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ABSTRACT
Background. The challenges in cancer diagnosis underline the need for continued
research and development of new diagnostic tools and methods. This study aims
to explore an effective, noninvasive, and convenient diagnostic tool using urine
based near-infrared spectroscopy (NIRS) analysis combined with machine learning
algorithm.
Methods. Urine samples were collected from a total of 327 participants, including 181
cancer cases and 146 healthy controls. These participants were randomly spit into train
set (n= 218) and test set (n= 109). NIRS analysis (4,000∼10,000 cm−1) was performed
for each sample in both train and test sets. Five pretreatment methods, including
Savitzky-Golay (SG) smoothing, multiplicative scatter correction (MSC), baseline
removal (BSL) with fitting polynomials to be used as baselines, the first derivative
(DERIV1), and the second derivative (DERIV2), and combination with ‘‘scaling’’ and
‘‘center’’, were investigated. Then partial least-squares (PLS) and linear support-vector
machine (SVM) classification models were established, and prediction performance
was evaluated in test set.
Results. NIRS had greatly overlapping in peaks, and PCA analysis failed in separation
between cancers and healthy controls. In modeling with urine based NIRS data, PLS
model showed its highest prediction accuracy of 0.780, with DERIV2, ‘‘scaling’’ and
‘‘center’’ pretreatment, while linear SVMdisplayed its best prediction accuracy of 0.844,
with raw NIRS. With optimization in SVM, the prediction accuracy could improve to
0.862, when the top 262 features were involved as variables.
Discussion. This pilot study combining urine based NIRS analysis and machine learn-
ing is effective and convenient that might facilitate in cancer diagnosis, encouraging
further evaluation with a large-size multi-center study.
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INTRODUCTION
Cancer is a devastating and unpredictable disease that poses a serious threat to human
health and safety. The International Agency for Research on Cancer reported that there
were approximately 19.3 million new cases of cancer (excluding nonmelanoma skin
cancer) and 9.95 million cancer-related deaths (excluding nonmelanoma skin cancer)
worldwide in 2020 (Sung et al., 2021). Among them, breast cancer in women has the
highest incidence rate, with approximately 2.3 million new cases, followed by lung cancer.
Colorectal and gastric cancers ranked third and fifth, respectively, among digestive tract
tumors (Rawla, Sunkara & Barsouk, 2019). Lung cancer remains the leading cause of cancer
death, accounting for 18%, followed by colorectal, liver, gastric, and breast cancers (Ferlay
et al., 2015). Tragically, it is estimated that the number of cancer patients worldwide will
increase by 47% to 28.4 million by 2040 compared to 2020 (Bray et al., 2018). With its
high incidence and mortality rates, cancer poses a significant global health challenge
(Global Burden of Disease Cancer Collaboration, 2018), about 50% of new cancer patients
and 58.3% of cancer-related deaths occurred in Asia in 2020, which is related to the social
and economic development of these regions and countries, as these regions and countries
have insufficient or inadequate investment in cancer prevention, diagnosis, and treatment
(Ferlay et al., 2019). Therefore, cancer diagnosis, especially early diagnosis is crucially in
need.

In the present, cancer diagnosis techniques include serum markers, radiological,
endoscopic techniques, and histopathological examination of tissue biopsy (as the gold
standard for diagnosing cancers) (Sung et al., 2021). However, these diagnostic techniques
have the disadvantages of low specificity, low sensitivity, time consuming, high cost,
and invasiveness. Therefore, it is necessary to develop novel, economical, and effective
diagnostic methods for cancers. Near-infrared spectroscopy (NIRS) is an economical
technique, which is belong to molecular vibration spectroscopy and provides information
of functional groups for components in samples (Maule & Merletti, 2012; Litwin & Tan,
2017). In recent years, the application of NIRS in the field of cancer diagnosis has been
increasingly reported, mainly in the analysis of samples such as cells, serum, and tissues
(Allemani et al., 2018). However, the use of urine based NIRS for cancer diagnosis has not
been thoroughly investigated (Murtaza et al., 2013).

Urine is a fluid produced by the filtration of glomeruli, reabsorption, secretion, and
excretion processes of renal tubules and collecting ducts (Chen, Bode & Dong, 2017). Urine
contains different biological metabolites, and proteins (Gajjar et al., 2013), urine-based
research for biomarkers has become increasingly interested. Urine, as a biological diagnostic
sample type, has the advantages of convenience and non-invasive sampling, easy storage
and transportation (Murtaza et al., 2013). In this pilot study, we mainly collected urine
samples from various types of cancer patients and healthy controls, and performed NIRS
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analysis and machine learning modeling, which revealed the potential diagnostic role of
urine based NIRS in cancers.

MATERIALS & METHODS
Participants and urine sample collection
A total of 181 cancer patients as well as 146 healthy controls were recruited from Zhejiang
cancer hospital, with the approval of the Ethics Committee of Zhejiang Cancer Hospital
(IRB-2023-375). We received written informed consent from all the participants. Of 181
cancers, there were 62 lung cancer cases, 32 gastric cancer cases, 19 cervical cancer cases, 14
colon cancer cases, 12 thyroid cancer cases, 11 ovarian cancer cases, 10 breast cancer cases,
nine liver cancer cases, nine nasopharyngeal carcinoma cases, two bladder cancer cases,
and 1 kidney cancer case. The age and sex between cancer group and healthy control had
no significant difference (Table 1). Before collecting a urine specimen, one should avoid
vigorous exercise. In this study, morning urine was collected as the specimen, which refers
to the first midstream urine sample after waking up in the morning. During collection,
be sure to avoid contamination from urethral secretions, menstrual blood or vaginal
secretions, semen or prostatic fluid, stool, and other substances. Use a disposable urine
cup for the urine specimen, and label the container with the patient’s name and unique
identifier. The urine specimen should be sent for testing within 2 h after collection. Upon
receiving the specimen, mix it well, draw one mL of urine, and store it at −80 ◦C until
analysis. The study was approved by Zhejiang Cancer Hospital Committee and informed
consent was received from all patients.

NIRS data collection
Frozen urine samples were thawed at ice before NIRS analysis. The procedure for NIRS
analysis was according to our recent plasma based NIRS study (Zhu et al., 2023). Briefly,
Antaris™ II FT-NIR analyzer (Thermo Fisher Scientific, Waltham, MA, USA) was used
for NIRS collection with air as the reference. A total of 200 µL urine sample was loaded
in a quartz colorimetric tube with an optical path of six mm, and NIRS was generated by
averaging 32 successive scans, ranging from 4,000 to 10,000 cm−1, with a resolution of four
cm−1. The spectra were measured based on molar absorptivity, and the average spectrum
was obtained for each sample by taking three measurements and processing the data using
TQ Analyst 8.0 software.

Data analysis
Train and test data set
The total of 327 participants were randomly divided into train set (n= 218) and test set
(n= 109). The training set contained 116 cancer cases and 102 controls, while the test set
had 65 cancer cases and 44 controls. The detailed number of each cancer type were listed
in File S1.

Pretreatment of the NIRS data
Tomake the datamore comparable and suitable formodeling, R package hyperSpec (version
0.100.0) was used to perform pre-treatment of NIRS raw data before machine learning
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Table 1 Basic information for the participants in this study.

Parameter Cancer group
(n= 181)

Healthy control
(n= 146)

P-valuea

Age
>60 78 74 0.209
<= 60 103 72

Sex
Female 82 71 0.626
Male 99 75

Subgroup
Lung cancer 62 NA
Gastric cancer 32 NA
Cervical cancer 19 NA
Colon cancer 14 NA
Thyroid cancer 12 NA
Ovarian cancer 11 NA
Breast cancer 10 NA
Liver cancer 9 NA
Nasopharyngeal carcinoma 9 NA
Bladder cancer 2 NA
Kidney cancer 1 NA

Notes.
aPearson’s Chi-squared test was performed, and a P-value less than 0.05 was considered as significant.

(ML) modeling. Five methods, including Savitzky-Golay (SG) smoothing, multiplicative
scatter correction (MSC), baseline removal (BSL) with fitting polynomials to be used as
baselines, the first derivative (DERIV1), and the second derivative (DERIV2). Furthermore,
pretreatedNIRS data fromboth train and test set underwent ‘‘center’’ and ‘‘scale’’ according
to means and standard deviations of NIRS data in train set.

PLS and SVM Modeling and testing
Unsupervised principal component analysis (PCA) was initially used to detect the
separation trend of the samples in train set. Then, the partial least-squares (PLS)
methods were trained with the raw NIRS data and the above pretreated NIRS data from
train set using R package caret (version 6.0-93). The support-vector machine (SVM)
with linear kernel was trained using R package e1071 (version 1.7-3; https://cran.r-
project.org/web/packages/e1071/index.html) Ten repeated five-fold cross validation was
performed in training. For PLS model, number of components were optimized, while for
SVM model, penalty parameter C (cost) of SVM ranging from 0.1 to 20 were screened.
Trained models then were used to predict the class for each unknown sample in test set,
and the confusion matrix was used to calculate prediction performance. Additionally,
receiver operating characteristic curve (ROC) was analyzed for each model with different
pretreated NIRS data.
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Figure 1 NIRS PCA.NIRS data of urine samples and its initial investigation by PCA analysis. (A) Mean
NIRS of cancer patients, (B) mean NIRS of healthy controls (HC), PCA score plot using the raw NIRS
data (C), and scaled NIRS data (D).

Full-size DOI: 10.7717/peerj.15895/fig-1

Feature importance ranking by SVM-recursive feature elimination
(SVM-RFE)
To discover the most significant NIRS features in SVM model, SVM-recursive feature
elimination (SVM-RFE) algorithm was used to rank the NIRS features. The method
was according to our previous studies (Zhu et al., 2023; Chen et al., 2021). Moreover, to
optimize the SVM model through involving less variables, modeling progressively with
different numbers of NIRS features (from Top 1 to Top N) were investigated of their
prediction performance.

RESULTS
Raw NIRS data and pretreated NIRS data
Raw NIRS data is listed in File S2. Each NIRS spectrum consisted of 1,557 points ranging
from 3,999.64 to 10,001.03 cm−1. The average NIRS of cancers almost overlapped with
that of healthy controls (Figs. 1A–1B).
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PCA analysis showed no separation trend between cancers and
controls
WhenPCAanalysis of rawNIRS data from train dataset without scaling, the first component
already had 100% of the data variance, but there was no significant separation between
cancers and controls (Fig. 1C). The PCA analysis of NIRS data scaling with ‘‘center’’ and
‘‘scale’’ also showed that there were greatly overlapping between cancers and control (Fig.
1D). The result implied that urine NIRS data had no direct linear relationship with their
classes.

Influence of pretreatment methods on the prediction performance of
PLS and SVM
For PLS modeling with different pretreated NIRS data, the second derivative pretreatment
improved the prediction accuracy for test samples, while the other methods did not
influence the prediction performance or even slightly decreased the prediction accuracy,
such as MSC and the second derivative, compared to modelling with raw NIRS data
(Table 2 and Figs. 2A–2F). When further combined with scaling treatment, the result
showed that the combinations of scaling and MSC, the first derivative, and the second
derivative, evidently increased the prediction performance (Table 2 and Figs. 3A–3F).
Thus, PLS modeling with NIRS after both the second derivative and scaling achieved the
best prediction performance, in which the prediction accuracy in test set was 0.78, and
the AUC ROC was 0.853). The detailed prediction performance for modeling with other
treatments were demonstrated in Table 2, and Figs. 2 and 3.

For SVMmodelingwith single pretreatment, the result showed that SVMwith the second
derivative pretreatment achieved the best prediction performance, and SG smoothing had
no influence on the prediction accuracy, while other methods decreased the prediction
performance (Table 2, Fig. 4). In modeling with combination of scaling and other
pretreatments, the result showed scaling dramatically improved the prediction performance
for models. The SVM models with combinations of the first derivative pretreatment and
scaling had the highest accuracy of 0.853. In terms of ROC analysis result, SVMmodels with
combinations of raw and scaling, SG and scaling reached the highest AUC ROC of 0.927.
Therefore, SVM with scaling treatment was the best models in this study. The detailed
prediction performance for SVM modeling were illustrated in Figs. 4 and 5, and Table 2.
Additionally, the cost value in SVM was optimized at 8, with which the model was able to
reach its max prediction accuracy of 0.862.

In our study, SG pretreatment had almost none influence on the prediction performance
for both PLS and SVM models, leading to the same prediction results and ROC curves
from modeling with raw data and SG pretreated data (Table 2, Figs. 2A, 2B, 3A, 3B, 4A,
4B, and 5A, 5B). During modeling, it was observed that low specificity of PLS and SVM
was the main factor resulting in a low prediction outcome. The different pretreatment
methods influenced the specificities of models. For example, the first and second derivative
decreased the specificities in SVMmodeling, while scaling NIRS significantly increased the
specificities in SVM models (Table 2). The detailed result of prediction performance in
training steps were listed in File S3.
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Table 2 Prediction performance of modeling with different pre-treatment methods (testing).

Pretreatmenta Model Sensitivity Specificity PPVb NPVc Precision Recall Accuracy

Raw PLS 0.754 0.523 0.700 0.590 0.700 0.754 0.661
SG PLS 0.754 0.523 0.700 0.590 0.700 0.754 0.661
MSC PLS 0.708 0.455 0.657 0.513 0.657 0.708 0.606
BSL PLS 0.723 0.523 0.691 0.561 0.691 0.723 0.642
DERIV1 PLS 0.692 0.455 0.652 0.500 0.652 0.692 0.596
DERIV2 PLS 0.831 0.591 0.750 0.703 0.750 0.831 0.734
Raw SVM 0.708 0.636 0.742 0.596 0.742 0.708 0.679
SG SVM 0.708 0.636 0.742 0.596 0.742 0.708 0.679
MSC SVM 0.738 0.455 0.667 0.541 0.667 0.738 0.624
BSL SVM 0.754 0.477 0.681 0.568 0.681 0.754 0.642
DERIV1 SVM 0.877 0.318 0.655 0.636 0.655 0.877 0.651
DERIV2 SVM 0.831 0.500 0.711 0.667 0.711 0.831 0.697
Raw+scaled PLS 0.738 0.477 0.676 0.553 0.676 0.738 0.633
SG+scaled PLS 0.738 0.477 0.676 0.553 0.676 0.738 0.633
MSC+scaled PLS 0.738 0.568 0.716 0.595 0.716 0.738 0.670
BSL+scaled PLS 0.723 0.500 0.681 0.550 0.681 0.723 0.633
DERIV1+scaled PLS 0.846 0.545 0.733 0.706 0.733 0.846 0.725
DERIV2+scaled PLS 0.831 0.705 0.806 0.738 0.806 0.831 0.780
Raw+scaled SVM 0.800 0.909 0.929 0.755 0.929 0.800 0.844
SG+scaled SVM 0.800 0.909 0.929 0.755 0.929 0.800 0.844
MSC+scaled SVM 0.815 0.773 0.841 0.739 0.841 0.815 0.798
BSL+scaled SVM 0.862 0.795 0.862 0.795 0.862 0.862 0.835
DERIV1+scaled SVM 0.938 0.727 0.836 0.889 0.836 0.938 0.853
DERIV2+scaled SVM 0.892 0.705 0.817 0.816 0.817 0.892 0.817

Notes.
aRaw-with no pretreatment, SG- Savitsky-Golay smoothing, MSC- multiplicative scatter correction, BSL-baseline removal, DERIV1-the first derivative, DERIV2- the second
derivative.

bPositive prediction value (PPV) = (true positive)/(true positive + false positive).
cNegative prediction value (NPV) = (true negative)/(true negative + false negative).

Modeling importance of NIRS feature in SVM model
SVM-RFE algorithm ranked 1,557 NIRS features, which was shown in File S4. By
progressively modeling with a combination of top 262 features in SVM, the overall
prediction accuracy reached its max value of 0.862 (Fig. 6A). Besides, SVM model had
its max sensitivity of 0.908 with only top 1 feature, and had its max specificity of 0.909
with top 220 features (Figs. 6B, 6C). Among the top 262 NIRS feature, 201 were in
Band II (8,500 ∼5,500 cm−1), which referred to 1st overtone and their combinations of
CH2/CH3/OH/NH stretching), eight were in Band I (12,500∼8,500 cm−1), which referred
to 2nd overtone and their combinations of CH2/CH3/OH/NH stretching, and 53 were
in Band III (5,500 ∼4,000 cm−1), which referred to combinations of CH2/CH3/OH/NH
stretching and 2nd overtone of C =O stretching (File S5).
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Figure 2 PLS test. Prediction performance of PLS models in testing with different pretreatment methods,
including (A) raw NIRS, (B) SG: Savitzky-Golay smoothing, (C) BSL: baseline removal, (D) MSC: multi-
plicative scatter correction, (E) DERIV1: the first derivative, (F) DERIV2: the second derivative using con-
fusion matrix tables and receiver operating characteristic (ROC) curves.

Full-size DOI: 10.7717/peerj.15895/fig-2

DISCUSSION
Although NIRS has a wide range of applications in the medical field, such as brain function
monitoring (Grossmann, 2008; Holper et al., 2019), muscle oxygenation monitoring
(Klusiewicz et al., 2021), cardiac functionmonitoring (Ortega-Loubon et al., 2019), neonatal
care (Tran et al., 2021), there are rare reports on liquid biopsy- based NIRS for cancer
diagnosis. Our previous studies (Zhu et al., 2023; Chen et al., 2021) showed a promising
diagnostic value in cancer using plasma or pleural effusion. Again, this pilot study revealed
that urine-based had a very good prediction value for cancers.

Advantages of urine based NIRS analysis for cancer diagnosis
Compared to the traditional cancer diagnosis methods, such as carcinoembryonic antigen
test, CT/MRI scans, and pathology, which would cause pain or harm to some extent, urine
based NIRS analysis has obvious advantages of noninvasiveness, convenience, and low
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Figure 3 PLS test scaled. Prediction performance of PLS models in testing with combined with ‘‘scal-
ing’’ and ‘‘center’’ and different pretreatment methods, including (A) raw NIRS, (B) SG: Savitzky-Golay
smoothing, (C) BSL: baseline removal, (D) MSC: multiplicative scatter correction, (E) DERIV1: the first
derivative, (F) DERIV2: the second derivative using confusion matrix tables and receiver operating charac-
teristic (ROC) curves.

Full-size DOI: 10.7717/peerj.15895/fig-3

cost. Therefore, urine based NIRS has a great potential as a cancer diagnosis application,
especially in a daily monitoring way. Though LC-MS based omics are widely used in cancer
biomarker discover studies, the equipment and analysis cost are expensive, and professional
and technical personnel are required to perform the analysis. In contrast, NIRS equipment
and its analysis cost is much lower than LC-MS, and it needs only a very simple sample
preparation or even without preparation. Because NIRS equipment is relatively small,
cheap, and portable, a further picture that this pilot study hints at are that there will be
NIRS detectors in the home for daily monitoring for healthy status, for example, a ‘‘smart
toilet’’ with a NIRS detector. Given these advantages of urine based NIRS diagnostics,
further large-scale multicenter studies are encouraged.
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Figure 4 SVM test. Prediction performance of SVMmodels in testing with different pretreatment meth-
ods, including (A) Raw NIRS, (B) SG: Savitzky-Golay smoothing, (C) BSL: baseline removal, (D) MSC:
multiplicative scatter correction, (E) DERIV1: the first derivative, (F) DERIV2: the second derivative using
confusion matrix tables and receiver operating characteristic (ROC) curves.

Full-size DOI: 10.7717/peerj.15895/fig-4

Machine learning algorithms
Unlike genomics, proteomics, andmetabolomics, which can identifymolecules in biological
samples, NIRS provides comprehensive indicators of the functional groups of molecules.
Machine learning algorithms are necessary to be combined in NIRS data analysis for
diagnosis. There are a variety of machine learning algorithms available for modeling with
NIRS data. PLS is one of the most commonly used algorithms in NIRS field due to its
advantages as follows: (1) PLS is suitable for situations where the number of samples is less
than the number of variables; (2) PLS provides interpretable results; (3) PLS can handle
multicollinearity. While PLS is a linear model, and it was not always the best algorithm for
complicated relationship between variable and interests. SVM algorithm (Normanno et al.,
2018) could be used where the relationship between spectra and interest is presented as a
non-linear. In this project, though PLS took only about half of the computational time of
SVM, the prediction accuracy was much lower than that of SVM. In consistent with this,
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Figure 5 SVM test scaled. Prediction performance of SVMmodels in testing with combined with ‘‘scal-
ing’’ and ‘‘center’’ and different pretreatment methods, including (A) raw NIRS, (B) SG: Savitzky-Golay
smoothing, (C) BSL: baseline removal, (D) MSC: multiplicative scatter correction, (E) DERIV1: the first
derivative, (F) DERIV2: the second derivative using confusion matrix tables and receiver operating charac-
teristic (ROC) curves.

Full-size DOI: 10.7717/peerj.15895/fig-5

our previous NIRS based cancer diagnosis projects demonstrated SVM was more suitable
than PLS in modeling with NIRS data from liquid biopsy samples.

Pretreatment is very important in NIRS data modeling, and this study illustrated
that different models need their specific pretreatment methods, it is crucial to do
a proper investigation in pretreatments. This project showed that only the second
derivative improved the PLS, while the ‘‘scaling’’ and ‘‘center’’ pretreatment significantly
improved the SVM model. Other pretreatments, including SG smoothing, multiplicative
scatter correction, baseline removal, the first derivative, played a limited role in model
performance, and even decreased the prediction accuracy in specific model, such as
SVM modelling with the first derivative pretreated NIRS data. Therefore, it is highly
recommended to carefully select pretreatment for the specific algorithm.
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Figure 6 Top feature. Prediction performance, including (A) accuracy, (B) sensitivity, and (C) specificity
in testing set was investigated with modeling with progressively. Red dashed lines refer to the Top N when
max values were reached.

Full-size DOI: 10.7717/peerj.15895/fig-6

Assignment of the NIRS features
Though it is difficult to assign theseNIRS features directly to specificmolecules, due to weak
absorbance, wide peak width, and overlapping of the NIRS peaks, NIRS can still provide a
lot of useful information about the functional groups of the samples. There are three main
NIRS bands, including Band I, Band II, and Band III, which cover a variety of functional
groups of biological molecules, including metabolites, DNA, and proteins. In this study,
among the top 262 NIRS features of SVM model, 201 were in Band II, which contained
water spectral peaks. In the past, the main disadvantage of NIRS in liquid biopsy analysis
was from influence from water spectral peaks in this range. Since Dr. Roumiana Tsenkova
established a theory- ‘‘Aquaphotomics’’, in which water bandwas themain study object and
the compounds in water interact with the OH of water, and then change the water spectral
pattern (Tsenkova, Kovacs & Kubota, 2015; Tsenkova et al., 2018). With the inspiration of
‘‘Aquaphotomics’’, water status might be changed due to changes in concentrations of
compounds in urine, including metabolites, DNA and proteins, which are widely reported
to associated with diseases by metabolomics, proteomics, and genomics. Indeed, we tried
modeling with a specific water spectral area, but we failed to obtain a better prediction
outcome than that with the whole spectra (prediction accuracy in testing: 0.761). However,
it is worthy to investigate the potential diagnostic role of ‘‘Aquaphotomics’’ in urine-based
NIRS diagnosis. However, combinations with other analytical tools, such as LC-MS and
NMR, are still needed to identify the specific biomarkers for diseases.

Limitation is sample size
This is only a pilot study, the limitations in the following aspects must be listed. First, the
sample size is relatively small, and urine samples were from only one center. Thus, our
established urine based NIRS diagnosis method should undergo further validation with
a large sample size study, especially containing validation samples from other centers.
Second, this pilot study had too many types in a small size cancer group, and it might lead
to a bigger intragroup variance and then a lower prediction accuracy. Thus, further study
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with a proper number of cancer types from some specific system, and each cancer type has
adequate cases for modeling. Third, the algorithms applied in this project were only simple
ones, while more complicated model, such as deep learning algorithm, has not been used
due to the limited sample size.

CONCLUSIONS
This pilot study revealed an accurate, convenient, noninvasive, and low-cost cancer
diagnosis method using combination urine based NIRS analysis and SVM modeling.
Though the prediction accuracy in this study was not as high as those in our previous
plasma or pleural effusion based NIRS diagnosis (Zhu et al., 2023; Chen et al., 2021), the
highest prediction accuracy of 0.862 encouraged further studies with a large-scale sample
from multi-centers to validate the application value of this method.
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