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ABSTRACT
Background. Automatic cell type identification has been an urgent task for the rapid
development of single-cell RNA-seq techniques. Generally, the current approach for
cell type identification is to generate cell clusters by unsupervised clustering and later
assign labels to each cell cluster with manual annotation.
Methods. Here, we introduce LIDER (celL embeddIng based Deep nEural netwoRk
classifier), a deep supervised learning method that combines cell embedding and deep
neural network classifier for automatic cell type identification. Based on a stacked
denoising autoencoderwith a tailored and reconstructed loss function, LIDER identifies
cell embedding and predicts cell types with a deep neural network classifier. LIDER was
developed upon a stacked denoising autoencoder to learn encoder-decoder structures
for identifying cell embedding.
Results. LIDER accurately identifies cell types by using stacked denoising autoencoder.
Benchmarking against state-of-the-art methods across eight types of single-cell data,
LIDER achieves comparable or even superior enhancement performance. Moreover,
LIDER suggests comparable robust to batch effects. Our results show a potential in
deep supervised learning for automatic cell type identification of single-cell RNA-seq
data. The LIDER codes are available at https://github.com/ShiMGLab/LIDER.

Subjects Bioinformatics, Cell Biology, Computational Biology
Keywords Cell embedding, Stacked denoising autoencoders, Deep neural network classifier,
Cell type identification

INTRODUCTION
Recent advances in single-cell RNA sequencing (scRNA-seq) techniques provide an
avenue for the revolutionized studies of cellular differentiation (Rizvi et al., 2017), cellular
plasticity (Rohlenova et al., 2020) and cellular heterogeneity (Buettner et al., 2015). A
major drawback in analyzing scRNA-seq data is batch effect, transcriptional noise, variable
sensitivity and lacking in biological explanation (Lopez et al., 2018). Although scRNA-seq
techniques have been made great progress, automated identification of cell types remains
a bottleneck in experimental analysis of scRNA-seq data. Currently, methods to identify
cell types usually have generated cell clusters by unsupervised clustering and then assigned
labels to each cluster based on manual annotation, but these approaches are generally
tedious and time-consuming. Moreover, since clustering is typically unsupervised learning,
there is no guarantee that the resulting clusters are biologically meaningful, and manual
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annotation-based methods are usually difficult if the researcher does not have sufficient
background knowledge to find the best match between the marker genes associated with
each cluster and a specific cell type.

A number of computational methods have been developed for scRNA-seq data
including the identification of cell types (Shekhar et al., 2016), the discovery of single-cell
regulatory networks (Aibar et al., 2017), the construction of cell lineages from single-cell
transcriptomes (Chen, Rénia & Ginhoux, 2018), the combinatorial prediction of marker
panels from single-cell transcriptomic data (Delaney et al., 2019), the prediction of single-
cell perturbation responses from single-cell gene expression data (Lotfollahi, Wolf & Theis,
2019), and the identification of axes of variation amongmulticellular biospecimens profiled
at single-cell resolution (Chen et al., 2020b). These findings also face a variety of challenges
due to high-dimensional scRNA profiles. Firstly, single-cell transcriptomics is easily
influenced by extreme noise and dropout events. Secondly, computational memory may
render these proposed methods poorly scalable for massive single-cell RNA-sequencing
data. Several supervised learning methods have been proposed to tackle the challenges
in scRNA-seq analysis. ACTINN automatically identify cell types with a neural network
in single cell RNA sequencing (Ma & Pellegrini, 2020). SingleCellNet was proposed to
classify single cell RNA-seq data across platforms and across species (Tan & Cahan,
2019). A hierarchical machine learning framework Moana was developed to enable the
construction of robust cell type classifiers from heterogeneous scRNA-Seq dataset (Wagner
& Yanai, 2018). Although these developed approaches show great potential in improving
the predicted performance, their performance mainly depend on the chosen reference
dataset, the prioritized predictive features and the developed predictive model.

Various deep learning methods have been proposed to present a scalable deep-
learning-based approach scScope for the analysis of cell-type composition from single-cell
transcriptomics (Deng et al., 2019), develop a self-configuring method nnU-Net for deep
learning-based biomedical image segmentation (Isensee et al., 2021), predict drug efficacy
from transcriptional profiles by a deep learning–based efficacy prediction system called
DLEPS (Zhu et al., 2021), construct chromatin interaction neural network ChINN to
predict chromatin interactions from DNA sequences (Cao et al., 2021), and accurately
identify SNPs and indels in difficult-to-map regions from long-read sequencing by
haplotype-aware deep neural networks called NanoCaller (Ahsan et al., 2021). Deep
learning identifies complex structure in large data sets by using the backpropagation
algorithm which aims to indicate how amachine should change its internal parameters that
are used to compute the representation in each layer from the representation in the previous
layer (LeCun, Bengio & Hinton, 2015). It also indicates how a machine should change its
internal parameters that are used to discover the representation in each layer from the
representation in the previous layer. Also, deep learningmodels based dimension reduction
scVI (Lopez et al., 2018), DCA (Eraslan et al., 2019), and scVAE (Grønbech et al., 2020)
usually compress high-dimensional single-cell data to a low-dimensional hidden space and
then reconstruct it by using artificial neural networks.

Inspired by the above viewpoints, we propose LIDER, a joint cell embedding and deep
neural network classifier for accurately identifying cell types of scRNA-seq data. LIDER

Tang et al. (2023), PeerJ, DOI 10.7717/peerj.15862 2/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.15862


is developed upon a stacked denoising autoencoder by leveraging the expressions of
scRNA-seq data. With the learned cell embeddings, LIDER predicts cell types by building
a multi-class scRNA-seq classifier. We make a comprehensive evaluation by the proposed
deep supervised learning approach for cell type identification. Benchmarked against
state-of-the-art methods across eight types of single-cell data, LIDER achieves comparable
or even superior enhancement performance and thus shows great potential in cell type
identification. LIDER fairly removes batch effects from single-cell datasets introduced
by different techniques. This deep supervised learning method will help overcome the
technical hurdles and better identify the identity of each cell for single-cell transcriptomic
data. Specifically, LIDER is developed upon a stacked denoising autoencoder to learn
encoder–decoder structures for identifying cell embedding. LIDER is a deep supervised
method to accurately predict cell types with a deep neural network classifier.

MATERIALS & METHODS
Datasets
Table 1 illustrated the distribution of cell types from single-cell RNA sequencing datasets
for model evaluation of LIDER. We downloaded the gene expression matrix and cell
type annotation of mouse cortical data from the Heisberg Group scRNA-seq dataset
(https://hemberg-lab.github.io/scRNA.seq.datasets/) (Zeisel et al., 2015), those of pancreatic
islets dataset fromArrayExpress (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-
5061/) (Segerstolpe et al., 2016), those from GSE71585 (Tasic et al., 2018), those of a
PBMC dataset (https://support.10xgenomics.com/single-cell-gene-expression/datasets/
2.1.0/pbmc4k) (Zheng et al., 2017), those of a human liver dataset from GSE115469
(MacParland et al., 2018), those from GSE36552 (Yan et al., 2013), those of a mouse
bladder cell dataset from the Mouse Cell Atlas project (Han et al., 2018), those of colorectal
cancer (CRC) from GSE81861 (Li et al., 2017), those of peripheral bipolar cell from
GSE118480 (Peng et al., 2019). The mouse cell atlas datasets Tabula Muris were collected
from https://tabula-muris.ds.czbiohub.org. We performed the Z -score transformation
f = f−E(f )

Std(f ) to standardize the gene expression values of each cell for each dataset, where f
represented the expression value of each gene, E(f ) denoted the mean of each f , and Std(f )
represented the standard deviation of each f respectively. This process made the expression
levels comparable across genes.

Overview of LIDER development and evaluation workflow
Figure 1 illustrates the overview of the supervised cell type identification for single-cell
transcriptomic data. LIDER aims to improve the cell type identification of single cell
data by using a combination of stacked denoising autoencoder and deep neural network
classifier. The cell embeddings based on stacked denoising autoencoders are used for
developing deep neural network classifier (Fig. 1A). The low-dimensional representation
by training the first level denoising autoencoders (DAE1) is utilized to train the second
level denoising autoencoders (DAE2) and this process is repeated with several times to
develop finally stacked denoising autoencoders (SDAE) (Fig. 1B). The process of LIDER
for cell type identification could be divided into three main steps: (i) the standardized
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Table 1 A summary of single-cell RNA sequencing datasets used for the development and validation of LIDER.

Dataset Number of
cells

Number of
genes

Numbei of
cell types

Sequencing
platform

Reference

Zeisel 3005 19972 9 Illumina HiSeq Zeisel et al. (2015)
Segerstolpe 3514 26271 15 Smart-Seq2 Segerstolpe et al. (2016)
Tasic 1474 24057 8 Illumina HiSeq Tasic et al. (2018)
PBMC 4340 33694 8 10X Zheng et al. (2017)
Macparland 8444 20007 11 Illumina HiSeq MacParland et al. (2018)
Yan 90 20214 7 Drop-seq Yan et al. (2013)
Mouse 2100 20670 16 Microwell-seq Han et al. (2018)
CRC 363 17267 6 Illumina HiSeq Li et al. (2017)
Macaque 30302 36162 12 Drop-seq Peng et al. (2019)
Tabula Muris (10X) 35166 19371 12 10X /
Tabula Muris (SS2) 20946 22995 12 Smart-Seq2 /

Figure 1 Building a multi-class scRNA-seq classifier with stacked denoising autoencoder and deep
neural network classifier. (A) ScRNA-seq data are collected and z-score transformed. LIDER generates
cell embeddings using stacked denoising autoencoder. A deep neural network classifier is then developed
by using Adam algorithm for classification tasks. Finally, the cell types are identified by the developed
multi-class scRNA-seq classifier. (B) The development of stacked denoising autoencoders. After training
the first level denoising autoencoders (DAE1), the obtained representation is used to train the second level
denoising autoencoders (DAE2). Stacked denoising autoencoders (SDAE) are usually developed by mul-
tiple stacking layers of denoising autoencoders. DAE represents denoising autoencoder and SDAE repre-
sents stacked denoising autoencoder respectively.

Full-size DOI: 10.7717/peerj.15862/fig-1

single-cell transcriptomic data is used as an input of stacked denoising autoencoders; (ii)
the stacked denoising autoencoders for identifying cell embedding; (iii) the development
of deep neural network classifier based on a parameter optimization algorithm Adam.
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Stacked denoising autoencoder for identifying cell embedding
Denoising autoencoder was developed to learn a robust representation for partial
corruption of the input pattern (Vincent et al., 2008). In this analysis, we used denoising
autoencoder as feature selectionmethod for identifying the low-dimensional representation
called cell embedding. For a given single-cell sample,XεRn×d represents the gene expression
matrix where n is the number of single cells and d is the number of the genes. The output
H (l) of encoding layer l is calculated as:

H (l)
=φ(W (l)

e H (l−1)
+b(l)e ) (1)

where φ is an activation function, W (l)
e is the weight matrix, b(l)e is bias parameters and

H (l−1) represents the output of encoding layer (l−1) respectively. Specifically,H (0)=X+ε
where ε is a given type of noise. We randomly mask some observed input features to zeros
to develop the corrupted ones, and thus denoising autoencoders are supposed to learn
more robust representations.

The decoded layers could be defined as:

H (l)
=φ(W (l)

d H (l−1)
+b(l)d ) (2)

where φ is an activation function, W (l)
d is the weight matrix, b(l)d is bias parameters and

H (l−1) represents the output of decoding layer (l−1) respectively. The weight matrix and
bias parameters are optimized according to the following loss function

L=
1
n

n∑
i=1

d∑
j=1

(X ij−Xij)2 (3)

where X is the reconstructed data as the output of the last layer. As a loss function, we
use the mean squared error to implement the denoising autoencoder and optimize the
parameters.

Stacked denoising autoencoders are usually developed by multiple stacking layers
of denoising autoencoders. After training the first layer of denoising autoencoders, its
resulting representation is usually used to train denoising autoencoders of the second
level. This multi-layer cycle process develops stack multiple denoising autoencoders for
the task of layer-by-layer feature extraction, and eventually makes the features more
representative (Vincent et al., 2010). A stacked denoising autoencoder is used to learn
encoder–decoder structures for identifying cell embedding. The activation function
ReLU=max(0,x) is used for the encoder and decoder networks except for the bottleneck
layer and last decoder layer, in which we use tanh(x)= 1−e−2x

1+e−2x as the activation function.
The loss function of stacked denoising autoencoders is defined as the reconstruction loss
function Eq. (3) between the input data X and the output data X . After training each
layer by minimizing the reconstruction loss of each layer, all encoder layers are connected
with all decoder layers in reverse layer-by-layer training order, in which all parameters are
fine-tuned by minimizing the loss. After training the first level denoising autoencoders,
the obtained representation is used to train the second level denoising autoencoders. This
procedure could be repeated to develop stacked denoising autoencoders for learning and
stacking several layers. The embedded features were obtained from the representation HL

of stacked denoising autoencoders (Fig. 1B).
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Deep neural network classifier
Given

{
(xi,yi)

}n
i=1, {xi}

n
i=1 represents the embedded features for cell i and

{
yi
}n
i=1 indicates

a cell type label of each cell, where n is the number of single cells. A neural network
contains an input layer, two hidden layers and one output layer (Fig. 1A). The number of
nodes in the input layer is equal to the number of derived features from stacked denoising
autoencoder in a training set. The number of nodes in the output layer is equal to the
number of cell types of single-cell transcriptomic data. The neural network could be
described as follows (Chen et al., 2020a):

O1= sigmoid(W1X+b1) (4)

Om= sigmoid(WmOm−1+bm), 2≤m≤M (5)

y = softmax(Wm+1OM +bm+1) (6)

where X represents the output from stacked denoising autoencoders, Wm is the weight
matrix of the mth layer, bm is the bias vector of the mth layer, Om−1 is the output of the
(m −1)th layer, m represents the layer of a neural network and y is the output of the
classification layer. For the input and hidden layers, we use the sigmoid function as the
activation function, which is defined as follows:

sigmoid(x)=
1

1+e−x
(7)

For the output layer we use the softmax activation function, which is defined as follows:

softmax(xj)=
exp(xj)∑J
j=1exp(xj)

(8)

where J element indicates a total of J cell types in the training set. We define the cross-
entropy function as classification loss function measuring the discrepancy between the
predicted and true class label:

L=−
n∑

i=1

J∑
j=1

yji logy ji (9)

where yji is the true label of cell type for xi and y ji represents the probability of xi belongs
to the j th cell type. We utilize a multilayer neural network to identify cell types as a
supervised-learning problem, that is, to accurately predict the class labels of cell types.

Adam is a promising stochastic optimization algorithm for first-order gradient-
based optimization with stochastic objective functions. This approach is invariant to
diagonal rescaling of the gradients and computationally efficient with little memory
requirements (Kingma & Ba, 2014). In this analysis, we use the Adam algorithm to develop
deep neural network classifier. f (θ) is a stochastic objective function with respect to
parameters θ = (W ,b) and our aim is to minimize the expected value of the objective
function according to the cross-entropy function Eq. (9).
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Experimental setting and LIDER implementation
We implemented the stacked denoising autoencoders using Keras (https://github.com/
fchollet/keras) and the code was written in Python. For all single-cell datasets, the encoder
network of the stacked denoising autoencoders was set to size d-500-500-2000-1000 for the
fully connected multilayer perceptron (MLP) where d represents a number of genes from
single-cell transcriptomic data, while the decoder network was a MLP of size 1,000-2,000-
500-500-d. In this analysis, the neurons hold 500, 500, 2,000 and 1,000 for each layer in
the encoder network and 1,000, 2,000, 500 and 500 for each layer in the decoder network
respectively. In the process of pretraining stacked denoising autoencoders, the drop ratio for
constructing i th stacked denoising autoencoder was set to 0.2 where drop ratio represented
the proportion of random disconnection for dropout, and each denoising autoencoder was
trained for 200 epochs during the layer-by-layer pre-training period using the stochastic
gradient descent (SGD) algorithm. After pre-training stacked denoising autoencoders, we
then trained 400 epochs using the SGD algorithm for overall fine-tuning, and the learning
rate was set to 0.1 with decayed 10 times every 80 epochs. In this analysis, the selected
features of 1,000 dimension from single-cell data as low-dimensional representations were
derived to develop a classifier for identifying cell types.

The deep neural network classifier was implemented by Python using TensorFlow in
the process of model development (https://www.tensorflow.org). We designed a four-layer
neural network with the number of nodes in the input layer (1000), two hidden layers (528
and 256 respectively), and the number of nodes in the output layer according to the number
of categories of the single-dell data. We then set the learning rate to 1e−3, the training
period for supervised model initialization to 1200, and the batch size to 256 respectively.
Good default settings for the implementation of Adam algorithm are α= 0.001, β1= 0.9,
β2= 0.999 and ε= 10−8 respectively. In our analysis, we randomly divided the single-cell
transcriptomic data into training and test datasets, containing 80% and 20% of the samples
respectively. The deep neural network classifier was trained on the training set using the
optimal parameters, validated on the test dataset, and evaluated based on accuracy.

Baseline methods
We compared the performance of LIDER with five baseline methods, such as logistic
regression multiclassification algorithm (LR), Moana (Wagner & Yanai, 2018), Single-
CellNet (Tan & Cahan, 2019) and ACTINN (Ma & Pellegrini, 2020). Logistic regression
multiclassification algorithm (LR) is developed by Python for further comparison. L2
regularization is used in logistic regression modeling. An implementation of Moana is
made by Python and found at https://github.com/yanailab/moana. All codes about ACTINN
are implemented in Python and available at https://github.com/mafeiyang/ACTINN. The
SingleCellNet code by R is available from https://github.com/pcahan1/singleCellNet.

RESULTS
LIDER improves prediction performance for cell type identification
To test whether autoencoder based deep learning model could improve prediction
performance, we developed LIDER by training classifiers and assessing their performance
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Figure 2 Accuracy of validated test dataset from eight real single-cell transcriptomic datasets by us-
ing LIDER.We randomly divide the single-cell transcriptomic data into 80% training dataset and 20% test
dataset respectively. The deep neural network classifier is trained on the training set, validated on the test
dataset, and evaluated based on accuracy. Zeisel (0.965), Segerstolpe (0.895), Tasic (0.983), PBMC (0.865),
Macparland (0.961), Yan (1), Mouse (0.857), CRC (0.945).

Full-size DOI: 10.7717/peerj.15862/fig-2

when applied to test cohorts. LIDER was used to classify the real single-cell transcriptomic
data including Zeisel, Segerstolpe, Tasic, PBMC, MacParland, Yan, Mouse and CRC
respectively. The prioritized features based on stacked denoising autoencoders was utilized
for the training set and deep neural network classifier was developed to identify cell types
of single-cell transcriptomic data. Based on the optimized parameters from training data
set, LIDER was developed to classify the test data set of single-cell transcriptomic data. As
shown in Fig. 2, the proposed LIDER model achieved an accuracy between 0.857 and 1.0
and an average value of accuracy 0.934 for eight types of single-cell datasets.

To further demonstrate the effectiveness of the method, we compared the proposed
LIDER with logistic regression multiclassification algorithm (LR), Moana, SingleCellNet
and ACTINN respectively. These four baseline models were trained on the training data set
and validated on the test data set. LIDER achieved an accuracy in four test datasets (Figs.
3A–3D), which yielded 1.6%, 4.6%, 10% and 5.8% (Fig. 3A), 2.6%, 5.2%, 7.6% and 6.0%
(Fig. 3B), 1.1%, 3.4%,11.7% and 5.2% (Fig. 3C), 1.5%, 2.9%, 5.1% and 4.8% (Fig. 3D)
increase in accuracy as compared to LR, Moana, SingleCellNet and ACTINN respectively.
An accuracy in four test datasets was yielded by LIDER (Figs. 3E–3H), which was 1.6%,
5.4%, 11.3% and 7.8% (Fig. 3E), 2.9%, 7.5%, 9.8% and 8.9% (Fig. 3F), 1.3%, 4.1%, 7.1%
and 5.7% (Fig. 3G), 1.6%, 3.2%, 8.4% and 5.7% (Fig. 3H) higher than that obtained by LR,
Moana, SingleCellNet and ACTINN respectively. Overall, independent test results clearly
indicated that LIDER could perform better than a diverse panel of cell type identification
methods. The performance demonstrated great potential in the deep supervised learning.
LIDER converts gene-level expressions into an encoded lower-dimensional representation
of single-cell RNA-seq data. The autoencoder removes noise and leaves a high-value
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Figure 3 LIDER improves prediction performance for cell type identification. Accuracy of validated
test dataset by using LIDER, logistic regression multiclassification algorithm (LR), Moana, SingleCellNet
and ACTINN for eight single-cell transcriptomic datasets. In this analysis, 80% training dataset and
20% test dataset are divided from the whole single-cell transcriptomic data. Each subplot represents
the accuracy from LIDER and four baseline methods for each single-cell transcriptomic dataset. (A)
Zeisel dataset. LIDER (0.965), LR (0.95), Moana (0.923), SingleCellNet (0.876), ACTINN (0.912). (B)
Segerstolpe dataset. LIDER (0.895), LR (0.872), Moana (0.851), SingleCellNet (0.832), ACTINN (0.844).
(C) Tasic dataset. LIDER (0.983), LR (0.972), Moana (0.951), SingleCellNet (0.88), ACTINN (0.934).
(D) PBMC dataset. LIDER (0.865), LR (0.852), Moana (0.841), SingleCellNet (0.823), ACTINN (0.825).
(E) MacParland dataset. LIDER (0.961), LR (0.946), Moana (0.912), SingleCellNet (0.863), ACTINN
(0.891). (F) Yan dataset. LIDER (1), LR (0.972), Moana (0.93), SingleCellNet (0.911), ACTINN (0.918).
(G) Mouse dataset. LIDER (0.857), LR (0.846), Moana (0.823), SingleCellNet (0.8), ACTINN (0.811). (H)
CRC dataset. LIDER (0.945), LR (0.93), Moana (0.916), SingleCellNet (0.872), ACTINN (0.894).

Full-size DOI: 10.7717/peerj.15862/fig-3

representation from the input data. The classifier can perform better because the algorithm
is able to learn the patterns in the data from a smaller set of a high-value input.

LIDER achieves similar cell type identification with the true identity
To investigate the validity of the proposed method LIDER, we compared it with true
cell types for the Zeise, Segerstolpe, Tasic, PBMC, MacParland, Yan, and Mouse datasets
respectively. We applied principal component analysis (PCA) and t-distributed stochastic
neighbor embedding (tSNE) to reduce the dimension and plotted the data points on a
two-dimensional plane. A graph-based clustering approach was used to cluster the cells
for cell type identification. Figure 4 shows the 2D visualizations of the true cell types and
the predicted labels from LIDER. In the identified cell embedding of the proposed method
LIDER, cells with the same type are correctly separated with only few outliers (Fig. 4). The
vast majority of the predicted cell type from LIDER is similar with the true identity of each
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Figure 4 LIDER achieves similar performance with the true identity of cell type. Each sub-figure rep-
resents the 2D visualizations of the true cell types and the predicted labels from LIDER for eight single-
cell transcriptomic datasets respectively. In each sub-figure, the left subplot represents the 2D visualiza-
tion of the true identity of each cell, and the right subplot represents the 2D visualization of the predicted
cell type from LIDER respectively. Each point represents a cell in each sub-figure. (A) Zeisel dataset. (B)
Segerstolpe dataset. (C) Tasic dataset. (D) PBMC dataset. (E) MacParland dataset. (F) Yan dataset. (G)
Mouse dataset. (H) CRC dataset.

Full-size DOI: 10.7717/peerj.15862/fig-4

cell from single-cell datasets. These results suggested that deep supervised learning could
help improve prediction performance.

LIDER accurately identifies cell types by using stacked denoising
autoencoder
In supervised learning methods, feature selection usually plays an important role in
improving classification performance. Therefore, we explore whether stacked denoising
autoencoders could improve the prediction performance for cell types identification. As
a reference, we used principal component analysis (PCA) based neural network classifier
where the architecture of the neural network was similar with the classifier development
in LIDER. Specifically, PCA is a popular method for feature selection and shows great
potential in dimension reduction of high dimensional data. The PCA algorithm was
implemented by Python from PCA package in Sklearn. The performance accuracy is
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defined by accuracy= 1
n
∑n

i=1δ(y
p
i ,yi), where δ = 1 for ypi = yi and δ = 0 for ypi 6= yi

respectively. ypi represents the predicted cell type of each single cell and yi represents the
true cell type of each single cell.

Figure 5 illustrated the accuracy between the proposed method LIDER and the
PCA-based neural network classifier from the test dataset of eight types of single-cell
transcriptomic data. LIDER achieved an accuracy from seven datasets, which was 7.6% (Fig.
5A), 6.3% (Fig. 5B), 1.6% (Fig. 5D), 1.2%(Fig. 5E), 3.8%(Fig. 5F), 5.7% (Fig. 5G), and1.2%
(Fig. 5H) higher than that from the PCA-based neural network classifier respectively.
Moreover, LIDER achieved an accuracy in the Tasic dataset, which was comparable with
that obtained by the PCA-based neural network classifier (Fig. 5C). The results suggested
that LIDER was able to identify cell embeddings from the high-dimensional single-cell
transcriptomic data by using stacked denoising autoencoder and achieved significantly
better performance. Compared with PCA, LIDER developed stack multiple denoising
autoencoders which made the selected features more representative of single-cell RNA-seq
data.

LIDER suggests comparable robust to batch effects
Although scRNA-seq studies shows great potential with the characteristic of unprecedented
high resolution, a challenging task is to analyze scRNA-seq data with different batches
from the generation at different times. Failure to remove batch effects may lead to a
false explanation of true biological variations in downstream analysis. To evaluate the
performance when reducing the impact of batch effects, we used the Macaque dataset
containing animal-level batch effects for further analysis. We still chose 80% as the training
set and 20% as the test set. LIDER is effective in removing batch effects and achieves a
high accuracy 0.972 when validated on the test data set. To test performance of LIDER
accounting for removing batch effects which are due to different techniques, we trained it
on single-cell data developed by one platform and tested it on single-cell data developed
by another platform. LIDER was trained on the 10X cells and then tested on the SS2 cells.
It achieved a testing accuracy of 1.0. Among the seven incorrectly predicted cells, three B
cells were predicted as hepatocytes, two monocytes were predicted as stromal cells, and
there were remaining two mispredictions. We then trained the proposed method on the
SS2 dataset and tested it on the 10X dataset. LIDER obtained a testing accuracy of 0.999.
Among the thirty-three incorrectly predicted cells, four B cells were predicted as cardiac
muscles, four B cells were predicted as epithelial cells, three epidermises were predicted
as natural killer (NK) cells, three epidermises were predicted as hepatocytes, two cardiac
muscles were predicted as epithelial cells, two cardiac muscles were predicted as T cells, two
epidermises were predicted as epithelial cells, two epidermises were predicted as endothelial
cells, two T cells were predicted as B cells, and there were also several mispredictions. The
results showed that LIDER fairly removed batch effects from single-cell datasets introduced
by different techniques.
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Figure 5 Accuracy of validated test dataset by using LIDER and PCA based neural network classi-
fier for eight single-cell transcriptomic datasets. Each subplot represents the accuracy from LIDER and
PCA based neural network classifier for each single-cell transcriptomic dataset. (A) Zeisel dataset. PCA
+ NN (0.897), LIDER (0.965). (B) Segerstolpe dataset. PCA+ NN (0.842), LIDER (0.895). (C) Tasic
dataset. PCA+ NN (0.98), LIDER (0.983). (D) PBMC dataset. PCA+ NN (0.851), LIDER (0.865). (E)
MacParland dataset. PCA+ NN (0.95), LIDER (0.961). (F) Yan dataset. PCA+ NN (0.963), LIDER(1).
(G) Mouse dataset. PCA+ NN (0.811), LIDER (0.857). (H) CRC dataset. PCA+ NN (0.934), LIDER
(0.945).

Full-size DOI: 10.7717/peerj.15862/fig-5

DISCUSSION
In this study, we present LIDER, a deep computational model for jointly identifying cell
embedding and developing deep neural network classifier through scRNA-seq data. Our
approach relies on stacked denoising autoencoder to derive cell embeddings which are
robust and stable features for matching expression patterns. The deep neural network
classifier in LIDER has better predictive performance when compared to baseline methods
for accurately identifying the annotation of each cell.

Denoising, referring to cleaning partially corrupted input, suggests that a good
representation is able to be robustly developed from a corrupted input and be useful
for recovering the corresponding clean input. A denoising criterion is critical for an
unsupervised learning to guide the learning of low-dimensional representations for single-
cell transcriptomic data (Vincent et al., 2010). It is expected that these representations
are able to capture useful structure in the input distribution and they are robust and
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stable under the corruptions of the input scRNA-seq data. Besides, the pre-training
phase of the denoising autoencoder is stacked for each layer, which could improve the
training efficiency of a deep leaning model for selecting the relevant features. Specifically,
deep learning has attracted much attention because of its ability to extract complex
features automatically. Deep neural network has stronger fitting capacity for nonlinear
object, and the fitting capacity for nonlinear boundary is raising with the increase of
the number of layers. In this article, Adam is a first-order gradient-based optimization
method and has been successfully used to train deep neural networks. This algorithm is
invariant to diagonal rescaling of the gradients which improves the predictive performance
for training a four-layer full-connected neural network. We used a stacked denoising
autoencoder to learn encoder–decoder structures for identifying cell embedding. This
multi-layer cycle process develops stack multiple denoising autoencoders for the task of
feature extraction, which makes the selected features more representative and is critical
for batch effects removal of single-cell RNA-seq data. Adam is a promising method with
first-order gradient-based optimization of stochastic objective functions for adaptive
estimates of lower-order moments (Kingma & Ba, 2014). This method is invariant to
diagonal rescaling of the gradients and is computationally efficient with little memory
requirements. To compare with the proposed method LIDER, we used NN classifier with
the raw gene expression data and this classifier achieved an accuracy of 0.902 in Zeisel, 0.84
in Segerstolpe, 0.978 in Tasic, 0.84 in PBMC, 0.951 in MacParland, 0.972 in Yan, 0.801
in Mouse and 0.927 in CRC respectively. LIDER achieved 6.98%, 6.54%, 0.51%, 2.97%,
1.05%, 2.88%, 6.99% and 1.94% increase in accuracy in comparison with NN classifier.
The performance demonstrated that the auto-encoder learned features from LIDER could
improve the cell type identification.

Single-cell RNA sequencingmeasures gene expression at the single-cell level and provides
a high resolution of cellular differences, which greatly promotes the understanding of cell
functions, disease progression, and treatment response (Gao, 2018). We applied the
scRNA-seq datasets across different platforms to identify cell types. The performance
suggest that LIDER is potential for automatic cell type identification of single-cell RNA-seq
data. To estimate the performance of independent test dataset, we used scRNA-seq dataset
with 22,010 genes× 10,784 cells representing the expression levels of nuclear genes (Ji et al.,
2022) to validate the method LIDER. We stratified the single-cell dataset into 70% training
samples and 30% test samples according to the original sample distribution of each cell
type. The gene expression values for each cell were Z-score transformed to make expression
level comparable across genes. We processed training and test data sets independently to
guarantee the independence of a test dataset. LIDER achieved an accuracy of 0.95 in the
training samples and 0.83 in the test samples respectively. Interestingly, transformer-based
model has been developed for cell type identification of single-cell RNA-Seq data (Song et
al., 2022). Recently, a comprehensive and high-performance framework named CIForm is
proposed based on the transformer for cell type annotation (Xu et al., 2023). CIForm as a
deep learning model is structured by four modules including gene embedding, positional
encoding layer, transformer encoder and classification layer. An implementation of
CIForm is made by Python and found at https://github.com/zhanglab-wbgcas/CIForm. We
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normalized and log-transformed gene expression data and selected the top 2000 highly
variable genes (HVGs) for single-cell transcriptomic data. CIForm achieved an accuracy
of 0.96 in Zeisel, 0.92 in Segerstolpe, 0.95 in Tasic, 0.89 in PBMC, 0.98 in MacParland,
0.87 in Yan, 0.85 in Mouse and 0.92 in CRC respectively. Predicted performance clearly
indicated that LIDER could perform better than CIForm for a diverse panel of single-cell
data including Tasic, Yan, Mouse and CRC. Moreover, these results suggested that CIForm
based on the transformer showed great potential for cell-type annotation of large-scale
scRNA-seq data.

Despite the fact that LIDER is potential for accurate cell type identification, the
development of deep supervised learning model always requires parameter tuning and
model training. For all deep neural network classifiers, the final developed model mainly
depends on the hyperparameters used to train the classifier. Moreover, LIDER is a typical
supervised learning method and develops the classifier dependent on the quality of the cell
type annotations. In addition, advances in stacked denoising autoencoders may facilitate
to perform feature selection tasks. Therefore, it would be interesting to investigate deep
denoising autoencoders for their ability to develop valuable representations.

CONCLUSION
In conclusion, a deep supervised learning method LIDER accurately identifies cell types
from scRNA-seq data. The stacked denoising autoencoder provided insights with great
potential for identifying cell embeddings by matching expression patterns of single-cell
transcriptomic data. The deep guided neural network classifier represents a novel approach
to leverage cell types with machine learning by building a multi-class scRNA-seq classifier,
providing a platform for identifying the type of each cell that may be broadly applicable
for single-cell transcriptomic data across different species, conditions, and technologies.
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