1). In early May 2016, seven morphological traits were measured and
scored in the experimental field of Hanchang town, Chengdu city in China (30°35'24"N,
103°31’48”E), which were erect branch leaf length(EBLL), erect branch leaf width (EBLW),
stolon leaf length (SLL), stolon leaf width (SLW), stolon internode length (SIL), stolon
internode diameter (SLD), and grass height (GLH) (Table S2). We divided the 23 accessions
into three groups according to their geographical origins: Sichuan (nine accessions),
Chongqing (six accessions), and Other areas (eight accessions). Dispersed geographical
groups with few individuals were classified into the same group.

The above seven morphological traits are measured as follows: For EBLL and EBLW, five
mature leaves were randomly selected from upright branches and the length and width (at
the widest point) of the leaves were determined using a vernier caliper. For SLL and SLW,
five mature leaves were randomly selected from the stolons and the length and width(at
the widest point) of the leaves were determined using vernier calipers. For GLH, randomly
measure the natural height of the grass layer and repeat the measurement 5 times. For SIL
and SID, random five healthy stolons were selected to determine the internode length and
diameter in the middle of stolons.

Genomic DNA was extracted using a Plant Genomic DNA Extraction Kit(DP305, Beijing
Tiangen). The concentration of DNA was detected by ultramicro spectrophotometer.
Completely tested DNA samples were diluted to 10 ng/pL with sterile ddH,O and stored
at —20 °C for PCR amplification.

SRAP analysis

A total of 215 pairs of SRAP primers were randomly combined to screen polymorphic
primers for twenty-three wild centipedegrass accessions. SRAP amplification system: 15
1L SRAP reaction system: DNA template 3 pL (10 ng pL™!), MIX 7.5 wL (dANTP 240 pumol
Ll Taq enzyme 1.0 U pnLL, Mg2Jr 2.5mmol L71), upstream and downstream primer 0.3
L (10 pmol L™!) each, ddH,O 3.6 uL, and Taq enzyme 0.3 pL. The SRAP-PCR reaction
was performed as follows: predenaturation at 94 °C for 5 min, 5 cycles of denaturation
at 94 °C for 1 min, annealing at 35 °C for 1 min, stretching at 72 °C for 1 min, 35 cycles
of denaturation at 94 °C for 1 min, annealing at 50 °C for 1 min, 72 °C for 1 min, final
extension at 72 °C for 10 min and storage at 4 °C. The PCR products were separated by 6%
modified polyacrylamide gel and detected by silver staining. Gel clear photographs were
used for the following analysis.

Data analysis

The polymorphic bands were statistically analyzed according to the electrophoresis results.
The presence and absence of stripes were recorded as 1 and 0, respectively. Finally, a (0, 1)
matrix was generated for statistical software analysis. The number of polymorphic bands
(NPB), percentage of polymorphic bands (PPB), marker index (MI), and resolution (RP)
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were calculated to evaluate the ability of SRAP primers to identify marker differences. PIC
was used to evaluate the value of markers for detecting population polymorphism. PIC was
calculated by the following formula:

PIC=1-) P

Where Pi is the frequency for the i th microsatellite allele (Riek et al., 2001). The GenAlex
6.51 procedure (Peakall, 2012) was used to estimate the effective number of alleles (Ne),
Shannon information index (I), and pairwise population PhiPT values (Fst) among the
geographical groups. At the same time, principal coordinates analysis(PCoA) was used to
analyze the information quality of specific SRAP primers. In addition, NTSYS-pc software
was used for cluster analysis of the unweighted pair group method with arithmetic mean
(UPGMA), and a tree diagram was generated. The relationship between morphological
indexes, climatic data, and genetic similarity coefficients of all germplasms was determined
by the Mantel test (Zeller Katherine et al., 2016). Otherwise, we further evaluated the genetic
structure of the population of twenty-three germplasm resources using the STRUCTURE
2.3.3 software (Pritchard, Stephens ¢ Donnelly, 2000), with population K set to 1-10. The
number of iterations for the burn-in and post-burn periods was set to 10* and 10° for the
Markov chain Monte Carlo simulations. Then the online program was used to determine
the optimal K value (Dent ¢ Bridgett, 2012).

RESULTS

Polymorphism analysis

Fifty-five pairs of qualified primers were screened from 215 pairs of primers, and the
polymorphism of 23 wild centipedegrass accessions germplasm resources was evaluated.
The results showed that the number of reliable bands amplified by each primer pair
was seven (M14E07)-23(MO1E07), and a total of 919 reliable bands were amplified. The
polymorphic bands per primer pair ranged from 16.67% (M07E07) to 90% (MO1E20 and
M17E10), with an average of 65.8%. The polymorphism and recognition ability of primers
were evaluated by PIC, MI and RP. The average PIC value was 0.228, and the PIC value
of primer M12E19 was the highest (0.312). The average MI and RP values were 1.85 and
5.40, respectively, indicating the high utility of the primers (Table 1, Fig. S52).

Clustering, PCoA, and population structure analysis

Based on the (0, 1) matrix, UPGMA analysis showed that all accessions could be divided
into two clusters (Fig. S3). Cluster I was mainly from Chonggqing and other areas, and
cluster II was mainly from Sichuan. Through principal coordinates analysis, another
clustering of twenty-three wild centipedegrass accessions was performed to generate a
scatter plot (Fig. 1). The results showed that PCoA divided twenty-three accessions into
two clusters. The molecular variation explained by principal coordinate 1 was 14.31%,
which was roughly the same as the result of UPGMA tree (the specific PCoA values are
detailed in Table 54). A tree map was constructed based on morphological trait data, and
all accessions could be divided into two groups at an average distance of 30.399, indicating
that they could be grouped independently regardless of geographic distribution (Fig. S4).
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Table 1 Polymorphism of SRAP markers in centipedegrass accessions.

Primer Pairs TNB NPB MB Polymorphism PIC RP MI

MO1E03 14 10 1 71.43 0.248 4.78 1.77
M20E05 22 14 4 63.64 0.213 6.43 1.90
MO1E14 15 11 2 73.33 0.199 3.83 1.61
MO1E20 10 9 0 90.00 0.263 3.48 2.13
MO1E07 23 16 2 69.57 0.239 7.91 2.66
MO1E09 17 13 1 76.47 0.281 6.87 2.79
MO6E03 18 10 3 55.56 0.196 4.70 1.09
MO6E06 17 7 7 41.18 0.121 2.78 0.35
MO6E07 14 11 2 78.57 0.224 4.43 1.93
MO6E09 21 11 6 52.38 0.170 4.43 0.98
MO6E12 13 9 3 69.23 0.242 4.70 1.51
MO6E19 14 6 4 42.86 0.164 3.04 0.42
MO6E04 19 10 4 52.63 0.215 6.00 1.13
MO7E04 20 10 6 50.00 0.185 5.39 0.93
MO7E09 13 6 46.15 0.136 2.35 0.38
MO7E07 12 6 16.67 0.114 2.09 0.04
MO9E03 17 5 47.06 0.196 4.61 0.74
MO9E10 19 10 4 52.63 0.208 5.65 1.10
MO09E14 17 13 3 76.47 0.229 5.22 2.28
MO9E20 19 15 2 78.95 0.264 6.96 3.13
MI0E03 17 11 3 64.71 0.238 6.43 1.70
MI10E06 15 9 5 60.00 0.186 3.48 1.00
M10E08 19 15 1 78.95 0.242 6.00 2.87
MI0E15 14 9 3 64.29 0.227 4.43 1.32
M11E01 23 21 3 80.77 0.270 9.91 4.58
MI11E06 20 17 3 85.00 0.258 6.96 3.73
M11E09 22 17 3 77.27 0.285 9.39 3.74
MI1E10 17 9 5 52.94 0.196 4.61 0.93
M11E14 17 11 2 64.71 0.223 5.22 1.59
MI12E02 16 12 1 75.00 0.272 6.09 2.45
M12E06 15 12 2 80.00 0.270 5.83 2.59
MI12E08 18 11 3 61.11 0.213 5.48 1.43
MI12E09 14 9 2 64.29 0.263 5.30 1.52
M12E03 18 15 0 83.33 0.252 6.09 3.15
MI2E19 19 15 0 78.95 0.312 9.13 3.69
M14E14 12 8 2 66.67 0.255 4.26 1.36
MI14E04 13 10 3 76.92 0.270 5.39 2.08
M14E07 7 3 2 42.85 0.188 2.00 0.24
MI5E15 18 13 1 72.22 0.270 7.13 2.54
M15E03 17 13 1 76.47 0.278 6.78 2.93
MI15E08 19 13 4 68.42 0.274 7.91 2.44

(continued on next page)
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Table 1 (continued)

Primer Pairs TNB NPB MB Polymorphism PIC RP MI
M16E03 18 10 5 55.56 0.190 4.43 1.05
M16E08 22 15 5 68.18 0.233 6.78 2.38
M16E10 14 8 4 57.14 0.224 4.61 1.02
MI17E06 22 11 4 50.00 0.212 6.87 1.17
MI17E08 13 11 1 84.62 0.264 4.78 2.46
Primer Pairs TNB NPB MD PPB PIC RP MI
MI17E09 14 12 1 85.71 0.299 6.00 3.07
M17E10 10 1 90.00 0.298 4.09 2.41
MI17E12 13 3 46.15 0.149 2.61 0.41
M17E14 17 12 1 70.59 0.264 6.52 2.24
M17E04 13 8 3 61.54 0.202 3.57 0.99
M18E06 19 13 3 68.42 0.257 7.22 2.28
MI8E10 22 17 1 77.27 0.240 6.96 3.15
M19E12 16 8 3 50.00 0.188 4.00 0.75
M20E06 22 12 5 54.55 0.168 5.04 1.10
sun 919 606 160

mean 16.7 11.01 2.91 65.80 0.228 5.4 1.85

Notes.

TNB, total of bands; NPB, the number of polymorphic bands; MB, monomorphic bands; Polymorphism(%), percentage of polymorphic bands; PIC, polymorphic infor-
mation content; MI, marker index; RP, resolving power.

The population structure of twenty-three wild centipedegrass germplasms was analyzed
by the Bayesian method. When the Evanno method was performed, the optimal AK was
2 (Fig. S5). Accordingly, the optimal number of subpopulations in this study was two
(namely, two genetic members) (Table 54 and Fig. 1). Assuming that the accessions with
a Q value more than 0.8 were “pure” (Forsberg et al., 2014), 69.56% of the germplasm was
attributed to the pure subgroup. The proportion of mixed germplasm resources in Sichuan
was the largest (Table S5).

Genetic structure of the inferred geographic groups and mantel
analysis

The twenty-three wild centipedegrass accessions could be divided into three categories:
Sichuan, Chongqing, and other areas. It was found that Sichuan had the highest genetic
diversity (He = 0.201, I =0.312) (Table 2). The analysis of molecular variance (AMOVA)
showed that the Fst among geo-groups was 0.115, indicating a moderate degree of genetic
differentiation among geo-groups (Table 3). The genetic distance between the three
geographic groups was evaluated. We found that the differentiation between Chongqing
and Sichuan was the lowest (Fst = 0.051) (Table 4).

Mental analysis showed no correlation between the genetic and morphological distance
matrices (r = —0.0003, p=0.5093) (Fig. 2, Table S7). When the genetic distance matrix
correlated with climate factors, BIO14 (precipitation in the driest month) (r =0.2513,

p =0.0063), BIO15 (precipitation seasonality) (r = 0.2623, p = 0.0434), and BIO17
(precipitation in the arid region) (r =0.2354, p =0.0141) were highly correlated with
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Figure 1 PCoA and population structure (K = 2) of 23 wild centipedegrass accessions based on SRAP-
makers. SC, from Sichuan province; CQ, from Chongqing municipality; OT, other accessions except

Sichuan and Chongqing.

Full-size Gl DOI: 10.7717/peerj.15900/fig-1

Table 2 Genetic diversity assessment for three geographical groups of centipedegrass accessions.

N

Na Ne

I He uHe
oT 8.000 1.145 1.220 0.206 0.134 0.143
SC 9.000 1.491 1.326 0.312 0.201 0.213
cQ 6.000 1.255 1.260 0.244 0.158 0.173
Mean 7.667 1.297 1.269 0.254 0.165 0.176
Notes.

N, accessions number; Na, the allele number; Ne, effective number of alleles; I, Shannon information index; He, Expected heterozygosity; uHe, Unbiased expected het-
erozygosity; SC, from Sichuan province; CQ, from Chongqing municipality; OT, other accessions except Sichuan and Chongqing.
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Table 3 Analysis of molecular variance (AMOVA) based on SRAP markers for geographical groups of centipedegrass accessions.

Source df SS MS Est. Var. Fst PMV%

Among geo-groups 2 23.450 11.725 0.770 0.115 12%

Within geo-groups 20 118.028 5.901 5.901 88%

Total 22 141.478 6.671 100%
Notes.

df, degree of freedom; SS, square deviation; MS, mean square deviation; Est.Var, exist variance; Fst, coefficient of genetic differentiation; PMV, percentages of molecular

variance.

Table 4 Pairwise population PhiPT values among three geographical groups of centipedegrass acces-
sions.

oT cQ sC
oT 0.000

cQ 0.092 0.000

sC 0.180 0.051 0.000

Notes.

SC, from Sichuan province; CQ, from Chongqing municipality; OT, other accessions except Sichuan and Chongqing.
genetic distance (Fig. 2, Table 56). At the same time, a correlation was observed between
geographical distance and the genetic matrix (r =0.385352, p =0.000140).

DISCUSSION

Compared with other molecular markers, SRAP has the advantages of simplicity, high
efficiency, high yield, and good repeatability (Budak et al., 2004; Gao et al., 2020; Li et
al., 2019). The present study, Fifty-five SRAP markers were used to evaluate the genetic
diversity of twenty-three wild centipedegrass accessions. Using Fifty-five SRAP markers,
919 scorable fragments were obtained with an average of 16.7 fragments per marker,
higher than reported in a study by Zheng et al. (2017) in 80 bermudagrass accessions
(13.08 fragments per marker) but lower than detected by Yuan et al. (2018) in 73 Kentucky
bluegrass accessions (18.6 fragments per marker). This finding indicates that the primers
screened in this study have very good practicability in studying genetic diversity. Among the
919 fragments, 606 polymorphic bands were found, higher than in an RAPD study (42.41%)
by Xuan, Gao & Liu (2005) . This finding indicated that centipedegrass germplasm has high
genetic diversity.

It is widely acknowledged that the primer efficiency index represents the overall utility of
a specific primer during the identification of many accessions; higher values are associated
with higher efficiency and amount of information on primers. In this study, the average MI
(1.85) and RP (5.40) values of primers were higher than the SRAP and EST-SSR markers
in prairie grass (MI = 1.348, RP = 1.897 and MI = 0.67, RP = 1.14) (Yi et al,, 2021; Sun
et al., 2021). Besides, the primer pairs M11E01 (MI = 4.58, RP = 9.91) and M11E09 (MI
= 3.74, RP = 9.39) had the highest MI and RP values, indicating that these primers had
high genetic identification values for centipedegrass germplasm. Besides, the average PIC
value of SRAP markers was 0.228, higher than that of Moonsap et al. (2019) (PIC = 0.20),
indicating the high utility of selected primers.
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Figure 2 Heatmap of correlation between genetic distance and morphological traits or genetic dis-
tance and climatic factors. (A) Heatmap of correlation between genetic distance and morphological traits.
EBLL, Erect branch leaf length; EBLW, Erect branch leaf; SLL, Stolon leaf length; SLW, Stolon leaf width;
SIL, Stolon internode length; SID, Stolon internode diameter. (B) Heatmap of correlation between genetic
distance and climatic factors. BIO1, Annual mean temperature; BIO2, Mean diurnal range; BIO3, Isother-
mality; BIO4, temperature seasonality; BIO5, Max temperature of warmest month; BIO6, Min temper-
ature of coldest month; BIO7, Temperature annual range; BIO8, Mean temperature of wettest quarter;
BIO9, Mean temperature of driest quarter; BIO10, Mean Temperature of Warmest Quarter; BIO11, Mean
temperature of coldest quarter; BIO12, Annual Precipitation; BIO13, Precipitation of wettest month;
BIO14, Precipitation of driest month; BIO15, Precipitation seasonality; BIO16, Precipitation of wettest
quarter; BIO17, Precipitation of driest quarter; BIO18, Precipitation of Warmest Quarter; BIO19, precipi-
tation of coldest quarter. SC, from Sichuan province, CQ, from Chongqing municipality, OT, other acces-
sions except Sichuan and Chongqing. Two asterisks (**) indicate very significant difference; an asterisk (*)
indicates signficant difference.

Full-size &l DOI: 10.7717/peerj.15900/fig-2

In this study, the overall genetic diversity of centipedegrass was higher (He = 0.165)
than the average value (0.104) of Hemarthria compressa (Huang et al., 2012), since the
accessions collected in the latter study were concentrated in Yunnan-Guizhou-Sichuan
region, the geographical distribution range is limited. Xuan, Gao & Liu (2005) used RAPD
to study the genetic diversity of centipedegrass and reported an average value lower
than in the present study (0.04 vs. 0.165), which may be attributed to the collection
of resources from only five provinces These provinces were from the southeast region,
which led to low genetic diversity. The twenty-three wild centipedegrass accessions in
the present study were collected from a wide geographical distribution, accounting for
their higher genetic diversity. Accordingly, the high genetic diversity of centipedegrass
germplasm may be related to its geographical distribution and biological characteristics.
Indeed, centipedegrass is a perennial cross-pollination plant with self-incompatibility
(Hanna & Burton, 1978). Furthermore, its wide geographical distribution accounts for
its adaptability to different ecological environments. In addition, the seed-setting rate of
wild centipedegrass germplasm is low. Accordingly, the characteristic of stolon asexual
reproduction derived from long-term adaptation and evolution can help maintain the
population’s genetic diversity (Hanna, 1995; Liu, Hanna ¢ Elsner, 2003).
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The clustering results showed significant differences between the Sichuan population
and the non-Sichuan population, and other materials except Sichuan were clustered
into one group. The reason for this result may be due to human factors, that is, the
species resources in a certain area are brought to another place to grow, and then the
gene exchange occurs, which is consistent with the research results of Elymus nutans
(Chen et al., 2009). Our AMOVA results showed a certain degree of genetic differentiation
among different geographic populations (Fst = 0.115), which was higher than previous
studies (0.0643) (Susana et al., 2012), it is also higher than Yier al. (2021) in prairie
grass species (0.045). Usually, genetic differentiation is caused by the lack of effective
gene exchange. Centipedegrass has a wide geographical distribution, including Jiangsu,
Zhejiang, Fujian, Hunan, Hubei and other regions, which limits the gene exchange between
distant germplasm and may lead to a certain degree of genetic differentiation between
different geographical populations. Our results also substantiated a significant correlation
between geographical and genetic distances (r = 0.385352, p =0.000140), indicating that
geographical isolation led to genetic differentiation, similar to findings reported by Chen
et al. (2020). The geographical distribution of the twenty-three accessions collected in this
study was relatively dispersed, and the geographical distance was heterogeneous. These
factors affected the gene exchange between geographical groups, resulting in greater genetic
differences. In addition, climate can lead to genetic variation through natural selection, and
environmental adaptability is an important factor in genetic differentiation. Our results
showed a significant correlation between BIO14, BIO15, BIO17, and genetic distance; these
three climatic factors are associated with rainfall. This finding may be because only some
genotypes may survive and prevail with rainfall, which may lead to a decrease in genetic
diversity among species populations and even altered gene interactions, consistent with
findings reported by Tan et al. (2018). The results showed that there was no significant
correlation between seven morphological characteristics and SRAP markers in this study.
This is similar to the study of Zhang et al. (2020) in Capsicum annuum. The reason may
be that, first of all, the number of molecular markers obtained in this experiment is small,
the number of effective loci is small, and most of the traits are usually regulated by many
alleles, so there is a great chance that these loci will not be associated with traits (He et al.,
2023; Qu et al., 2023). Secondly, some loci may be located in some specific and very few
regions related to these traits. These loci may have a certain correlation with the region,
but the relationship between the two is weak (Aini et al., 2022; Zhang et al., 2021). We will
use some high-throughput sequencing methods such as simplified genome sequencing and
resequencing to study in order to obtain better results in future research.

CONCLUSION

This study evaluated the genetic diversity and population genetic structure of twenty-three
wild centipedegrass accessions by SRAP, PCoA, UPGMA and AMOVA. The UPGMA
tree map divided all accessions into two clusters, which was roughly consistent with the
results of PCoA. AMOVA revealed that the genetic variation within geographical groups
was greater than between geographical groups. Overall, the findings of this study can help
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better understand the genetic diversity of centipedegrass and lay the groundwork for future
research.
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