
Submitted 16 May 2023
Accepted 21 July 2023
Published 24 August 2023

Corresponding author
Jie Zhou, sxuj_zhou@163.com

Academic editor
Kenta Nakai

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.15889

Copyright
2023 Qu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Neighborhood-based inference and
restricted Boltzmann machine for small
molecule-miRNA associations prediction
Jia Qu1, Zihao Song1, Xiaolong Cheng1, Zhibin Jiang2 and Jie Zhou2

1 School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
2Department of Computer Science and Engineering, Shaoxing University, Shaoxing, Zhejiang, China

ABSTRACT
Background. A growing number of experiments have shown that microRNAs (miR-
NAs) can be used as target of small molecules (SMs) to regulate gene expression for
treating diseases. Therefore, identifying SM-relatedmiRNAs is helpful for the treatment
of diseases in the domain of medical investigation.
Methods. This article presents a new computational model, called NIRBMSMMA
(neighborhood-based inference (NI) and restricted Boltzmann machine (RBM)),
which we developed to identify potential small molecule-miRNA associations
(NIRBMSMMA). First, grounded on known SM-miRNAs associations, SM similarity
and miRNA similarity, NI was used to predict score of an unknown SM-miRNA pair
by reckoning the sum of known associations between neighbors of the SM (miRNA)
and the miRNA (SM). Second, utilizing a two-layered generative stochastic artificial
neural network, RBMwas used to predict SM-miRNA association by learning potential
probability distribution from known SM-miRNA associations. At last, an ensemble
learning model was conducted to combine NI and RBM for identifying potential SM-
miRNA associations.
Results. Furthermore, we conducted global leave one out cross validation (LOOCV),
miRNA-fixed LOOCV, SM-fixed LOOCV and five-fold cross validation to as-
sess performance of NIRBMSMMA based on three datasets. Results showed that
NIRBMSMMA obtained areas under the curve (AUC) of 0.9912, 0.9875, 0.8376 and
0.9898 ± 0.0009 under global LOOCV, miRNA-fixed LOOCV, SM-fixed LOOCV and
five-fold cross validation based on dataset 1, respectively. For dataset 2, the AUCs
are 0.8645, 0.8720, 0.7066 and 0.8547 ± 0.0046 in turn. For dataset 3, the AUCs are
0.9884, 0.9802, 0.8239 and 0.9870± 0.0015 in turn. Also, we conducted case studies to
further assess the predictive performance of NIRBMSMMA. These results illustrated
the proposed model is a useful tool in predicting potential SM-miRNA associations.

Subjects Bioinformatics, Computational Biology
Keywords Small molecule, MicroRNA, Association prediction, Neighborhood-based inference,
Restricted Boltzmann Machine

INTRODUCTION
MicroRNAs (miRNAs) are a type of short noncoding RNA molecules existing in viruses,
plants and animals, which can regulate gene expression by targeting messenger RNAs
(mRNAs) (Bartel, 2004; Zhang, Wang & Pan, 2007). In 1993, the first miRNA lin-4 was
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identified from the Caenorhabditis elegans (Lee, Feinbaum & Ambros, 1993). In 2000,
the first human miRNA let-7 was discovered by research workers (Saliminejad et al.,
2019). Along with an increase in the number of miRNA studies, research shows that
miRNAs play a key role in multiple biological processes such as stem cell differentiation,
organ development, immune response and insulin secretion (Cuellar & McManus, 2005;
Krützfeldt et al., 2005; Zhang, Wang & Pan, 2007). Moreover, some studies showed that
abnormal expression of miRNAs is closely linked to some diseases (Huang, 2017; Tili et al.,
2008; Trang, Weidhaas & Slack, 2008). For example, overexpression of miR-15a can cause
cell apoptosis and further lead to rheumatic diseases (Ceribelli et al., 2011). Furthermore,
research indicates that low expression levels of miR-1 and miR-13 can cause cardiac
hypertrophy (Carè et al., 2007). In lung cancer tissues, miR-17-92 clusters, containing
miR106a, miR17-5p and miR19a, usually have high expression levels (Hayashita et al.,
2005). An accumulating body of research indicates that abnormal expression of miRNAs
can cause diseases, miRNAs can considered as potential therapeutic targets for treating
diseases (Fasanaro et al., 2010).

Small molecules (SMs) are a kind of organic compounds with low molecular weight
(Qu et al., 2018). Over the past two decades, a number of studies have indicated that small
molecules can regulate miRNA expression and inhibit growth and chemoresistance of
disease cells (Liu et al., 2013; Zhang et al., 2010). For example, miR-200b is up-regulated
in various tumors, which can be down-regulated by using SM of 5-fluorouracil (Rossi,
Bonmassar & Faraoni, 2007). Furthermore, streptomycin can target precursor of miR-21
for inhibiting miR-21 expression and treat breast cancer and lung cancer (Bose et al., 2012).
Also, it was previously reported that 5-aza-2′-deoxycytidine can increase expression of
miR-148a by testing with quantitative real-time polymerase chain reaction, which has
positive implications for the treatment of gastric cancer (Sun et al., 2014). Unsurprisingly,
there is a close association between SMs and miRNAs. Therefore, identifying potential
SM-miRNA associations can contribute to the treatment of diseases. However, traditional
experimental approaches are time-consuming and labor-intensive in identifying new
SM-miRNA associations. The development of innovative computational techniques for
identifying potential SM-miRNA associations is an urgent necessity.

In recent years, many gene expression-based computational models have been developed
to predict potential SM-miRNA associations. For example,Wang et al. (2016) developed a
computational model of functional similarity to predict potential SM-miRNA associations.
First, they collected gene expression profiles of 88 miRNAs from the Gene Expression
Omnibus (GEO) database and collected gene expression profiles of 1,309 SMs from
ConnectivityMap (CMAP) database. Then, differentially expressed genes of all SM-miRNA
pairs can be obtained based on significance analysis of microarray (SAM). According to
differentially expressed genes between SMs and miRNAs, they computed functional
similarity scores of all SM-miRNA pairs by employing Gene Ontology (GO) enrichment
analysis. According to transcriptional responses after miRNA regulation and drug therapy,
Jiang et al. (2012) presented a model to predict potential SM-miRNA associations in
23 different human cancers by utilizing a Kolmogorov–Smirnov (KS) test based on
differentially expressed miRNA target genes and gene signatures obtained from gene
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expression profile of SMs treatment. Based on predicted SM-miRNA associations, they built
SM-miRNA networks (SMirNs) for 17 cancers. In each cancer of SMirN, they identified
miRNA modules in which a group of miRNAs are linked to the same SM and further
identified SM modules in which SMs are relate to the same miRNA. Subsequently, based
on SMirNs and identified modules, they utilized structural similarity of small molecules
and assessed miRNAs with miRNA family, targets or GO functional similarities to predict
new drug target miRNAs and drug candidates for cancer therapy. Particularly, this study
was expanded by Meng et al. (2014) to identify SMs for Alzheimer’s disease (AD)-related
miRNAs (ADMs). The study utilized the differentially expressed target genes of ADMs and
gene expression signatures of bioactive SM perturbations to predict potential SM-ADM
associations using KS scores. Then, they built network of SM-miRNA association in AD
(SmiRN-AD) based on predicted SM-ADM associations and proceeded to conduct a more
detailed analysis of the topological and functional properties of the SmiRN-AD network.

Furthermore, Lv et al. (2015) presented a network-based approach for identifying
potential SM-miRNA associations. They constructed an integrated SM-miRNA association
network by employing SM similarity network, miRNA similarity network and known SM-
miRNA associations network. Then, a similarity-based random walk with restart (RWR)
algorithm was used on the constructed network for predicting potential associations
between SMs and miRNAs. Li et al. (2016) also developed a network-based model, namely
small molecule-miRNA network-based inference (SMiR-NBI), to identify new SM-
miRNA associations. First, heterogeneous network was built by linking drugs, miRNAs
and genes. Second, the initial score of a SM were preset and distributed averagely to
its associated miRNAs. Then, the initial scores of miRNAs were distributed averagely
to its associated SMs and SMs redistribute received scores from miRNAs for every
associated miRNA. Finally, end scores between SMs and miRNAs were obtained to
represent the likelihood of associations. In addition, Qu et al. (2018) developed a new
computational model of triple layer heterogeneous network for identifying potential
SM-MiRNA associations (TLHNSMMA), in which they used disease information as a
bridge to construct a triple layer heterogeneous network based on known SM-miRNA
associations, known miRNA-disease associations, SM similarity, miRNA similarity and
disease similarity. Then, an iterative updating algorithm was used on the triple layer
heterogeneous network for predicting potential SM-miRNA associations. Qu et al. (2019)
also developed a computational model of HeteSim-based inference for predicting new SM-
MiRNA associations (HSSMMA) where a heterogeneous network was constructed based
on multiple biological data. After that, HeteSim, a path-constrained measurement method,
was used on the constructed heterogeneous network to compute paths between an SM and
a miRNA for predicting potential SM-miRNA associations. Recently, Chen et al. (2021)
constructed a computational model of bounded nuclear norm regularization (BNNR)
to predict new SM-miRNA associations (BNNRSMMA). First, a SM-miRNA association
heterogeneous network was built by integrating miRNA similarity, SM similarity and
known SM-miRNA associations. Then, a target matrix was defined to represent the
heterogeneous network. Moreover, the target matrix was completed by minimizing its
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nuclear norm with alternating direction method of multipliers (ADMM) and potential
SM-miRNA associations as a part of completed target matrix were obtained.

Based on previous studies, some single predictors usually have poor generalization
performance in identification of potential SM-miRNA associations. Combining two
weak predictors by ensemble learning can improve model generalization performance.
Moreover, some network-based models cannot be applied to predict potential miRNAs
(SMs) for new SM (miRNA) without any known associated miRNA (SM). Therefore,
we developed a novel computational model of neighborhood-based inference (NI) and
restricted Boltzmann machine (RBM) for identifying potential small molecule-miRNA
associations (NIRBMSMMA) by integrating network-based model of NI and machine
learning-based mode of RBM. In the model, for a specific SM and a specific miRNA,
NI was carried out to predict potential association between the SM and the miRNA by
reckoning the sum of know associations between the miRNA (SM) and neighbors of the
SM (miRNA) based on SM (miRNA) similarity. Then, a two-layer network based model
of RBM was employed to predict potential SM-miRNA associations by fully learning
probability distribution governing known SM-miRNA associations. At last, an ensemble
learning model was used to integrated NI and RBM for obtaining potential SM-miRNA
associations. To evaluate predictive ability of NIRBMSMMA, we implemented global leave
one out cross validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and five-fold
cross validation based on three different SM-miRNA association datasets. Furthermore, we
conducted two types of case studies for assessing the performance of NIRBMSMMA. Result
of the first case study showed that five out of the top 20 and 10 out of the top 50 predicted
SM-miRNA associations were verified by searching published literatures on PubMed. In
the second case study, 5-fluorouracil and gemcitabine were selected as investigated SM
respectively. Potential miRNAs related to investigated SM would be identified by removing
all known associations between miRNA and the SM. As a result, 32 out of the top 50
predicted miRNAs for 5-fluorouracil and 32 out of the top 50 predicted miRNAs for
gemcitabine were validated by SM2miR database and published literature, respectively.

MATERIALS & METHODS
SM-miRNA associations
In this article, the known SM-miRNA associations information was obtained from SM2miR
v1.0 (Liu et al., 2013), and we constructed two different SM-miRNA associations dataset
of dataset 1 and dataset 2 (Jiang et al., 2009; Knox et al., 2011; Lu et al., 2008; Ruepp et al.,
2010;Wang et al., 2009). Dataset 1 contains 664 known SM-miRNAs associations between
831 SMs and 541 miRNAs, in which 792 (out of 831, 95%) SMs do not have any known
associated miRNAs according to SM2miR. By removing the information of SMs (miRNAs)
that have any no known related miRNAs (SMs) in dataset 1, we constructed dataset 2
consists of 39 SMs and 286 miRNAs that are fully involved in the 664 known associations.
Unsurprisingly, dataset 2 contains 664 known SMs-miRNAs associations between 39
SMs and 286 miRNAs. Moreover, an adjacency matrix A ∈ Rns×nm was built to denote
the associations between SMs and miRNAs, where ns represents number of SMs and nm
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indicates number of miRNAs. If the SM s(i) is associated with miRNA m(j), the entry
A(i,j) is equal to 1, otherwise 0.

Integrated SM similarity
Referring to the earlier study (Lv et al., 2015), the integrated SM similarity was obtained
by combining four types of SM similarity including SM chemical structure similarity
SCS (Hattori et al., 2003), disease phenotype-based similarity for SMs SDS (Gottlieb et al.,
2011), SM side effect similarity SSS (Gottlieb et al., 2011) and gene functional consistency-
based similarity STS (Lv et al., 2012). In this study, the SIMilar COMPound (SIMCOMP)
approach was utilized to calculate the similarity between SM chemical structures based
on SM chemical structure information (Hattori et al., 2003). Then, the Jaccard score was
employed, utilizing information about diseases associated with each small molecule to
assess the similarity of SMs based on disease phenotypes (Gottlieb et al., 2011). SM side
effect similarity was gained with the method of Jaccard score (Gottlieb et al., 2011) based
on SM-side effect association dataset. Gene functional consistency-based similarity was
derived with Gene Set Functional Similarity (GSFS) (Lv et al., 2012) method on the dataset
of SMs’ target genes. After that, we used the weighted average approach to calculate the
four kind of SM similarity for obtaining integrated SM similarity, which can be described
as follows.

SS=
β1SDS +β2S

T
S +β3S

C
S +β4S

S
S∑4

i=1βi
(1)

where values of βi(i= 1,2,3,4) are set as 1 and SS denotes integrated SM similarity.

Integrated miRNA similarity
Similarly, we obtained integrated miRNA similarity by merging disease phenotype-based
similarity for miRNAs SDM (Gottlieb et al., 2011) with gene functional consistency-based
similarity for miRNAs STM (Lv et al., 2012). Specifically, we utilized the GSFS method to
determine the functional consistency-based similarity of miRNA target gene sets (Lv et al.,
2012). Furthermore, using the Jaccard score, we calculated the disease phenotype-based
similarity for miRNAs based on the dataset of miRNA-related diseases (Gottlieb et al.,
2011). We employed a weighted average approach to determine the integrated miRNA
similarity SM , which is outlined below.

SM =
α1SDM +α2S

T
M∑2

j=1αj
(2)

where values of αj(j = 1,2) are set as 1.

NIRBMSMMA
In this study, we presented a novel computational model, NIRBMSMMA, to identify
potential SM-miRNA associations by leveraging known SM-miRNA associations, as well as
integrated SM similarity and integratedmiRNA similarity. First, we employed NI technique
to anticipate potential associations between SMs and miRNAs by varying thresholds to
compute the sum associations between the miRNAs (SMs) and neighbors of SM (miRNA).
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Figure 1 Flowchart for predicting the potential SM-miRNA associations by using NIRBMSMMA.
Full-size DOI: 10.7717/peerj.15889/fig-1

Second, a potential SM-miRNA association matrix was predicted using the contrastive
divergence algorithm and sigmoid function of the restricted Boltzmann machine (RBM).
Considering single method may be weak in generalization ability, ensemble learning was
employed to integrate the predictions from NI and RBM to derive the final potential
associations between SMs and miRNAs. The flowchart of NIRBMSMMA is shown as
Fig. 1.

Neighborhood-based inference
Neighborhood-based method is a classic collaborative filtering algorithm, also referred to
as memory-based algorithm, can recommend similar items for a user based on behaviors
of similar users (Aggarwal, 2016). Here, we constructed a based model of NI to identify
potential SM-miRNA associations. First, we built a NI model utilizing the integrated
SM similarity. For a SM si,i=1,2,...,ns, by applying a threshold σ based on integrated SM
similarity, the neighbors can be filtered, and subsequently, a defined set of neighbors can
be established as {si|ISMSd,i>σ,d 6= i}. After that, the potential score of SM si associated
with miRNA mj can be gained by calculating the sum associations between the miRNA mj

and neighbors of SM si as follows.

scoreSi,j =

∑ns
i=1
∑nm

j=1,d 6=i,ISMSd,i≥σ Ad,j× ISMSd,i∑ns
i=1
∑nm

j=1,d 6=i,ISMSd,i≥TS ISMSd,i
(3)

where ns denotes the count of SM, nm denotes the count of miRNA, Ad,j denotes the
entry between SM sd and miRNA mj in SM-miRNA associations matrix A. The ISMSd,i
denotes integrated SM similarity between SM sd and SM si. The scoreSi,j represents potential
association score between SM si and miRNA mj .

NI model was constructed by filtering neighbors with the threshold σ . To reduce bias
of neighbor selection, we generated multiple thresholds {σ1,σ2,...,σn} in the range of
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0.05 to 0.5 to construct multiple basic NI models. Particularly, an upper bound parameter
σupper was employed to determine the multiple thresholds which were represented as
σthreshold = {σi|σi≤ σupper ,i= 1,2,...,n(n= |σthreshold |)}. Thus, n thresholds {σ1,σ2,...,σn}
were employed to construct n basic NI models.

After that, the potential score for SM-miRNA associations was derived by integrating n
basic NI models as follows.

Then, we integrated ns basic models to predict potential SMs-miRNA associations score
by using average strategy, which can be described as follows:

M_ISMS=
∑n

k=1 score
S_k

n
(4)

where n denotes the number of basic NI models, scoreS_k denotes predicted SM-miRNA
associations score based on the k− th threshold and M_ISMS is potential SM-miRNA
associations score based on integrated SM similarity.

Second, we built a NI model based on integrated miRNA similarity by using the method
above. For a miRNA mj,j=1,2,...,nm, its neighbors can be filtrated by using a threshold
σ based on integrated miRNA similarity and set of neighbors can be was defined as
Mj |IMSt ,j > σ,t 6= j. On the basis of the set of neighbors above, potential association
score scoreMi,j between SM si and miRNA mj was obtained through computing the sum of
associations between SM si and neighbors of miRNA mj as Eq. (5).

scoreMi,j =

∑ns
i=1
∑nm

j=1,t 6=i,IMSt ,j≥σ Ai,t × IMSt ,j∑ns
i=1
∑nm

j=1,t 6=j,IMSt ,j≥σ IMSt ,j
(5)

where ns represents number of SM, nm represents number of miRNA, Ai,m denotes the
entry between SM si and miRNA mm in SM-miRNA association matrix A. The IMSt ,j
represents integrated miRNA similarity between miRNA mt and miRNA mj .

To mitigate bias stemming from neighbor selection, we employed several distinct
thresholds to construct multiple basic NI models. Next, we combined the multiple basic
NI models to generate score for potential SM-miRNA associations, as outlined below.

M_IMS=
∑n

k=1 score
M_k

n
(6)

where n denotes the number of basic NI models, scoreM_k denotes predicted SM-miRNA
associations score based on k− th threshold and M_IMS denotes potential SM-miRNA
associations score based on integrated miRNA similarity.

Finally, the potential SM-miRNA association score SNI was acquired by integrating NI
models based on integrated SM similarity and NI models based on integrated miRNA
similarity as follows.

SNI =
M_ISMS+M_IMS

2
(7)

Qu et al. (2023), PeerJ, DOI 10.7717/peerj.15889 7/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.15889


Figure 2 Structure diagram of RBM.
Full-size DOI: 10.7717/peerj.15889/fig-2

Restricted Boltzmann Machine (RBM)
RBM is probabilistic graphical model, also called stochastic neural network, can extract
useful features from input data (Fischer & Igel, 2012; Zhang et al., 2018). In the previous
decade, RBM has been extensively studied and employed inmany fields including quantum
physics (Melko et al., 2019), bioinformatics (Wang & Zeng, 2013) and text mining (Monti
et al., 2016). In this article, we used RMB as a based model to predict potential SM-miRNA
associations. As shown in Fig. 2, the RBM can be described as a two-layered neural network,
consisting of visible layers and hidden layers, each of which is made up of many nodes
(units). In an RBM, if we take into account the total number of nodes, there are nm in the
visible layer and s nodes in the hidden layer. We employed v= (vi,v2,...,vnm) to represent
set of visible layer nodes and used h= (h1,h2,...,hs) to represent set of hidden layer nodes.
As there are no connections within the visible or hidden layer, the energy function between
v and h can be expressed in the following manner.

E(v,h)=−
nm∑
i=1

bivi−
s∑

j=1

cjhj−
i=nm∑
i=1

s∑
j=1

wi,jvihj (8)

where nm represents number of visible layer nodes, s denotes number of visible layer nodes,
bi denotes bias of i− th visible layer node vi, cj denotes bias of j− th hidden layer node hj
and wij denotes the weight between vi and hj .
Based on Eq. (8), the potential association probability of v and h can be defined as follows.

P(v,h)==
1
Z
e−E(v,h) (9)

where Z =
∑

v,h−E(v,h) is called partition function.
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Then, we can obtain marginal distribution of visible layer nodes by following equation.

P(v)=
∑
h

P(v,h)=
1
Z

∑
h

e−E(v,h). (10)

Since distributions of nodes of visible or hidden layer are independent, their conditional
probabilities can be defined, respectively, as follows.

P(vi= 1|h)= σ

 s∑
j=1

wijhj+bi

 (11)

P(hj = 1|v)= σ

( nm∑
i=1

wijvi+ cj

)
(12)

where σ (x)= 1/(1+e−x) is the logistic function.
Based on a dataset containing known SM-miRNA associations between nm miRNAs

and ns SMs, an RBM is created for predicting potential SM-miRNA associations, with
nm nodes in the visible layer and s nodes in the hidden layer. Each SM is associated with
an observation smi = {Ai,1,Ai,2,...,Ai,nm}, which has a binary value indicating whether
the SM si is associated with nmmiRNAs. Based on known SM-miRNA association matrix
A∈Rns×nm, we can obtain ns observations with nm dimension. The observation of an SM
would be utilized as input for the RBM when predicting new miRNAs for it. Then, the
prediction is implemented as two steps below.

Pj = P(hj = 1|Ai,1,Ai,2,...,Ai,nm)= σ

( nm∑
t=1

wijAi,t + cj

)
,j = 1,2,...,s (13)

SiRBM = P(vi|P1,P2,...,Ps)= σ

 s∑
j=1

wijPi+bi

,i= 1,2,...,nm (14)

where σ (x)= 1/(1+ e−x) is the logistic function. SiRBM is predicted score between SM si
and nm miRNAs. Finally, we obtained the potential SM-miRNA association scores and
defined SRBM to save scores as follows:

SRBM = S1RBM ,S
2
RBM ,...,S

ns
RBM (15)

Ensemble learning
Because single predictor usually has poor generalization performances, ensemble learning
is frequently used to combine multiple weak predictors and improve generalization
performance.Dong et al. (2020). In the past decades, ensemble learning as one research hot
spot have been studied and employed in many fields including data stream classification
(Gomes et al., 2017), statistical mechanics (Krogh & Sollich, 1997), sentiment classification
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(Wang et al., 2014) and bioinformatics (Chen, Zhou & Zhao, 2018). Furthermore, NI and
RBM were employed as individual base predictors for ensemble learning to increase the
precision of predictions of potential SM-miRNA associations. To ensure the predicted
score in range of 0 to 1, we normalized predicted scores of NI and RBM as follows:

S1=
(tanh(0.1× ( SNI−µ1

σ1
))+1)

2
(16)

S2=
(tanh(0.1× ( SRBM−µ2

σ2
))+1)

2
(17)

where µ1 and σ1 refer to the mean and the standard deviation of the scores acquired by
the NI. Likewise, µ2 and σ2 represent the mean and the standard deviation of the scores
achieved by the RBM. After that, we used average strategy to integrate NI and RBM as
follows:

S= 0.5×S1+0.5×S2 (18)

where S is final predicted SM-miRNA association score matrix.

RESULTS
Performance evaluation
We utilized global LOOCV, miRNA-fixed local LOOCV and SM-fixed local LOOCV as
well as five-fold cross validation to evaluate the predictive ability of NIRBMSMMA by
using two datasets based on SM2miR database (Liu et al., 2013). Dataset 1 contains 644
known SM-miRNA associations between 831 SMs and 541 miRNAs. After removing SMs
(miRNAs) that have any no known related miRNAs (SMs) in dataset 1, we constructed
dataset 2 with 644 known SM-miRNA associations between 39 SMs and 286 miRNAs.

In the LOOCV, each known SM-miRNA association was taken as a test sample in
rotation, while the other 633 known SM-miRNA associations were employed as training
samples. All unknown SM-miRNA pairs were considered as potential candidate samples.
After that, we employed the training samples to train NIRBMSMMA and applied trained
NIRBMSMMA to predict scores of test sample and candidate samples. In global LOOCV,
we ranked score of test sample according to the scores of all candidate samples. In the
SM-fixed LOOCV, based on predicted scores, we sorted test sample with candidate
samples that involved fixed SMs. Similarly, in the miRNA-fixed LOOCV, we compared
score of test sample with scores of candidate samples that contained fixed miRNAs. Next,
the receiver operating characteristics (ROC) curves (AUCs) were plotted by using true
positive rate (TPR, sensitivity) as abscissa axis and false positive rate (FPR, 1-specificity)
as ordinate axis based on different thresholds. TPR denotes the percentage of candidate
samples whose ranking over given threshold, while FPR is the portion of candidate samples
with lower rankings than the given threshold. Then, AUCs were computed to compare the
performance of NIRBMSMMAwith four classic prediction models of TLHNSMMA (Qu et
al., 2018), SMiR-NBI (Li et al., 2016), GISMMA (Guan et al., 2018) and SLHGISMMA (Yin
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Figure 3 Performance comparison between NIRBMSMMA and four previous SM-miRNA association
models in terms of ROC curves and AUCs based on global and local LOOCV.

Full-size DOI: 10.7717/peerj.15889/fig-3

et al., 2019). If the value of AUC is equals to 1, it means that NIRBMSMMA has a perfect
prediction ability. If the value of AUC is 0.5, it means that prediction of NIRBMSMMA is
random. As a result, in global LOOCV, the performance comparisons with some classical
algorithms showed that NIRBMSMMA achieved an AUC of 0.9912 and is obviously better
than TLHNSMMA (0.9859), SMiR-NBI (0.8843), GISMMA (0.9291), SLHGISMMA
(0.9273) based on datasets 1, which was shown in Fig. 3. NIRBMSMMA achieved an
AUC of 0.8645 and is obviously better than TLHNSMMA (0.8149), SMiR-NBI (0.7264),
GISMMA (0.8203) and SLHGISMMA (0.7897) based on dataset 2 shown in Fig. 3. In
the miRNA-fixed local LOOCV, NIRBMSMMA derived an outstanding performance with
AUCs of 0.9875, which is better thanTLHNSMMA(0.9845), SMiR-NBI (0.8837), GISMMA
(0.9505) and SLHGISMMA (0.9553) based on datasets 1 shown in Fig. 4. NIRBMSMMA
derived AUC of 0.8720, which is better than TLHNSMMA (0.8244), SMiR-NBI (0.7846),
GISMMA (0.8203) and SLHGISMMA (0.8106) based on dataset 2 shown in Fig. 4. In
the SM-fixed local LOOCV, NIRBMSMMA gained AUCs of 0.8394, which is better
than TLHNSMMA (0.7645), SMiR-NBI (0.7497), GISMMA (0.7702) and SLHGISMMA
(0.7702) based on dataset 1 shown in Fig. 5. In the SM-fixed local LOOCV, NIRBMSMMA
gained AUCs of 0.7066, the AUCs of other comparison algorithms were TLHNSMMA
(0.6057), SMiR-NBI (0.6100), GISMMA (0.6591) and SLHGISMMA (0.6565) based on
dataset 2 shown in Fig. 5.

We further employed five-fold cross validation to evaluate the performance of the
model. In the five-fold cross validation, 664 known SM-miRNA associations were randomly
divided into five portions where four portions contain 133 known SM-miRNA associations,
respectively, remaining portion contains 132 known SM-miRNA associations. Each portion
was used as test sample in turn and remaining four portions were employed as training
samples. Similarly, all unknown SM-miRNA pairs were considered as candidate samples.
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Figure 4 Performance comparison between NIRBMSMMA and four previous SM-miRNA association
models in terms of ROC curves and AUCs based miRNA-fixed LOOCV.

Full-size DOI: 10.7717/peerj.15889/fig-4

Figure 5 Performance comparison between NIRBMSMMA and four previous SM-miRNA association
models in terms of ROC curves and AUCs based on SM-fixed LOOCV.

Full-size DOI: 10.7717/peerj.15889/fig-5

Additionally, we utilized the training samples to train NIRBMSMMA and applied trained
NIRBMSMMA to predict scores of test sample and candidate samples. It’s worth noting
that we repeated the five-fold cross-validation process 100 times to avoid bias from
the sample division. Consequently, during the five-fold cross-validation process, the
AUCs and standard deviations of NIRBMSMMA is 0.9898 ± 0.0009, which is better
than TLHNSMMA (0.9851 ± 0.0012), SMiR-NBI (0.8554 ± 0.0063), GISMMA (0.9263
± 0.0026), SLHGISMMA (0.9446 ± 0.0036) based on dataset 1. Simultaneously, the
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AUCs and standard deviations of NIRBMSMMA is 0.8547 ± 0.0046, which is better
than TLHNSMMA (0.8168 ± 0.0022), SMiR-NBI (0.7104 ± 0.0087), GISMMA (0.8088
± 0.0044), SLHGISMMA (0.7276 ± 0.0045) based on dataset 2.

Dataset 1 and dataset 2 contain the same information of 664 known SM-miRNA
associations. The results showed that NIRBMSMMA have better performance in dataset 1
than dataset 2 based on cross validation. The reason is that datasets 1 and dataset 2 have
the same positive samples (divided into training and testing samples), but compared to
dataset 2, dataset 1 has more candidate samples. Candidate samples in dataset 1 contain
more SMs/miRNAs that have any no known associations with miRNAs/SMs. Therefore,
the predicted scores of candidate samples in dataset 1 are relatively low compared to the test
samples, resulting in higher AUC values based on dataset 1 than dataset 2. Unsurprisingly,
adding more known SM-miRNA associations to the dataset 1 is expected to improve the
accuracy of NIRBMSMA.

In addition, we further collected 130 known SM-miRNA associations by searching
the latest references. Subsequently, the collected dataset was integrated into dataset 1 to
build a new dataset of dataset 3. Therefore, dataset 3 contains 794 known SM-miRNA
associations between 831 SMs and 531 miRNAs. To evaluate whether the proposed
model is applicable to the new dataset, we further implemented LOOCV and 5-fold cross
validation based on the new built dataset 3 that was constructed according to dataset
1 and latest references. The results showed that in the global LOOCV, NIRBMSMMA
obtained AUC of 0.9884, which is better than TLHNSMMA (0.9831), SMiR-NBI (0.8994),
GISMMA (0.9228) and SLHGISMMA (0.9150) shown in Fig. 3. In the miRNA-fixed local
LOOCV, NIRBMSMMA and TLHNSMMA derived AUC of 0.9802 0.9814 respectively,
which is better than SMiR-NBI (0.8984), GISMMA (0.9338) and SLHGISMMA (0.8594)
shown in Fig. 4. In the SM-fixed local LOOCV, NIRBMSMMA gained AUC of 0.8239,
which is better than TLHNSMMA (0.7600), SMiR-NBI (0.7568), GISMMA (0.7700) and
SLHGISMMA (0.7664) shown in Fig. 5. In the five-fold cross validation, 794 known
SM-miRNA associations were randomly divided into five portions where four portions
contain 159 known SM-miRNA associations respectively, remaining portion contains 158
known SM-miRNA associations. Similarity, during the five-fold cross-validation process,
the AUCs and standard deviations of NIRBMSMMA is 0.9870 ± 0.0015, which is better
than TLHNSMMA (0.9818 ± 0.0016), SMiR-NBI (0.8720 ± 0.0066), GISMMA (0.9185
± 0034), SLHGISMMA (0.8013 ± 0.1151).

Discussing parameters of model
In the NIRBMMMA, there are some parameters, including threshold σupper used in NI,
play a crucial role in predictive performance and needed to be determined. According to
previous work (Zhang et al., 2016), we tested 10 different values of σupper ranging from 0.05
to 0.5 with step 0.05 and computed corresponding 10 AUPR values by employing five-fold
cross validation on the training samples. Subsequently, the value of σupper that produced
the highest AUPR value was selected and adopted as the optimal parameter to identify new
SM-miRNA associations on the basis of test sample.
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Likewise, for parameter of number of hidden layer node s used in RBM, we tested 11
candidate values in the range 20 to 120 with step 10, calculated corresponding 11 AUPR
values and used S with the best AUPR value to implement prediction. Besides, visible layer
node bias bi, hidden layer node bias cj as well as weight wij between i− th visible layer node
vi and j− th hidden layer node hj also play important roles in RBM. We used contrastive
divergence (CD) algorithm (Hinton, 2002) to determined bi, cj and wij based on training
temples.

Case studies
To further evaluate prediction performance of NIRBMSMMA, we implemented two
different types of case studies. For the first type of case studies, we used NIRBMSMMA
to predict potential association scores for all unknown SM-miRNA pairs. Then, based on
predicted scores, we sorted predicted SM-miRNA associations in descending order and
confirmed the top 50 predicted SM-miRNA associations by searching the published
literature on PubMed. As a result, five (10) out of the top 20 (50) potential SM-
miRNA associations were confirmed (see Table 1). For example, the association between
gemcitabine and mir-24-2 was predicted and ranked third. An experiment implemented
by Pandita et al. (2015) indicated that mir-24-2 overexpression cells reduced 37%–50%
activity when these cells were treated by using gemcitabine with lower than IC50 dose.
The association between mir-203a and 5-aza-2′-deoxycytidine ranked the fifth according
to predicted scores. Liu et al. (2016) found that mir-203a expression increased when
using 5-aza-2′-deoxycytidine to treat esophageal cancer cells. The association between
5-Fluorouracil (5-FU) and let-7c ranked the tenth according to predicted scores. Peng et
al. (2015)found that overexpression of let-7c reduce Akt2 expression and under expression
of Akt2 can enhance the sensitivity of renal cell to 5-Fluorouracil.

Also, to assess ability of NIRBMSMMA to predict potential miRNAs for new SM that
without any known associated miRNA, based on dataset 1, we conducted the second
type of case study on the two investigated SMs of 5-FU and Gemcitabine. First, for an
investigated SM, we removed all known associated miRNAs for the investigated SM and
used NIRBMSMMA to predict potential miRNAs for the investigated SM. After that, we
ranked the top 50 predicted associations between investigated SM and miRNAs according
to predicted scores.

5-FU is a kind of chemotherapeutical drug that can prevent cell proliferation by inhibiting
enzyme thymidylate synthase and has been used to treat several cancers including head-
and-neck (H&N), colorectal and breast (Goirand et al., 2018; Tozer et al., 2019;Wigmore et
al., 2010). After implementing NIRBMSMMA, we acquired miRNAs that are potentially
associated with 5-FU. Then, we sorted potential associations between 5-FU and miRNAs
in descending order and confirmed the top 50 potential associations by using SM2miR
database and searching the published literature on PubMed. Particularly, in Tables 2 and 3,
we employed PubMed ID 26198104 to denote SM2miR database. As a result, 13 (32) out of
the top 20 (50) potential miRNAs correlated with 5-FU were confirmed (see Table 2). For
example, the mir-874 was predicted to be associated with 5-FU and the associations ranked
the ninth. Han et al. (2016) found that mir-874 decrease the resistance of colorectal cancer
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Table 1 Result of the top 50 predicted SM-miRNA associations based on dataset 1.

SM miRNA Evidence SM miRNA Evidence

CID:3385 hsa-mir-1322 Unconfirmed CID:60750 hsa-mir-1-1 Unconfirmed
CID:451668 hsa-mir-18a Unconfirmed CID:3229 hsa-let-7g Unconfirmed
CID:60750 hsa-mir-24-2 25841339 CID:451668 hsa-mir-143 Unconfirmed
CID:451668 hsa-mir-19b-1 Unconfirmed CID:60750 hsa-let-7a-3 Unconfirmed
CID:451668 hsa-mir-203a 26577858 CID:5311 hsa-mir-944 Unconfirmed
CID:60750 hsa-mir-133a-2 Unconfirmed CID:60750 hsa-let-7e 19654291
CID:60750 hsa-mir-16-2 Unconfirmed CID:60750 hsa-let-7f-1 Unconfirmed
CID:3385 hsa-let-7i Unconfirmed CID:451668 hsa-let-7b 26708866
CID:60750 hsa-mir-26a-2 Unconfirmed CID:448537 hsa-mir-21 28265775
CID:3385 hsa-let-7c 25951903 CID:451668 hsa-let-7d 26802971
CID:3385 hsa-let-7b 25789066 CID:3385 hsa-mir-221 27501171
CID:3229 hsa-mir-29a Unconfirmed CID:3385 hsa-mir-26a-1 Unconfirmed
CID:3385 hsa-mir-302e Unconfirmed CID:451668 hsa-mir-29c Unconfirmed
CID:5757 hsa-mir-141 Unconfirmed CID:5311 hsa-mir-1229 Unconfirmed
CID:3385 hsa-mir-200a Unconfirmed CID:3229 hsa-mir-27a Unconfirmed
CID:60750 hsa-mir-199a-1 Unconfirmed CID:3385 hsa-mir-194-1 Unconfirmed
CID:5311 hsa-mir-30c-2 Unconfirmed CID:60750 hsa-mir-194-2 Unconfirmed
CID:3385 hsa-mir-126 26062749 CID:451668 hsa-mir-106a Unconfirmed
CID:448537 hsa-mir-92a-2 Unconfirmed CID:3385 hsa-mir-324 Unconfirmed
CID:60750 hsa-mir-23a Unconfirmed CID:451668 hsa-let-7a-1 Unconfirmed
CID:448537 hsa-mir-181a-2 Unconfirmed CID:448537 hsa-mir-605 Unconfirmed
CID:60750 hsa-let-7a-2 Unconfirmed CID:3385 hsa-mir-19b-1 Unconfirmed
CID:5311 hsa-mir-24-2 Unconfirmed CID:448537 hsa-mir-662 Unconfirmed
CID:448537 hsa-mir-27a Unconfirmed CID:60750 hsa-let-7g Unconfirmed
CID:3385 hsa-mir-181a-1 Unconfirmed CID:451668 hsa-mir-132 Unconfirmed

cells to 5-FU and inhibit proliferation of colorectal cancer cells. The mir-455 was predicted
to associate with 5-FU and the association ranked the tenth. An experiment conducted
by Hummel et al. (2011) showed that the expression level of mir-455-3p was decreased
after treatment of 5-FU by using TargetScan and bioinformatic analysis. The associations
between mir-299 and 5-FU ranked the thirty-fourth according to predicted score. Chen,
Lu & Hu (2019) found that mir-299 overexpression can increase sensibility of Hexokinase
1 (HK1) cells to 5-FU and further decrease invasion ability of HK1 cells.

Gemcitabine, a pyrimidine nucleoside analog anticancer drug, has potent activity
for a wide spectrum of solid tumors (Miao, Chen & Luan, 2020; Mini et al., 2006;
Rizzuto, Ghazaly & Peters, 2017). After implemented NIRBMSMMA, we gained potential
Gemcitabine-miRNA associations score. After that, we sorted potential Gemcitabine-
miRNA associations in descending order and confirmed the top 50 potential associations
by searching the published literature on PubMed. Result showed that 11 (32) out of the top
20 (50) potential miRNAs associated with Gemcitabine were confirmed (see Table 3). For
example, the mir-17 was predicted to be associated with gemcitabine and the association
ranked the twelfth. Yan et al. (2012) found that mir-17-5p inhibitor can enhance sensitivity
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Table 2 Result of the top 50 predicted miRNAs associated with 5-fluorouracil based on dataset 1.

miRNA Evidence miRNA Evidence

hsa-mir-324 Unconfirmed hsa-let-7c 25951903
hsa-mir-24-1 26198104 hsa-mir-320a 26198104
hsa-mir-23a 26198104 hsa-mir-345 Unconfirmed
hsa-mir-501 26198104 hsa-mir-155 28347920
hsa-mir-1226 26198104 hsa-mir-194-1 Unconfirmed
hsa-mir-24-2 26198104 hsa-mir-337 Unconfirmed
hsa-mir-650 Unconfirmed hsa-mir-212 Unconfirmed
hsa-mir-500a Unconfirmed hsa-mir-205 24396484
hsa-mir-874 27221209 hsa-mir-299 31786874
hsa-mir-455 21743970 hsa-mir-128-2 26198104
hsa-mir-27a 26198104 hsa-mir-197 26198104
hsa-mir-21 26198104 hsa-mir-128-1 26198104
hsa-mir-181a-1 29795190 hsa-mir-199a-2 26198104
hsa-let-7a-1 26198104 hsa-mir-132 26198104
hsa-mir-328 Unconfirmed hsa-mir-373 32426273
hsa-let-7b 25789066 hsa-mir-139 27173050
hsa-mir-181a-2 24462870 hsa-mir-129-2 Unconfirmed
hsa-mir-26a-1 Unconfirmed hsa-mir-1-2 Unconfirmed
hsa-mir-346 Unconfirmed hsa-mir-329-1 Unconfirmed
hsa-mir-181b-1 unconfirmed hsa-mir-149 26198104
hsa-let-7d 26198104 hsa-mir-342 26198104
hsa-mir-181b-2 unconfirmed hsa-mir-211 28720546
hsa-mir-16-1 26198104 hsa-mir-187 Unconfirmed
hsa-mir-133a-1 26198104 hsa-mir-329-2 Unconfirmed
hsa-mir-409 Unconfirmed hsa-mir-326 26239225

of pancreatic cancer cells to gemcitabine by upregulating Bim protein expression. Mir-27b
was also predicted to associate with gemcitabine. A study implemented by Bera et al. (2014)
demonstrated that the expression level of mir-27b is significantly decreased in gemcitabine
resistant pancreatic ductal adenocarcinoma cells by testing with quantitative polymerase
chain reaction (qPCR) analysis. Moreover, themir-125a was predicted to be associated with
gemcitabine and the association ranked twenty-third. Yao et al. (2016) found that mir-125a
can enhance chemo-resistance of pancreatic cancer cells to gemcitabine via targeting A20
gene.

Our main research interest is in computational bioinformatics. Therefore, we usually
confirmed the predicted results presented in case study by databases and published
literatures. For some predicted association information that is not validated by any study,
we hope the predicted associations can be further confirmed by biologist based on biological
experiments in the future.
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Table 3 Result of the top 50 predicted miRNAs associated with gemcitabine based on dataset 1.

miRNA Evidence miRNA Evidence

hsa-mir-24-1 26198104 hsa-mir-320a 26198104
hsa-mir-24-2 25841339 hsa-mir-23b Unconfirmed
hsa-mir-23a Unconfirmed hsa-mir-18a Unconfirmed
hsa-mir-501 Unconfirmed hsa-mir-93 34162560
hsa-mir-1226 Unconfirmed hsa-mir-25 24040438
hsa-mir-324 26198104 hsa-mir-15a 31846800
hsa-mir-874 Unconfirmed hsa-mir-182 25833690
hsa-mir-650 Unconfirmed hsa-mir-191 Unconfirmed
hsa-mir-500a Unconfirmed hsa-let-7f-1 Unconfirmed
hsa-mir-455 Unconfirmed hsa-mir-106b 31374207
hsa-mir-19a 26041879 hsa-mir-210 31713003
hsa-mir-17 23001407 hsa-mir-203a Unconfirmed
hsa-mir-20a 24924176 hsa-let-7a-1 26198104
hsa-mir-125b-1 Unconfirmed hsa-let-7a-3 Unconfirmed
hsa-mir-125b-2 Unconfirmed hsa-mir-663a 30788003
hsa-mir-27b 25184537 hsa-mir-145 28839463
hsa-mir-21 26198104 hsa-let-7a-2 Unconfirmed
hsa-mir-27a 26198104 hsa-mir-200c 19654291
hsa-mir-638 23293055 hsa-mir-222 28743280
hsa-mir-31 26606261 hsa-let-7e 19654291
hsa-mir-16-2 Unconfirmed hsa-mir-200b 30628651
hsa-mir-16-1 26198104 hsa-mir-141 33468723
hsa-mir-125a 26758190 hsa-mir-30a 30770779
hsa-let-7g Unconfirmed hsa-mir-15b 26166038
hsa-mir-29a 26198104 hsa-mir-128-1 26198104

DISCUSSION
Traditional wet experimentmethods are time-consuming and labor-intensive in identifying
potential SM-miRNAs associations. The computational approaches can overcome
disadvantages above. In this article, we developed a computational model of NIRBMSMMA
to identify potential SM-MiRNA associations by employing ensemble learning to integrate
NI and RBM. Moreover, LOOCV, five-fold cross validation, and two types of case studies
indicated that NIRBMSMMA has outstanding prediction ability and stable prediction
performance.

The effectiveness of NIRBMSMMA mainly comes from the following factors. First, the
NIRBMSMMA integrated two methods of NI and RBM. NI can fully utilize similarity
information to filtrate neighbors of SM or miRNA with different thresholds for predicting
potential SM-miRNA associations, while RBM can learn hidden probability distribution
from known SM-miRNA associations to identify new SM-miRNA associations. Second,
ensemble learning was used to integrate NI and RBM to overcome the problem of poor
normalization ability of individual predictor for obtaining better predicted performance.
Third, in the NIRBMSMMA, we used multiple highly reliable biological data including
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known SM-miRNA associations, four different types of SM similarity data and two different
types of miRNA similarity data, which can improve the prediction accuracy of the model
compared with using a kind of similarity data.

However, there are also some drawbacks for NIRBMSMMA. First, the known SM-
miRNA associations are few compared to the unknown SM-miRNA pairs, which limits the
predictive performance of our model. Second, it is possible that the two base predictors
utilized in the ensemble learning may not be sufficient, and additional, more dependable
base predictors may lead to even better performance of the NIRBMSMMA.

CONCLUSIONS
In this article, a novel computational model of NIRBMSMMA was proposed to identify
potential small molecule-MiRNA associations based on known SM-miRNA associations,
SM similarity and miRNA similarity by integrating NI and RBM. We also implemented
four different types of cross validation and case studies to evaluate the performance of
NIRBMSMMA. The results demonstrated that the performance of NIRBMSMMA is
efficient in the identification of potential molecule-MiRNA associations prediction.
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