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ABSTRACT
Background. The current treatments for diabetic foot ulcers have disadvantages of slow
action and numerous complications. Tibial cortex transverse transport (TTT) surgery
is an extension of the Ilizarov technique used to treat diabetic foot ulcers, and can
shorten the repair time of diabetic foot ulcers. This study assessed the TTT technique
for its effectiveness in healing diabetic foot ulcer skin lesions and its related molecular
mechanisms.
Methods. Diabetic ratmodelswere established by injecting healthy Sprague-Dawley rats
with streptozotocin (STZ). The effects of TTT surgery on the model rats were assessed
by recording changes in body weight, analyzing skin wound pictures, and performing
H&E staining to assess the recovery of wounded skin. The numbers of endothelial
progenitor cells (EPCs) in peripheral blood were analyzed by flow cytometry, and levels
of CXCR4 and SDF-1 expression were qualitatively analyzed by immunofluorescence,
immunohistochemistry, qRT-PCR, and western blotting.
Results. Both the histological results and foot wound pictures indicated that TTT
promoted diabetic wound healing. Flow cytometry results showed that TTT increased
the numbers of EPCs in peripheral blood as determined by CD34 and CD133
expression. In addition, activation of the SDF-1/CXCR4 signaling pathway and an
accumulation of EPCs were observed in skin ulcers sites after TTT surgery. Finally,
the levels of SDF-1 and CXCR4 mRNA and protein expression in the TTT group were
higher than those in a blank or fixator group.
Conclusion. TTT promoted skin wound healing in diabetic foot ulcers possibly by
activating the SDF-1/CXCR4 signaling pathway.

Subjects Biochemistry, Cell Biology, Molecular Biology, Histology
Keywords Diabetic foot ulcers, Tibial transverse bone transport, Wound healing,
SDF-1/CXCR4 signaling pathway

INTRODUCTION
A diabetic foot ulcer is one of the most serious complications of diabetes that causes
disability or death, and a persistent skin ulcer is frequently found in diabetic patients
(Cho et al., 2018). The skin wound-healing process of diabetic foot ulcers is both complex
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and dynamic. It is characterized by an accumulation of senescent cells and a protracted
inflammatory phase accompanied by pro-catabolic balance arrest during the wound’s
proliferative phase, and delayed re-epithelialization (Rodriguez-Rodriguez et al., 2022).
Even if the ulcer heals, it often relapses. Peripheral artery disease and vascular factors have
been reported to increase the risk for a nonhealing ulcer (Armstrong, Boulton & Bus, 2017).

The current methods used to treat diabetic foot ulcers include wound debridement,
pressure unloading, revascularization, and infection management (Perez-Favila et al.,
2019). TTT surgery is an extension of the Ilizarov technique. Ilizarov first proposed the
‘‘tension-stress rule’’ in the mid-20th century and developed the ‘‘Ilizarov tibial transverse
bone transport’’ technique (TTT), which promoted tissue regeneration by providing a
certain amount of stress, while the patient’s bones and their attached muscles, fascia, blood
vessels, and nerves grew in synchrony (Qu, 2020). Qu, Wang & Tang (2001) used the TTT
technique for the first time in China to treat patients with thromboangiitis obliterans of
their lower limbs. The resultant case report described numerous blood vessels surrounding
the bone block, which had been formed by the TTT operation. The TTT technique has
also been widely used in combination with other techniques such as nose to ring draining
(Yu et al., 2021), closed-end negative pressure drainage therapy (Liu et al., 2022), and
antibiotic bone cementing (Wang et al., 2020) to treat chronic ischemic limb diseases such
as vascular occlusion, diabetes, foot and ankle infections, and lower extremity ischemic
diseases. TTT has been shown to accelerate wound healing by enhancing angiogenesis and
immunomodulation in a diabetic foot (Ou et al., 2022). Compared with other therapeutic
methods, TTT has the following advantages: simplicity, easy to perform, minimal surgical
wound creation, and rapid subsequent wound improvement. The TTT technique can
improve ischemia, relieve pain, promote wound repair, and significantly improve the
percentage of salvageable limbs (Liu et al., 2022).

Although TTT has been successfully used in the treatment of diabetic foot ulcers, until
now, only limited data has been available regarding the molecular mechanism by which
TTT improves diabetic foot ulcers. Animal studies have shown that TTT surgery promotes
tibial microvascular regeneration in normal domestic dogs (Cao et al., 2019). Yang et al.
(2022) found that the TTT technique could accelerate wound skin healing in normal SD
rats by promoting the generation of new blood vessels and causing anti-inflammatory cells
to accumulate in the wounded skin. However, those study results have not been verified in
a diabetic animal model.

SDF-1 (stromal cell-derived factor-1 [SDF-1]) is a homeostatic CXC chemokine,
that along with its receptor (CXC chemokine receptor 4 [CXCR4]), forms a distinct
signaling pathway. Studies have shown that the SDF-1/CXCR4 signaling pathway plays a
critical role in wound healing. In addition, the SDF-1/CXCR4 pathway can activate major
physiological processes associated with wound healing, such as an inflammatory response
to tissue damage, cell proliferation, collagen deposition needed for tissue remodeling,
and an increase in angiogenesis in targeted diseases (Chen et al., 2021a). Therefore, we
speculated that TTT surgery might promote the wound healing of diabetic foot ulcers and
activate the SDF-1/CXCR4 signaling pathway, simultaneously. Our study explored the
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Figure 1 Introduction of diabetic rats model, tibial transverse bone transport (TTT) surgical proce-
dure and workflow. (A) Diabetic rats model. (B) Surgical procedure of TTT technique and skin defect: (1)
incision of skin and tibial was exposed; (2) pre-assembled external fixator frame; (3–5) tibial bone win-
dow; (6) the cortical bone chip was dislocated, and the external fixator frame was attached and skin su-
tured; (7) and (8) the full-thickness skin wound of four mm * five mm was performed. (C) Experimental
tests on specific dates.

Full-size DOI: 10.7717/peerj.15894/fig-1

biological mechanism by which the TTT technique promotes the healing of diabetic foot
ulcers.

MATERIALS AND METHODS
Diabetic rats
A total of 54 male SD rats (age, 6-weeks; weight range, 280–410 g) were used to establish
the diabetic rat model. Diabetes was induced by intraperitoneal injection of 35 mg/kg STZ
(YuanYe Bio, Shanghai, China) as described in a previous report (Furman, 2021). The rats
were allowed acclimate to their new environment for at least 5 weeks prior to being injected
with STZ. The rats were housed (five rats per cage) in a room maintained at 21 ± 1 ◦C,
55 ± 5% humidity, and with a 12-h light dark cycle (08.00 on: 20.00 off). The rats had
ad libitum access to water and a high fat diet (formula details: 10% lard, 2.5% cholesterol,
20% sucrose, 1% cholate, and 66.5% common diet, respectively), for at least one week;
after which they were fasted for 12 h prior to being injected with STZ. On the last day,
after being fasted for 12 h, a sample of blood was obtained from the caudal vein of each
rat and used to measure the blood glucose level. A blood glucose level >16.7 mmol/L
indicated that the diabetic rat model was successfully established (Fig. 1A). The rats were
obtained from the Animal Center of Southern Medical University and the protocols for all
animal studies were approved by an Institutional Review Committee for the use of Animal
Subjects, and conformed with guidelines established by the Second People’s Hospital of
Guangdong Province Experimental Animal Ethics Committee (No. 2022-dw-kz-006-01).
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Surgical procedures
The diabetic rats were allowed to recover for at least one week prior to being used in any
experiments. All experimental rats were anesthetized and operated in a sterile operating
room to minimize postoperative complications. The rats with successful diabetes modeling
were divided into three groups: a sham operation group, tibial osteotomy group, and TTT
group, respectively. A total of 18 diabetic rats that were not implanted or received a sham
operation served as a negative control group, designated as the blank group. The tibial
osteotomy group consisted of 18 diabetic rats that underwent fixator implantaton surgery;
that group was designated as the fixator group. A total of 18 diabetic rats implanted with
the TTT fixator formed the TTT group. The TTT procedure was performed as described
in a previous study (Chen et al., 2021a; Furman, 2021) (Fig. 1B 1–6). The TTT procedure
for rats required nine days to complete, and. the middle and upper segments of the tibia
were selected for cortical osteotomy. Guided with the external fixator, a pneumatic saw
was used to penetrate the bone cortex to form a corticotomy window of 10 mm × five
mms. After punching holes, steel needles were passed through the cortex, fixed in the holes
and then assembled to form an external fixator. Two 2-mm threaded needles were used to
perform cortical bone chip transport. After surgery, the animals were allowed to rest for 3
days. On day 4 after surgery, the bone chip was transversely pulled outward by 0.25 mm
every 12 h for three days, and then pulled inward in the same manner during the last three
days. All rats were operated on the dorsum of the foot to form a full-thickness skin wound
of four mm × 5 mm (Fig. 1B 7–8), No obvious signs of infection or other complications
were observed in any of the experimental animals after the operation. The surgery day
was designated as day 0. On the third day, the postoperative extension was extended for 5
days, stopped for 2 days, and then pulled back for 5 days in the TTT group. All 6 diabetic
rats in each group were euthanized using a CO2 euthanasia device (BM Shanghai Biowill
Co., LTD., Shanghai, China) with a flow of 6.5 L/min on days 9, 16, and 21 after surgery,
respectively. Changes in body weight were recorded, pictures of skin lesions were taken,
and pathological examinations were performed (Fig. 1C).

Body weight
As mentioned above, all rats were subjected to uniform rearing standards. To limit
variations in baseline data, body weights were recorded prior to injection of STZ, and
diabetic rats were weighed a second time following successful modeling. Each rat was
weighed prior to the procedure, and after the procedure, weight changes in the groups
were monitored and recorded.

Skin wound recovery
Following surgery, the experimental rats were fed under normal conditions, and the ulcer
wounds were photographed at various intervals.

Hematoxylin and eosin (H&E) staining
Morphological changes in skin wound tissue of the rat dorsal foot wounds were detected
by H&E staining on days 9, 15, and 21 after surgery. The paraformaldehyde-fixed skin
tissues were placed in a descending alcohol series; after which, they were dehydrated,
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fixed, and paraffin-embedded. The blocks of tissue were then cut into 3 µm-thick sections
with a microtome. Next, the sections were deparaffinized, rehydrated, and immersed in
hematoxylin for 5-8 min before being washed with phosphate-buffered saline (PBS). The
sections were then immersed in 0.1% acid water and subsequently exposed to 1% eosin for
1-3 min. Finally, the sections were treated with an ascending alcohol series, cleared with
xylene, mounted onto slides, and observed and photographed under a light microscope
(NIKON, ECLIPSE Ci, Japan).

Immunofluorescence (IF)
As noted above, the prepared skin sections were deparaffinized and rehydrated prior to
antigen retrieval. Following rehydration, the sections were placed in an enclosed plastic
container, rinsed three times in 100 mL PBS for 5 min, and then subjected to antigen
retrieval with EDTA (pH 8.0). A circle was draw around the tissues with an IHC PAP pen.
The sections were blocked with blocking buffer for at least 30 mins at room temperature
after antigen retrieval. The sections were then removed from the blocking buffer, treated
with diluted primary antibodies, and incubated overnight in a wet chamber at 4 ◦C. The
next morning, the tissues were incubated with a secondary antibody for 50 mins at room
temperature. Finally, the nuclei were counterstained with 4,6-diamidino-2-phenylindole
(DAPI; 0.1 µg/mL). The antibodies used in the study were anti-CD34 (sc-18917,1:200;
Santa Cruz Biotechnology, Dallas TX, USA), anti-CD133 (sc-365537, 1:200; Santa Cruz
Biotechnology), anti-CXCR4 (ab124824; Abcam, Cambridge, MA, USA, 1:200), anti-SDF-
1 (17402-1-AP; Proteintech, Rosemont, IL, USA, 1:500), Goat anti-rat-IgG H&L (FITC,
ab6840, 1:1,000; FITC, Abcam), Goat anti-mouse-IgG H&L (Alexa Fluor®594, ab150120,
1:200; Abcam), and Goat anti-rabbit IgG H&L (Cy5®, ab6564, 1000; Abcam).

Immunohistochemistry (IHC)
Sections of skin tissue were blocked with 3% H2O2 for 10 min, washed three times in
PBS, permeabilized with 0.2%Triton for 10 min, and then incubated overnight with
primary antibodies at 4 ◦C, followed by incubation with secondary antibodies for 30 min
at room temperature. Next, DAB chromogenic solution (P0202; Beyotime, Jiangsu, China)
was added to the slices, and the reaction was terminated by immersion in PBS. Finally,
the sections were stained with hematoxylin, fixed with 95% alcohol, sealed with neutral
resin, and observed and photographed under a light microscope. Anti-CXCR4 (Abcam,
ab124824, 1:200) was used in this IHC procedure.

Flow cytometry
In order to detect changes in the numbers of EPCs in peripheral blood, CD34 and CD133
were used as markers of EPCs. Samples of orbital blood were collected into anticoagulant
tubes and diluted with PBS. Next, reagent A and reagent D were added to form a gradient
as described in instructions for use of peripheral blood monocyte cell separation liquid
(P6700; Solarbio). Gradient centrifugation was performed to filter the mixture at room
temperature, and the white monocyte layer was transferred into a 15 mL centrifuge tube
and washed with PBS. Next, primary antibodies were added to the monocyte cells and
incubated at 4 ◦C for 60 min at room temperature. After washing with PBS, the cells were
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Table 1 Primers used for qRT-PCR.

ID Primer Sequence (5′–3′)

GAPDH F TTCAACGGCACAGTCAAG
GAPDH R TACTCAGCACCAGCATCA
CXCR4 F CTGTGGATGGTGGTGTTC
CXCR4 R AGGAAGGCGTAGAGGATG
SDF1 F GCATCAGTGACGGTAAGC
SDF1 R GCATCAGTGACGGTAAGC

Notes.
F, Forward Primer; R, Reverse Primer.

incubated with secondary antibodies in the dark at 4 ◦C for 30 min. Finally, pre-cooled
PBS was added to the monocytes and the cells were analyzed by flow cytometry (CytoFlex;
Beckman Coulter). The antibodies used for flow cytometry studies were anti-CD133
(18470-1-AP, 0.2 µg/mL; Proteintech), anti-CD34 (60180-1-Ig, 0.2 µg/mL; Proteintech),
goat anti-Rabbit IgG H&L (PE) (ab72465, 1:500; Abcam), and goat anti-mouse IgG H&L
(FITC) (ab6785, 1:500; Abcam).

Real-time fluorescence quantitative PCR (qRT-PCR)
qRT-PCR was performed to detect the expression of SDF-1 and CXCR4 in the skin
wound tissues of diabetic rats. Total RNA was extracted from skin wound tissue using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA), and cDNA was synthesized using a
PrimeScript™ RT reagent Kit (Takara, Shiga, Japan) as described in the manufacturer’s
instructions. qRT-PCR was performed by using SYBRR Green Realtime Master Mix
(Takara) on an ABI Real time PCR (7500) instrument. (with) The cycle conditions used
for qRT-PCR were as follows: initial incubation for 3 mins at 95 ◦C, followed by 35 cycles
of 5 s at 95 ◦C and 5 s at 60 ◦C. Relative levels of gene expression were calculated using the
2−11CT method. The primers used for qRT-PCR are listed in Table 1.

Western blotting (WB)
A protein extraction kit (Beyotime, P0013J) was used to extract the total protein from
rat skin ulcer tissues according to the manufacturer’s protocol. Prior to centrifugation at
12,000g for 15 min at 4 ◦C, TissueLyser beads were added to the centrifugation tubes to
assist with protein cleavage. The upper layer of lipid was removed, and a BCA Protein Assay
Kit (Beyotime, China) was using to determine the protein concentration in each extract.
Western blotting was performed according to a standard WB protocol (Yukhananov,
Chimento & Marlow, 2022). ImageJ software (v 1.8.0) was used to quantify protein levels,
and GAPDH expression served as an internal standard. The primary antibodies used for
WB were as follows: anti-CXCR4 (ab124824, 1:100; Abcam), anti-SDF1 (ab25117, 1:1,000;
Abcam), and anti-GAPDH (ab9485, 1:2500; Abcam). The secondary antibody was goat
anti-rabbit IgG H&L (HRP) (ab6721, 1:2000; Abcam).

Statistical analysis
All data were analyzed using IBM SPSS Statistics for Windows, Version 25 software (IBM
Corp., Armonk, NY, USA) and graphs were drawn using GraphPad Prism 8.0 software.
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One-way ANOVA followed by Tukey’s post hoc test or the student’s t test was used to
compare mean values among different groups. Quantitative data are expressed as a mean
value ± SEM. A p-value < 0.05 was considered to be statistically significant.

RESULTS
TTT accelerated wound closure and promoted skin tissue recovery
Measurements of rat body weight taken before and after STZ injection revealed no
significant change in body weight. However, there were significant differences in body
weight among the three different groups (blank group vs. Fixator group vs. TTT group) at
9 days after the operation (Fig. 2B). Especially at 21 days following surgery, there was no
discernible difference in body weight among the different treatment groups. In order to
observe the healing of the ulcer after operation, the wounds were photographed on days
3, 6, 9, 12, and 15 after surgery. H&E staining was performed on days 8, 15, and 21 after
surgery. When compared to the rats in the blank group, the wound healing areas of rats
in the TTT group were the smallest, followed by the wound healing areas in the Fixator
group, especially at 15 days after the operation (Fig. 2C). H&E staining was used to examine
the regenerative capability of wounded skin (Fig. 2D). In the blank group, the cells of the
wounded skin were discontinuous and broken, even at 21 days after the operation. After
treatment with the TTT technique, the epidermal and dermal cells of wound skin were
more closely and orderly arranged, and the thickness of the dermis was greater than that in
the Fixator group. When taken together, these findings indicated that the TTT technique
not only significantly accelerated the wound healing process, but also enhanced skin tissue
regeneration and repair.

TTT increased the levels of EPCs to contribute to wind healing
The levels of EPCs in peripheral blood were detected by flow cytometry and using CD34 and
CD133 as markers (Fig. 3A). Our data showed that at different time points after operation,
the TTT technique significantly increased EPC levels when compared to levels in the
blank group, and the differences became increasingly obvious over time. The numbers of
CD34+CD133+ cells in the Fixator group were significantly greater than those in the blank
group only at 21 days after surgery (Fig. 3B, p< 0.001). As the post-surgery time increased,
the difference in EPC numbers between the TTT group and Fixator group steadily widened,
indicating that TTT had a more rapid and pronounced effect.

TTT increased the numbers of EPCs and activated the SDF-1/CXCR4
signaling pathway
EPC levels were detected by the immunofluorescence of CD34 and CD133, and the
deposition of SDF-1 and CXCR4 proteins was detected using immunofluorescence and
immunohistochemistry; those results are summarized in Figs. 4–6. Our data showed that
three indicators (CD34, CD133. and CXCR4) had increased expression levels in the TTT
group, regardless of the time after surgery (Fig. 4A) and an IF quantitative analysis showed
the same result (Figs. 4B–4D). The levels of fluorescence intensity in the fixator group
were significantly higher than those in the blank group on days 15 and 21 after surgery.

Ou et al. (2023), PeerJ, DOI 10.7717/peerj.15894 7/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.15894


Figure 2 The effects of tibial transverse transport (TTT) technique on body weight and skin recovery
in diabetic rats. (A) Weight change of rats undergoing diabetes modeling (N = 27, n.s. P > 0.05). (B) The
changes of body weight on diabetic rats after different operations (N = 6, *P < 0.05, **P < 0.01, ***P <
0.001, ****P < 0.0001). (C) Representative images of wound healing progress for three groups from the
same SD rats. (D) Morphological images of HE staining for ulcer skin tissues treated with different opera-
tions.

Full-size DOI: 10.7717/peerj.15894/fig-2

Similar trends in CD34, CD133, and SDF-1 expression are shown in Fig. 5A. Moreover, a
quantitative examination of IF results was also conducted (Figs. 5B–5D). However, those
results showed relatively higher fluorescence intensities occurring in the TTT group at 15
days after surgery rather than at 21 days after surgery.

Our results showed that CXCR4 was highly expressed in skin wounds in the TTT group
and the levels of CXCR4-positive cells increased over time. On day 21 after surgery, high
numbers of CXCR4 positive cells were found in both the fixator group and TTT group
(Fig. 6A).

TTT treatment significantly increased the numbers of CXCR4-positive cells in the
skin wounds of diabetic rats. Meanwhile, our statistical results were consistent with the
phenomenon observed by IF (Fig. 6B).

TTT promoted SDF-1/CXCR4 expression
qRT-PCR and western blotting were used to measure SDF-1/CXCR4 expression in skin
tissue, both quantitatively and qualitatively. Our data showed that TTT treatment increased
the levels of CXCR4 expression in skin wound sites (Fig. 7A). Significant differences in
SDF-1 mRNA expression between the TTT group and blank group were not found until
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Figure 3 TTT promoted the level of EPCs. (A) The level of endothelial progenitor cells was evaluated
with using flow cytometry. (B) Monitoring CD34/CD133 levels every six days in wound skin via using
flow cytometry, the results showed the highest levels of hematopoietic stem cell in TTT group, especially at
21st days after operation (**P < 0.01, ***P < 0.001).

Full-size DOI: 10.7717/peerj.15894/fig-3

21 days after surgery (Fig. 7B). The effects of TTT surgery on SDF-1/CXCR4 protein
expression in skin wound sites were consistent with those shown by mRNA analysis
(Fig. 7C). High levels of SDF-1/CXCR4 proteins were expressed in the TTT group on days
9, 15, and 21 after surgery when compared to their expression in the blank group. On days
9 and 21 after surgery, the levels of CXCR4 and SDF-1 proteins were significantly increased
in the fixator group when compared with those in the blank group (Figs. 7C–7E). Both the
quantitative and qualitative experimental results showed that the levels of SDF-1/CXCR4
protein expression in the TTT group were significantly higher than those in the fixator or
blank group. This indicated that the TTT technique contributed to skin wound healing by
activating the SDF-1/CXCR4 signaling pathway. Overall, these findings showed that TTT
promoted skin wound healing over time.

DISCUSSION
This study is one of the few to date that used a diabetic animal model to confirm the impact
of TTT surgery on diabetic foot ulcers, and also explore the relevant molecular mechanism.
The TTT technique contributes to skin wound healing by accelerating the regeneration of
ulcer skin, while simultaneously activating the SDF-1/CXCR4 signaling pathway.

Diabetic foot ulcers are a medical challenge for the growing community of people with
diabetes throughout the world. Burgess et al. (2021) pointed out that several procedures
(debridement, oxygen therapy, off-loading, and skin substitutes) could be used to treat
diabetic foot ulcers. Moreover, he stated that postoperative hyperglycemic conditions could
influence the normal immune response, making the wound healing process susceptible to
infection or aggravation of an existing infection, and thereby delay wound healing. Other
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Figure 4 TTT could effectively increase CD34/CD133 and CXCR4 expression in wound skin. (A) Im-
munofluorescence analysis of CD34/CD133 indicated that TTT stimulated neovascularization in wound
skin (CD34 was stained green, CD133 was stained red). Chemokine was marked by CXCR4 (pink) in
wound skin from each group. Nuclei were stained with 4′, 6-Diamidino-2-Phenylindole (DAPI, blue). (B–
D) Relative fluorescence intensity of CD133, CD34 and CXCR4 were quantitatively analyzed (*P < 0.05,
**P < 0.01, ***P < 0.001).

Full-size DOI: 10.7717/peerj.15894/fig-4

treatments for diabetic foot ulcers include negative-pressure wound therapy, energy-based
therapy, stem cell therapy, dressings, and topical agents (Everett & Mathioudakis, 2018).
Negative-pressure wound therapy has been found to be effective for promoting wound
closure, but its use is limited by its high cost (Chen et al., 2021b). Other treatments may
be associated with a risk for amputation and wound recurrence, and there is inadequate
evidence to recommend any those therapies (Everett & Mathioudakis, 2018). Therefore,
investigators need to explore new techniques for reducing the rates of limb amputation
and ulcer recurrence. It is well known that certain parts of the foot with reduced perception
experience continuous mechanical and shear stress (De Wert et al., 2019; Jones et al., 2022).
The TTT technique applies a slow, steady, and long-lasting stimulus to bone tissue,
muscles, and nerves viamechanical stretching to promote the regeneration of blood vessels
and bone marrow and improve blood circulation; these effects ultimately restore limb
perception (Zuo et al., 2018). Other studies have demonstrated that mechanically stretched
skin exhibits the migration of bone marrow mesenchymal cells, and normal donor skin
can be mechanically stretched to promote its regeneration (Zhou et al., 2013). An Expert
Consensus on the treatment of diabetic foot ulcers using TTT reported that TTT could
stimulate microcirculation and nerve function recovery in the lower limbs of a diabetic foot
and significantly reduce thewound size and overall risk for diabetic foot complicationswhen
compared with other treatment methods (Chinese Bone Transport Diabetic Foot Group,
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Figure 5 TTT could effectively increase CD34/CD133 and SDF-1 expression in wound skin. (A)
Immunofluorescence analysis of CD34/CD133 indicated that TTT stimulated neovascularization in
wound skin (CD34 was stained green, CD133 was stained red). Chemokine was marked by SDF-1 (pink)
in wound skin from each group. Nuclei were stained with 4′, 6-Diamidino-2-Phenylindole (DAPI, blue).
(B-D) Relative fluorescence intensity of CD133, CD34 and SDF-1 were quantitatively analyzed (*P < 0.05,
**P < 0.01, ***P < 0.001).

Full-size DOI: 10.7717/peerj.15894/fig-5

2020). Methods for treating diabetic foot ulcers need to be simultaneously evaluated for
their effectiveness, safety, and cost effectiveness. Claims that TTTmight hasten the recovery
of severe and recalcitrant diabetic foot ulcers are not true, and there is no denying that
TTT can produce adverse effects such as secondary fractures, skin necrosis at the surgical
site, pin tract infection during transport, edema, pain, and bleeding (Zhang et al., 2020).

One previous study explored the biochemical mechanism of TTT in diabetic mice.
The use of STZ to create a diabetic rat model has been demonstrated in multiple studies
(Furman, 2021; Pandey & Dvorakova, 2020). Furthermore, our study employed the TTT
operation, which is a modified Ilizarov technique (Zhao et al., 2020), to quickly accumulate
a large number of EPCs (CD33/CD134 positive cells) at just 9 days after the operation,
which significantly shortened the wound healing time. Our IF and IHC experiments did not
reveal a significant accumulation of SDF-1/CXCR 4 in the skin ulcer tissues of the rats. In
addition to releasing cytokines that promote the vascularization of diabetic skin wounds,
it has been demonstrated that EPCs can increase the levels of SDF-1/CXCR4 mRNA
and protein expression. That effect is closely related to the biological functions of EPCs
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Figure 6 TTT activated CXCR4 signal pathway and promoted cell apoptosis. (A) Immunohistochem-
istry analysis of CXCR4 positive cells (brown) in skin wound from each group. (B) High score of CXCR4
were quantitatively analyzed (**P < 0.01, ***P < 0.001).

Full-size DOI: 10.7717/peerj.15894/fig-6

Figure 7 TTT promoted mRNA and protein expression of CXCR4 and SDF-1. (A) The mRNA expres-
sion of CXCR4 in the wound skin (**P < 0.01, ***P < 0.001). (B) The mRNA expression of SDF-1 in the
wound skin (**P < 0.01, ***P < 0.001). (C) Western blotting analysis of the CXCR4 and SDF-1 in skin
tissues of each group. GAPDH was used as an internal parameter. (D) Corresponding quantification of
band density of CXCR4. (E) Corresponding quantification of band density of SDF-1 (*P < 0.05, **P <
0.01, ***P < 0.001).

Full-size DOI: 10.7717/peerj.15894/fig-7

(Leng et al., 2021), and further validates the results in our study. In addition, we also found
that the degree of skin healing in the TTT group at 21 days was significantly greater than that
in the blank group, which is consistent with previous studies (Lian, 2019). It is well known
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that, treatment of diabetic foot ulcers using the TTT technique is based on mechanical
stretching. Zhou et al. (2013) and Anh (2017) reported that mechanical stretching could
upregulate SDF-1 expression and activate the SDF-1/CXCR4 signaling pathway to cause
the migration of mesenchymal stem cells to areas of skin regeneration. Another study
showed that SDF-1/CXCR4 interactions were critical for skin re-epithelialization, as they
could accelerate skin epithelialization and dermal structural regeneration by promoting
fibroblast migration during the remodeling stage of skin healing (Yari et al., 2020). Our
results suggest that TTT promotes hemostasis, EPC migration, and skin regeneration by
activating the SDF-1/CXCR4 signaling pathway, to accelerate the healing of diabetic foot
ulcers. Wound healing is a process that consists of four stages: hemostasis, inflammation
reduction, vascularization, and remodeling. Dysfunction during any of these stages will
affect the healing of diabetic wounds (Patel et al., 2019). CXCR4 had been proven to
participate in immune regulation and control the regeneration of multiple organs and
tissues (Bianchi & Mezzapelle, 2020), suggesting that the anti-inflammatory effect of the
TTT technique during the healing process of diabetic foot ulcers results from activation of
the SDF-1/CXCR4 signaling pathway.

Although our study demonstrated that the TTT technique plays an important role
in improving microcirculation reconstruction, reducing inflammation, and accelerating
wound healing, we should not ignore the limitations of the study. First, we did not
extend the observation time of skin healing beyond 21 days after surgery. Second, the
mechanism by which TTT promotes skin healing was not fully elucidated; for example,
the mechanism involved in microcirculation reconstruction and inflammation reduction
in diabetic foot ulcers was not verified. Finally, in order to confirm the precise function of
the SDF-1/CXCR4 signaling axis, it will be necessary to perform reverse verification by use
of by agonists or inhibitors.
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