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ABSTRACT
Numerous studies have focused on the classification of N6-methyladenosine (m6A)
modification sites in RNA sequences, treating it as a multi-feature extraction task.
In these studies, the incorporation of physicochemical properties of nucleotides has
been applied to enhance recognition efficacy. However, the introduction of excessive
supplementary information may introduce noise to the RNA sequence features, and
the utilization of sequence similarity information remains underexplored. In this
research, we present a novel method for RNA m6A modification site recognition
called M6ATMR. Our approach relies solely on sequence information, leveraging
Transformer to guide the reconstruction of the sequence similarity matrix, thereby
enhancing feature representation. Initially, M6ATMR encodes RNA sequences using
3-mers to generate the sequence similarity matrix. Meanwhile, Transformer is
applied to extract sequence structure graphs for each RNA sequence. Subsequently,
to capture low-dimensional representations of similarity matrices and structure
graphs, we introduce a graph self-correlation convolution block. These
representations are then fused and reconstructed through the local-global fusion
block. Notably, we adopt iteratively updated sequence structure graphs to
continuously optimize the similarity matrix, thereby constraining the end-to-end
feature extraction process. Finally, we employ the random forest (RF) algorithm for
identifying m6Amodification sites based on the reconstructed features. Experimental
results demonstrate that M6ATMR achieves promising performance by solely
utilizing RNA sequences for m6A modification site identification. Our proposed
method can be considered an effective complement to existing RNA m6A
modification site recognition approaches.

Subjects Bioinformatics, Data Mining and Machine Learning
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INTRODUCTION
To date, approximately 160 chemical modifications have been discerned in RNA,
substantially enriching the diversity of RNA function and genetic information (Rehman
et al., 2021). Among these modifications, N6-methyladenosine (m6A) stands out as the
most prevalent modification type in eukaryotes and the sole dynamic, reversible RNA
modification, along with N1-methyladenosine (Wang & Yan, 2018). m6A plays pivotal
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roles in various cellular processes, including cell growth, mRNA selective splicing, stem cell
differentiation, and circadian clock control (Fustin et al., 2013; Geula et al., 2015;Wang &
Wang, 2020; Wang et al., 2014; Wang et al., 2018). Furthermore, m6A exhibits close
associations with the pathogenesis of diverse diseases, such as prostate cancer, acute
myeloid leukemia, and thyroid tumors (Rehman et al., 2021). Given the significance of
m6A, there exists an imperative to identify potential m6A modification sites.

High-throughput sequencing techniques have been extensively utilized for the
identification of m6A modification sites, including m6A sequencing (Dominissini et al.,
2012), crosslinking immunoprecipitation (Ke et al., 2015), and Methylated RNA
Immunoprecipitation (Meyer et al., 2012). These methodologies have significantly
contributed to our understanding of m6A modification on RNA. However, due to the
dynamic and tissue-specific nature of m6A modification sites, limited experimental
approaches may not be sufficiently flexible in identifying potential modification sites
(Wang & Yan, 2018). Furthermore, the wet-lab experiments employed to identify m6A
modification sites are often costly and time-consuming. In recent years, an increasing
number of studies have recognized the notable advantages of computational methods for
identifying RNA m6A modification sites. These computational approaches offer high
generalization, rapid processing times, and lower costs, rendering them an attractive and
viable alternative.

The computational identification of RNA m6A modification sites can be broadly
categorized into two groups: machine learning-based methods and deep learning-based
methods. Both approaches share a common core, which is the feature extraction task,
aimed at capturing better representations of RNA sequences for improved recognition
performance. Machine learning-based methods typically involve two main stages: feature
engineering and downstream classification. In feature engineering, various coding
approaches have been applied to represent RNA sequences, including k-mer, one-hot
coding, accumulated nucleotide frequency (Chen et al., 2015), composition of k-space
nucleic acid pairs (Zhang et al., 2020), dinucleotide composition (Di Giallonardo et al.,
2017), and enhanced nucleic acid composition (Huang et al., 2018). The iRNA toolkits
(Chen et al., 2018; Qiu et al., 2017; Yang et al., 2018) are noteworthy examples that utilize
these encoding methods. Moreover, the iRNA toolkits were the pioneers in incorporating
the physicochemical properties of nucleotides for recognizing various types of RNA
modification sites. In the downstream classification task, different classifiers are usually
employed to recognize the extracted features, including random forest (RF) (Breiman,
2001). The iRNA toolkits, AthMethPre (Xiang et al., 2016), M6ATH (Chen et al., 2016),
and RAM-NPPS (Xing et al., 2017) prefer Support Vector Machine (SVM), while other
methods like SRAMP (Zhou et al., 2016) and M6AMRFS (Qiang et al., 2018) explore
ensemble methods with multiple classifiers for downstream tasks. On the other hand, deep
learning-based methods view feature extraction and classification as continuous processes,
allowing them to learn more semantic information from the data. Researchers are
increasingly turning to deep learning strategies for RNA m6A modification site
recognition tasks. For example, iN6-Methyl (Nazari et al., 2019) and m6AGE (Wang et al.,
2021) use convolutional neural networks to extract sequence features.
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These studies have made significant progress in identifying RNA m6A modification
sites. However, they also have limitations. For instance, incorporating additional
information, like the physicochemical properties of nucleotides, alongside RNA sequences
may introduce potential information interference. Moreover, these methods have mainly
focused on learning features from sequential nucleotide distributions, potentially
overlooking associations of nucleotides through self-correlations in RNA sequences.
To address these issues, we propose a novel approach in this article, named m6ATMR, for
RNA m6A modification site recognition. m6ATMR utilizes Transformer (Vaswani et al.,
2017) to guide the reconstruction of the nucleotide similarity matrix, thereby enhancing
feature representations of RNA sequences in a sequence-dependent manner. Specifically,
RNA sequences are first encoded using the 3-mer method, generating the initial similarity
matrix for each sequence. Then, Transformer is applied to further obtain the sequence
structure graphs of RNA sequences. To optimize the sequence structure graphs, we
calculate the Manhattan distance and perform threshold screening on the vector
representation from Transformer. Next, we design a graph self-correlation convolution
block to obtain low-dimensional representations of both the similarity matrix and the
structure graph. In addition, we dynamically combine the low-dimensional
representations obtained from the initial 3-mer representations of RNA sequences,
considering both local and global perspectives, to create the final recombined features.
To explore potential nucleotide associations in RNA sequences, we use iteratively updated
sequence structure graphs to continuously optimize the similarity matrices, further
enhancing the end-to-end feature extraction process. Finally, we employ the random forest
(RF) algorithm to classify and recognize RNA sequences based on the learned features.
By following this approach, m6ATMR aims to overcome the limitations of previous
methods and improve the accuracy of RNA m6A modification site identification.

The main contributions of this article are as follows: First, we propose a sequence-based
approach for identifying RNA m6A modification sites without introducing potentially
misleading additional information. Second, the similarity matrices of RNA sequences are
computed to provide more effective information that can be learned for sequences, and on
this basis, the Transformer is used to reconstruct the similarity matrices and further
optimize the sequence representations. Third, we propose a graph self-correlation
convolution to learn a low-dimensional representation of the sequence without
introducing prior information about the nodes. A series of experiments demonstrate the
effectiveness of the representation strategies of M6ATMR. For M6ATMR, it is worth
noting that relying solely on RNA sequences for m6A modification site identification can
reduce the need for additional prior information, while still ensuring high identification
accuracy. In addition, the sequence representations learned by our model perform
consistently well across different classifiers, indicating that our method is not dependent
on the choice of a specific classifier. In conclusion, our experimental results demonstrate
that M6ATMR achieves excellent performance in identifying m6Amodification sites using
only RNA sequences. This highlights its effectiveness as a complementary method for
RNA m6A modification site recognition.
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MATERIALS AND METHODS
Problem description and datasets
One of the focuses of RNA modification research is site recognition. For this task, the
computational methods are usually to convert the problem into a binary classification
problem, which takes the RNA sequence information as the initial input to the
classification model and gets the probability value of modification sites. The method in our
article follows this paradigm. For a given sequence X ¼ x1; x2 . . . xnf g, we summarize the
model objective as Y ¼ fr Xð Þ 2 0; 1f g, where fr �ð Þ is the optimal mapping relationship,
and Y is the prediction label. If the prediction result is a positive sample, Y ¼ 1, otherwise
Y ¼ 0. It is worth noting that, as in most studies, the inclusion of m6Amodification sites is
used as the classification criteria for positive and negative samples. That is, for a given
sequence X, if its central position is the modified site, sequence X is regarded as a positive
sample. Negative samples do not contain modification sites. To this end, we select the RNA
m6Amodification site dataset of Arabidopsis thaliana (A101 dataset) (Wan et al., 2015) for
study. The dataset contains 2,100 samples, in which the ratio of positive and negative
samples is 1:1.

Model description
M6ATMR implements the identification task of m6A modification sites based on several
procedures. First, the RNA sequences were processed into readable coding representation
based on k-mer algorithm, and the similarity between RNA sequences was measured by
Manhattan distance to further construct the similarity matrix. After that, M6ATMR
learned the structural information of RNA sequences through the Transformer encoder,
and converts this structural information into the structural graph by Manhattan distance.
It then inputted the similarity matrix and structure graph into the self-correlation graph
neural network to iteratively update the similarity matrix and obtain the low-dimensional
representations of each RNA sequence. These low-dimensional representations were
passed through a local-global fusion block to generate the final fusion representation,
which was fed into the RF for identification. For the convenience of description, section 2
describes M6ATMR in detail from four parts: similarity matrix calculation, structure graph
learning, similarity matrix optimization, and local-global representation fusion.
The framework of M6ATMR is shown in Fig. 1, and the details of each part are as follows.

Similarity matrix calculation
For similarity matrix calculation, the key step is to transform RNA sequences into the
readable representations using k-mer frequency statistics. Statistical k-mer frequency
information can reveal the distribution law of seed sequences and is an important tool to
study sequence similarity. In sequence X, a substring of length K refers to K monometric
units starting from any position in X, which is called k-mer. In this article, considering that
each of the three adjacent nucleotides in an mRNAmolecule is organized into a group that
represents the pattern of a particular amino acid in protein synthesis, therefore, to make
the model biological interpretation, we set K to 3. The algorithm requires that the starting
position of the sequence set � ¼ X1;X2; . . . ;Xmf g is aligned. For k-mer sequences with
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fixed K value, at the offset position l 0 � l � n� kð Þ, we count the occurrence frequency
of different substrings in k-mer sequence with length K starting from the offset position l:

RX ¼ Nom �n�k
i¼l fre Mið Þ� �

(1)

where RX 2 Rn�1 denotes the k-mer representation of sequence X, and fre �ð Þ represents
the frequency of the k-mer substringMi, and � represents the operation of concatenating
all substring frequencies. Nom �ð Þ represents a normalized operation.

After representing all RNA sequences using statistical k-mer frequency, we attempt to
calculate the similarity between each sequence and construct an initial similarity matrix of
RNA sequences. We construct matrices between k-mer representations for the following
reasons: Firstly, earlier studies on the prediction of biomedical entity associations (Shao
et al., 2020) have shown that similarity matrices can reflect the potential association
between different entities, which provides strong support for the establishment of the
association between different sequences of nucleotides. Secondly, constructing a graph
data structure based on the similarity matrix allows us to capture the relationships between
multiple sequences, which creates conditions for further sequence extraction. Therefore, it
is a reasonable choice to transform the sequence representing the problem into the
optimization task of the similarity matrix. In this article, we choose to employ the
Manhattan distance to further measure the degree of similarity between nucleotides on
different sequences:

S ¼
dm1 � � � dm1
..
. . .

. ..
.

d1m � � � dmm

0B@
1CA (2)

Figure 1 The framework of M6ATMR. (A) The details of similarity matrix calculation process. (B) The details of structural graph learning process
with the Transformer encoder. (C) The similarity matrix optimization process with the self-correlation graph neural networks. (D) The structure of
the local-global representation fusion block. Full-size DOI: 10.7717/peerj.15899/fig-1
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where, in the similar matrix S 2 Rm�m, each element represents the Manhattan distance
between k-mer sequences of corresponding positions. Taking dm1 as an example, its value is
the Manhattan distance between sequence representation R1 and Rm:

d1m ¼
Xn

j¼1
Rj
1 � Rj

m

��� ��� (3)

where, the Rj
1, R

j
m represent the jth k-mer value in sequence state R1 and Rm respectively,

and �j j denotes the operation of taking the absolute value.

Structure graph learning
When obtaining the initial similarity matrices of the RNA sequences, we use a
Transformer encoder to capture the structural information and learn the structural graph
of RNA sequences. To this end, we apply the encoder part of the Transformer to further
process the k-mer sequence. For a given Transformer encoder, there are two basic
components: the position encoding block, and the self-attention mechanism. In addition,
in order to further explore the structural relationship between RNA sequences, we also
calculate the Manhattan distance between vector representations of the output of the
Transformer encoding block, and strictly constrain the value of the structure matrix within
the set of 0; 1f g. The details are as follows.

Position encoding of Transformer is a functional encoder, that is, position vectors are
calculated for each element in the sequence:

pt
! ið Þ ¼ f tð Þ ið Þ :¼

�
sin wi � tð Þ i ¼ 2k
cos wi � tð Þ i ¼ 2kþ 1

(4)

where wi denotes the frequency, which is calculated as follows:

wi ¼ 1

100002i=d
(5)

where d is the output dimension of the neural network. It is worth noting that the length of
this position vector is equal to the length of k-mer representations. Thus, the RNA
sequences are represented by k-mer and position encoding:

Rt ¼ Rþ pt
! (6)

where, pt
! denotes the position vectors of all elements in k-mer representations. After

calculating the position vectors, the encoder further optimizes the representation Rt

through the self-attention mechanism:

Qi ¼ wqXi

Ki ¼ wkXi

Vi ¼ wvXi

giX ¼ c
QiðKiÞTffiffiffi

d
p

 !
Vi

8>>>><>>>>: (7)

where, Qi, Ki and Vi are the query matrix, key matrix and value matrix respectively. g
denotes the softmax activation function. Through the self-attention mechanism, the
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Encoder can reveal the potential associations within the sequence and further excavate the
structural associations of nucleotides.

In this regard, we believe that it is a valid way to describe the structural association of
RNA sequences through internal relationships captured by the self-attention mechanism.
To this end, we also measure this structural associations by the same method in section 2.3
and construct the structure graphGst for sequences. Since the model samples the same data
and distance formulas during the calculation process, the structure graph has a potential
correlation with the similarity matrix, which indicates that it is reasonable to optimize the
similarity matrix further through Gst . In addition, we ensure that the values of elements in
Gst are strictly constrained in the set of 0; 1f g by threshold filtering, as shown below:

G i;jð Þ
st ¼ 1 if G i; jð Þ. 0:5

0 otherwise

�
(8)

For each element G i; jð Þ in G i;jð Þ
st , updating the value to 0 if G i; jð Þ is less than 0.5,

otherwise updating the value to 1.

Similarity matrix optimization
To optimize the sequence similarity matrix and update the sequence structure graph, we
design a self-correlation graph neural network that does not depend on prior node
representations. In traditional graph neural networks, the embedded learning process
relies on the existing representations of the nodes or edges in the graph. These prior
representations serve as the starting point for the learning algorithm to update and refine
the embeddings based on the graph structure. For instance, in some studies related to
drug-drug association prediction, the SMILES of drugs are often applied as the prior
information to serve as the initial input to the graph neural network. However, for similar
matrix and structure graphs of sequences, the initial information of nodes is difficult to be
obtained. In addition, both the similarity matrix and the structure graph describe the
self-correlation property of the sequence, which makes the introduction of additional prior
information may lead to misleading information. Therefore, inspired by the self-attention
mechanism, we generate the learnable initial node representations based on the input
matrix information. The initial representations are constantly updated and optimized
during the process of graph convolution and participate in the optimization of the final
embeddings. Taking the processing of similarity matrix as an example, we describe in
detail the learning process of representation of similarity graph.

For a given similarity matrix S 2 Rm�m, we define the node initial representation matrix
as Er 2 Rm�m. Each value in the matrix is determined and iteratively optimized by the
network. S and Er are input into the three-layer self-correlation graph neural networks to
get the embeddings related to the similarity matrix S:

R iþ1ð Þ
s ¼ R ið Þ

s þ a iþ1ð ÞGcov Er; Sð Þ iþ1ð Þ

a iþ1ð Þ ¼ 1
I þ 1

iþ 1ð Þ

8<: (9)
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where, a is the scaling superparameter to prevent the elements in the similarity matrix
representation from becoming infinitesimal during graph convolution, and I ¼ 3 denotes
the number of convolution layers. Gcov �ð Þ represents the convolution process. The hidden
layer representation of layer iþ 1ð Þ and the representation of layer ið Þ satisfies the
following equation:

H lþ1ð Þ ¼ rðS�
1
2 diag Desð Þ � 1

2
Sþ ST
� �ÞS� 12H lð ÞW lð Þ

0@ 1A (10)

where Des denotes the degree matrix of the similar matrix S, and diag �ð Þ denotes the
diagonalization operation. W is the learnable weight. The representation of the hidden
layer is initialized to Er, that is,H 0ð Þ ¼ Er. Similarly, sequence structure graphs are fed into
the self-correlation neural networks in the same way. The network further employs
learnable initial representations to mine the self-correlation of sequences, which also
ensures consistency between representations learned from similarity matrices and that
learned from structure graphs.

In addition, another task of the networks is to get better RNA representations by
optimizing the similarity matrix. Hence, we apply the reconstructed similarity matrix and
sequence structure graph to calculate the loss of the networks:

L Ŝ; S;cGst;Gst

� �
¼ BCELossðŜ; sigm S�ST� �þ BCELossðcGst; sigm Gst�Gst

T
� �

(11)

where BCELoss �ð Þ denotes the binary cross-entropy loss. In the optimization process, we
employ the difference between the reconstructed element values and the original element
values to measure the performance of the representations.

Local-global representation fusion
In order to obtain comprehensive knowledge of RNA sequences, we propose a local-global
strategy for fusing learned embedded representations. We process two kinds of
representations of the same sequence respectively from the local and global perspectives of
embedding representations, and further determine the weight relationship between
embedding representations from similarity matrices and embedding representations from
sequence structure graphs. Specifically, we design a local information extraction block and
a global information extraction block respectively to calculate the weights of the two types
of embedded representations.

For a given similarity matrix embedding representation esm and structure graph
embedding representation est , we first treat them as residue sequences and weight them to
obtain an overall representation ea:

ea ¼ esm þ est (12)

We then enter ea into the local and global information extraction blocks. For the local
and global information extraction block, the extraction process is described as follows:
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ealo ¼ f # f 0 eað Þð Þð Þ
eagl ¼ f # f 0 d eað Þð Þð Þð Þ (13)

�
where ealo and eagl denote the output of the local extraction block and that of the global
extraction block respectively. f and f 0 represent a one-dimensional convolution layer
containing normalized functions respectively, and # represents the ReLu function. For the
global information extraction block, we add the global average pooling layer d on the basis
of the local information extraction block. After that, we further calculate the weight
difference wf between the two representations:

wf ¼ sigm ealo þ eagl

� �
(14)

We utilize this weight difference to further integrate the two types of embedded
representations to obtain the similar-structural representation ess:

ess ¼ wf � esm þ 1� wf
� � � est (15)

In addition, we consider the indispensable role of the k-mer representations of the
sequences for the recognition of m6A modification sites, and further integrate these
representations with the similar-structural representations to obtain the final embedding
representations efi:

efi ¼ wf 0 � ess þ 1� wf 0
� �

� ekm (16)

where, ekm denotes the k-mer representations of the sequences, and wf 0 is the weight
difference between ekm and ess.

Experiments setting
For a binary classification problem, its prediction states can be divided into the four
categories: true positive (TP), false positive (FP), true negative (TN), false negative (FN).
Thus, we select some predictive indicators to evaluate the prediction effect, and the
calculation processes of these indicators are as below. Moreover, we obtain the area under
the precision-recall curve (AUPR) and area under the receiver-operating characteristic
curve (AUC) for evaluating our model.

Accuracy Accð Þ ¼ TP þ TN
TP þ TN þ FP þ FN

(17)

F1 ¼ prec� Sn
precþ Sn

(18)

Precision Precð Þ ¼ TP
TP þ FN

(19)
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Sensitivity Snð Þ ¼ TP
TP þ FN

(20)

Specificity Spð Þ ¼ TN
TN þ FP

(21)

Matthews Correlation Coefficient MCCð Þ
¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp (22)

In our study, we set the learning rate to 0.0001 and set the number of layers as three in
the self-correlation graph neural network. Considering the time and complexity of
training, we reduced the number of heads from eight to six in the Transformer encoder.
We set the embedding size of the encoder to 32, the hidden dimension of the feed-forward
layer to 128, and the number of encoder blocks to six.

RESULTS
Performance on A101 datasets
We conduct a rigorous 10-fold cross validation to evaluate the performance of our
proposed model on the A101 dataset. The dataset is systematically partitioned into ten
subsets of equal size, ensuring non-overlapping test sets in each fold. For each fold, we
utilize nine subsets for training and one for testing. During evaluation, we consider six
essential indicators: AUPR, AUC, Acc, F1 score, Prec, and Sen. The results of the 10-fold
cross validation are presented through PR curves and ROC curves in Fig. 2 and
summarized in Table 1. Across the 10 folds, the AUC curve demonstrates remarkable
stability, with the maximumAUC reaching 93.87% and the minimum at 89.79%. Similarly,
the PR curve displays consistent performance, with the highest AUPR at 93.17% and the
lowest at 87.66%. Table 1 reveals outstanding performance in various evaluation metrics.
The Acc achieves an impressive 84.43%, signifying a high correct identification rate for
both TN and TP samples. Additionally, the MCC attains a value of 83.72%, reflecting the
overall strength of our model. Furthermore, the values of other metrics, including F1 score,
Prec, and Sen, surpass 80%, indicating the reliability of our model. These experimental
findings substantiate the robustness and efficacy of our proposed model in identifying
m6A modification sites.

Performance comparison of Classifiers
In some studies, the downstream classifiers have shown to significantly influence the
classification performance of RNA sequence representations generated by models,
potentially leading to model instability. To demonstrate the stability and efficacy of our
proposed model, we conduct a comparison experiments using five additional classifiers:
logistic regression, eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting
Machine (lightgbm), CatBoost, and support vector machines (SVM). Logistic regression
employs maximum likelihood estimation to predict model parameters, yielding binary
results by minimizing cross-entropy loss during data training. XGBoost, an integrated
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classification algorithm, employs multiple simple base learners to iteratively train input
data, continually reducing the discrepancy between model and input values. In contrast,
lightgbm stands out with its advantage of low memory usage and faster training speed.
CatBoost is designed to extract the most information from given data and is particularly
effective for small machine-learning datasets. SVM, as a binary classification model, aims
to find an optimal hyperplane for sample segmentation. For evaluation, we utilize 10-fold
cross validation on the A101 dataset, as mentioned in “Performance on A101 datasets”.
The same set of indicators, AUPR, AUC, Acc, F1 score, Prec, and Sen are employed for
assessment. The experimental results, presented in Fig. 3, Fig. 4, and Table 2, indicate that
when RF is used as the downstream classifier, the model achieves the highest performance,
with AUC at 91.27% and AUPR at 90.40%. While XGBoost exhibits relatively inferior
performance compared to logistic regression and RF, the overall classification effect of all
three classifiers remains relatively favorable. The difference in AUC values between
XGBoost and RF is 7.84%. These findings support the notion that the RNA sequence

Figure 2 The ROC curves and PR curves of M6ATMR on A101 dataset under 10-fold cross-
validation. Full-size DOI: 10.7717/peerj.15899/fig-2

Table 1 The value of some indicators in each fold.

Fold MCC Acc Sn Sp Prec F1 AUC AUPR

0 0.7068 0.8535 0.8693 0.8368 0.8480 0.8586 0.9237 0.8897

1 0.7068 0.8535 0.8693 0.8368 0.8480 0.8586 0.9203 0.8932

2 0.6913 0.8458 0.8543 0.8368 0.8458 0.8500 0.9149 0.9237

3 0.7068 0.8535 0.8643 0.8421 0.8515 0.8579 0.9294 0.9268

4 0.6402 0.8201 0.8141 0.8263 0.8308 0.8223 0.9030 0.8964

5 0.6965 0.8483 0.8543 0.8421 0.8500 0.8521 0.9079 0.9121

6 0.6711 0.8355 0.8291 0.8421 0.8462 0.8376 0.9077 0.9065

7 0.7070 0.8535 0.8492 0.8579 0.8622 0.8557 0.9101 0.8937

8 0.6297 0.8149 0.8150 0.8148 0.8232 0.8191 0.8944 0.8940

9 0.7111 0.8557 0.8693 0.8413 0.8522 0.8607 0.9158 0.9042

Mean 0.6867 0.8434 0.8488 0.8377 0.8458 0.8473 0.9127 0.9040
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representations learned by our model are not easily influenced by the choice of
downstream classifiers, indicating the model’s stability and effectiveness in feature
extraction and m6A modification site identification.

Figure 3 The comparison results of different classifiers. Full-size DOI: 10.7717/peerj.15899/fig-3

Figure 4 The PR curves of M6ATMR with different classifiers.
Full-size DOI: 10.7717/peerj.15899/fig-4

Table 2 The AUC value of some indicators in each fold based on different classifiers.

Fold RF LR XGBoost SVM CatBoost Lightgbm

Fold1 0.9237 0.9052 0.8454 0.9077 0.8951 0.9111

Fold2 0.9203 0.8932 0.8319 0.9085 0.9484 0.9305

Fold3 0.9149 0.9148 0.8125 0.8856 0.8928 0.8985

Fold4 0.9294 0.8806 0.8714 0.9270 0.9078 0.9080

Fold5 0.9030 0.9282 0.7987 0.9216 0.9089 0.8996

Fold6 0.90793 0.8855 0.8208 0.9033 0.9040 0.8752

Fold7 0.9077 0.9025 0.7991 0.9141 0.9284 0.9255

Fold8 0.9101 0.9022 0.8470 0.9108 0.8961 0.9412

Fold9 0.8944 0.9030 0.8821 0.9138 0.9195 0.9248

Fold10 0.9158 0.9087 0.8537 0.9290 0.9094 0.9052
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Features selection
In this study, we integrate three types of features for comprehensive analysis, including
feature representations from similarity matrices, feature representations from sequence
structure diagrams, and k-mer sequence representations. K-mer representations are
pre-coded representations based on the frequency count of sequence k-mer substrings,
while the other two features are dynamically learned through neural networks. To achieve
a holistic understanding of the sequences, we perform local-global integration of these
features. To illustrate the importance of combining these three features, we construct two
additional features, drop-raw and drop-trans, to validate our model’s performance.
Drop-raw represents features without similarity matrix information, and drop-trans
represents features without sequence structure graph information. The comparison results
of the three types of features are presented in Fig. 5. Our model demonstrates the best
recognition performance when all features are utilized. Drop-raw performs slightly better
than drop-trans in terms of AUC and AUPR, suggesting that similarity matrices exert a
stronger influence on the model compared to sequence structure graphs. Overall, all three
types of features are essential and significantly enhance the effectiveness of site recognition.
The local-global fusion block is a crucial component of our model, which integrates
multiple features from both local and global perspectives by combining learned similarity
matrix features with sequence-structure graph features. To demonstrate the necessity of
this fusion block, we design another strategy using only weighted fusion, and the results are
also presented in Fig. 5. The outcomes reveal that the recognition performance of the
model is inferior when only weighted fusion is employed compared to the local-global
fusion block. This underscores the significance of the local-global fusion block in achieving

Figure 5 The comparison results of different features (left) and different fusion methods (right). Full-size DOI: 10.7717/peerj.15899/fig-5
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superior performance and highlighting its role in effectively capturing comprehensive
sequence information.

Performance comparison of predictors
In this study, we conduct a rigorous 10-fold cross validation to compare our model with
five other existing methods on the A101 dataset. The compared methods include
M6AMRFS, BERMP, RFAthM6A, BERT-m7G (Zhang et al., 2021), and the model
designed by Le & Ho (2022). M6AMRFS encodes RNA sequences using two feature
descriptors, dinucleotide binary coding, and local site-specific dinucleotide frequency.
It enhances feature representation through the F-score algorithm combined with sequence
forward search (SFS) and employs XGBoost as the downstream classifier. BERMP utilizes
GRU to represent RNA sequences and adopts an end-to-end training process for site
recognition. RFAthM6A attempts to classify various types of features derived from RNA
sequences using machine learning methods. Our model, M6ATMR, adopts the
transformer encoder to extract sequence representations and uses a stacking ensemble
classifier for predicting m6A sites. We also consider two other transformer-based models,
BERT-m7G, and the model designed by Le & Ho (2022). In their approaches, BERT-m7G
uses bidirectional encoder representations from transformers (BERT) to extract sequence
representations, while Le & Ho (2022) use a pre-trained transformer to explore features
and a convolutional neural network for further feature extraction. The comparison results
are presented in Table 3. Our model achieves an Acc value of 84.42% and a MCC value of
83.72%. These indicators demonstrate that our model outperforms the other five methods
in most aspects. Compared to the other models, our approach exhibits a remarkable
improvement, with a maximum of 11.09% higher accuracy and 16.13% higher MCC value.
The model designed by Le & Ho (2022) has the lowest MCC value among all methods,
while BERMP and RFAthM6A show similar performance across various indicators.
However, we note that the specificity (Sp) value of our method is slightly lower than that of
BERMP and RFAthM6A, indicating a minor deficiency in predicting true negative
samples. Nevertheless, overall, the experimental results clearly demonstrate the
effectiveness of our model, which stands out as a superior approach for m6A site
prediction on RNA sequences.

Table 3 The comparison results of different recognition methods. N.A. denotes the value of the
indicator is not provided by corresponding studies.

Models Acc MCC Sn Sp

M6ATMR 0.8434 0.6867 0.8488 0.83.77

M6AMRFS 0.8105 0.6210 0.8067 0.81.43

BERMP N.A. 0.7260 0.8230 0.90.00

RFAthM6A N.A. 0.7255 0.8222 0.90.00

BERT-m7G 0.8213 0.7023 0.8124 0.7985

Le & Ho (2022) 0.7325 0.5254 0.7234 0.6638
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DISCUSSION AND CONCLUSION
In this article, we commence by reviewing classical methods for identifying RNA m6A
modification sites and presenting our own perspectives. Subsequently, we analyze the
limitations of these methods, leading us to propose a novel sequence-dependent-only RNA
m6A modification site recognition method, named M6ATMR. M6ATMR utilizes the
Transformer to guide the reconstruction of similarity matrices for each RNA sequence,
thereby optimizing the feature representation of RNA sequences. Comparative analysis
with other recognition methods reveals that M6ATMR demonstrates superior predictive
performance, as evidenced by improved metrics. Comprehensive experiments further
attest to the accuracy and robustness of our model. Additionally, we delve into several
critical aspects. First, computing the similarity matrix and optimizing feature generation
proves effective in enhancing the recognition performance of RNA m6A modification
sites. Second, cooperative updating of similarity matrices and sequence structure graphs in
the sequence representation of the same RNA sequence facilitates the retention of richer
nucleotide distribution information. Third, the deep fusion of multiple features from both
local and global perspectives results in a comprehensive understanding of RNA sequences.

However, there remain certain limitations in our study that warrant attention. First, the
restriction of RNA sequence length necessitates the selection of the A101 dataset for model
verification, rendering our approach less adept at handling short RNA sequences. Second,
our current model primarily focuses on nucleotide distribution information, with limited
exploration of other sequence properties. Future work will address these issues and explore
the application of our model to the identification of other modification types, such as M1A,
and modifications on DNA sequences.

ACKNOWLEDGEMENTS
The authors thank the participants for their cooperation in the study.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests
The authors are employed by Changjiang water resources and hydropower development
group.

Author Contributions
� Shuang Xiang conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, authored or reviewed drafts of the article, and approved
the final draft.

� Te Zhang performed the experiments, analyzed the data, prepared figures and/or tables,
and approved the final draft.

Xiang et al. (2023), PeerJ, DOI 10.7717/peerj.15899 15/18

http://dx.doi.org/10.7717/peerj.15899
https://peerj.com/


� Minghao Wu conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.15899#supplemental-information.

REFERENCES
Breiman L. 2001. Random forests. Machine Learning 45(1):5–32 DOI 10.1023/A:1010933404324.

Chen W, Ding H, Zhou X, Lin H, Chou K-C. 2018. iRNA (m6A)-PseDNC: identifying N6-
methyladenosine sites using pseudo dinucleotide composition. Analytical Biochemistry
561:59–65 DOI 10.1016/j.ab.2018.09.002.

Chen W, Feng P, Ding H, Lin H. 2016. Identifying N 6-methyladenosine sites in the Arabidopsis
thaliana transcriptome. Molecular Genetics and Genomics 291(6):2225–2229
DOI 10.1007/s00438-016-1243-7.

Chen W, Tran H, Liang Z, Lin H, Zhang L. 2015. Identification and analysis of the N6-
methyladenosine in the Saccharomyces cerevisiae transcriptome. Scientific Reports 5:13859
DOI 10.1038/srep13859.

Di Giallonardo F, Schlub TE, Shi M, Holmes EC. 2017.Dinucleotide composition in animal RNA
viruses is shaped more by virus family than by host species. Journal of virology 91(8):e02381-16
DOI 10.1128/JVI.02381-16.

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S,
Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M. 2012. Topology of the human and mouse
m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206
DOI 10.1038/nature11112.

Fustin J-M, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS,
Kakeya H, Manabe I, Okamura H. 2013. RNA-methylation-dependent RNA processing
controls the speed of the circadian clock. Cell 155(4):793–806 DOI 10.1016/j.cell.2013.10.026.

Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M,
Hershkovitz V, Peer E, Mor N, Manor YS. 2015.m6AmRNAmethylation facilitates resolution
of naïve pluripotency toward differentiation. Science 347(6225):1002–1006
DOI 10.1126/science.1261417.

Huang Y, He N, Chen Y, Chen Z, Li L. 2018. BERMP: a cross-species classifier for predicting m6A
sites by integrating a deep learning algorithm and a random forest approach. International
Journal of Biological Sciences 14(12):1669–1677 DOI 10.7150/ijbs.27819.

Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I,
Moore MJ, Park CY. 2015. A majority of m6A residues are in the last exons, allowing the
potential for 3′ UTR regulation. Genes & Development 29(19):2037–2053
DOI 10.1101/gad.269415.115.

Le NQK, Ho Q-T. 2022. Deep transformers and convolutional neural network in identifying DNA
N6-methyladenine sites in cross-species genomes. Methods 204(1):199–206
DOI 10.1016/j.ymeth.2021.12.004.

Xiang et al. (2023), PeerJ, DOI 10.7717/peerj.15899 16/18

http://dx.doi.org/10.7717/peerj.15899#supplemental-information
http://dx.doi.org/10.7717/peerj.15899#supplemental-information
http://dx.doi.org/10.7717/peerj.15899#supplemental-information
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.ab.2018.09.002
http://dx.doi.org/10.1007/s00438-016-1243-7
http://dx.doi.org/10.1038/srep13859
http://dx.doi.org/10.1128/JVI.02381-16
http://dx.doi.org/10.1038/nature11112
http://dx.doi.org/10.1016/j.cell.2013.10.026
http://dx.doi.org/10.1126/science.1261417
http://dx.doi.org/10.7150/ijbs.27819
http://dx.doi.org/10.1101/gad.269415.115
http://dx.doi.org/10.1016/j.ymeth.2021.12.004
http://dx.doi.org/10.7717/peerj.15899
https://peerj.com/


Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive
analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell
149(7):1635–1646 DOI 10.1016/j.cell.2012.05.003.

Nazari I, Tahir M, Tayara H, Chong KT. 2019. iN6-Methyl (5-step): Identifying RNA N6-
methyladenosine sites using deep learning mode via Chou’s 5-step rules and Chou’s general
PseKNC. Chemometrics and Intelligent Laboratory Systems 193(3):103811
DOI 10.1016/j.chemolab.2019.103811.

Qiang X, Chen H, Ye X, Su R, Wei L. 2018.M6AMRFS: robust prediction of N6-methyladenosine
sites with sequence-based features in multiple species. Frontiers in Genetics 9:495
DOI 10.3389/fgene.2018.00495.

Qiu W-R, Jiang S-Y, Sun B-Q, Xiao X, Cheng X, Chou K-C. 2017. iRNA-2methyl: identify RNA
2’-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and
ensemble classifier. Medicinal Chemistry 13(8):734–743
DOI 10.2174/1573406413666170623082245.

Rehman MU, Hong KJ, Tayara H, to Chong K. 2021. convolution neural tool for RNA N6-
Methyladenosine site identification in different species. IEEE Access 9:17779–17786
DOI 10.1109/ACCESS.2021.3054361.

Shao K, Zhang Z, He S, Bo X. 2020. DTIGCCN: prediction of drug-target interactions based on
GCN and CNN. In: Paper presented at: 2020 IEEE 32nd International Conference on Tools with
Artificial Intelligence (ICTAI). Piscataway: IEEE.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I.
2017. Attention is all you need. In: Advances in Neural Information Processing Systems 30 (NIPS
2017).

Wan Y, Tang K, Zhang D, Xie S, Zhu X, Wang Z, Lang Z. 2015. Transcriptome-wide
high-throughput deep m6A-seq reveals unique differential m6A methylation patterns between
three organs in Arabidopsis thaliana. Genome Biology 16(1):1–26
DOI 10.1186/s13059-015-0839-2.

Wang Y, Guo R, Huang L, Yang S, Hu X, He K. 2021. A predictor for n6-methyladenosine sites
identification utilizing sequence characteristics and graph embedding-based geometrical
information. Frontiers in Genetics 12:670852 DOI 10.3389/fgene.2021.670852.

Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. 2014. N6-methyladenosine modification
destabilizes developmental regulators in embryonic stem cells. Nature Cell Biology
16(2):191–198 DOI 10.1038/ncb2902.

Wang Y, Li Y, Yue M, Wang J, Kumar S, Wechsler-Reya RJ, Zhang Z, Ogawa Y, Kellis M,
Duester G. 2018. N6-methyladenosine RNA modification regulates embryonic neural stem cell
self-renewal through histone modifications. Nature Neuroscience 21(2):195–206
DOI 10.1038/s41593-017-0057-1.

Wang J, Wang L. 2020. Deep analysis of RNA N6-adenosine methylation (m6A) patterns in
human cells. NAR Genomics and Bioinformatics 2(1):lqaa007 DOI 10.1093/nargab/lqaa007.

Wang X, Yan R. 2018. RFAthM6A: a new tool for predicting m6A sites in Arabidopsis thaliana.
Plant Molecular Biology 96(3):327–337 DOI 10.1007/s11103-018-0698-9.

Xiang S, Yan Z, Liu K, Zhang Y, Sun Z. 2016. AthMethPre: a web server for the prediction and
query of mRNA m 6 A sites in Arabidopsis thaliana. Molecular BioSystems 12(11):3333–3337
DOI 10.1039/C6MB00536E.

Xing P, Su R, Guo F, Wei L. 2017. Identifying N6-methyladenosine sites using multi-interval
nucleotide pair position specificity and support vector machine. Scientific reports 7:46757
DOI 10.1038/srep46757.

Xiang et al. (2023), PeerJ, DOI 10.7717/peerj.15899 17/18

http://dx.doi.org/10.1016/j.cell.2012.05.003
http://dx.doi.org/10.1016/j.chemolab.2019.103811
http://dx.doi.org/10.3389/fgene.2018.00495
http://dx.doi.org/10.2174/1573406413666170623082245
http://dx.doi.org/10.1109/ACCESS.2021.3054361
http://dx.doi.org/10.1186/s13059-015-0839-2
http://dx.doi.org/10.3389/fgene.2021.670852
http://dx.doi.org/10.1038/ncb2902
http://dx.doi.org/10.1038/s41593-017-0057-1
http://dx.doi.org/10.1093/nargab/lqaa007
http://dx.doi.org/10.1007/s11103-018-0698-9
http://dx.doi.org/10.1039/C6MB00536E
http://dx.doi.org/10.1038/srep46757
http://dx.doi.org/10.7717/peerj.15899
https://peerj.com/


Yang H, Lv H, Ding H, Chen W, Lin H. 2018. a sequence-based predictor for identifying 2′-O-
methylation sites in Homo sapiens. Journal of computational biology 25(11):1266–1277
DOI 10.1089/cmb.2018.0004.

Zhang L, Dong B, Teng Z, Zhang Y, Juan L. 2020. Identification of human enzymes using amino
acid composition and the composition of-spaced amino acid pairs. BioMed Research
International 2020(1):1–11 DOI 10.1155/2020/9235920.

Zhang L, Qin X, Liu M, Liu G, Ren Y. 2021. BERT-m7G: a transformer architecture based on
BERT and stacking ensemble to identify RNA N7-Methylguanosine sites from sequence
information. Computational and Mathematical Methods in Medicine 2021:7764764
DOI 10.1155/2021/7764764.

Zhou Y, Zeng P, Li Y-H, Zhang Z, Cui Q. 2016. SRAMP: prediction of mammalian N6-
methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Research
44(10):e91 DOI 10.1093/nar/gkw104.

Xiang et al. (2023), PeerJ, DOI 10.7717/peerj.15899 18/18

http://dx.doi.org/10.1089/cmb.2018.0004
http://dx.doi.org/10.1155/2020/9235920
http://dx.doi.org/10.1155/2021/7764764
http://dx.doi.org/10.1093/nar/gkw104
http://dx.doi.org/10.7717/peerj.15899
https://peerj.com/

	M6ATMR: identifying N6-methyladenosine sites through RNA sequence similarity matrix reconstruction guided by Transformer
	Introduction
	Materials and Methods
	Results
	Discussion and conclusion
	flink5
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


