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Ali Network data based on the Qinghai-Tibetan Plateau (QTP) can provide representative
coverage of the climate and surface hydrometeorological conditions in the cold and arid
region of the QTP. Among them, the plateau soil moisture can effectively quantify the
uncertainty of coarse resolution satellite and soil moisture models. With the objective of
constructing an "end-to-end" soil moisture prediction model for the Tibetan Plateau, a
combined prediction model based on time series decomposition and a deep neural
network is proposed in this paper. The model first performs data preprocessing and
seasonal-trend decomposition using loess (STL) to obtain the trend component, seasonal
component and random residual component of the original time series in an additive way.
Subsequently, the bidirectional gated recurrent unit (BiGRU) is used for the trend
component, and the long short-term memory (LSTM) is used for the seasonal and residual
components to extract the time series information. The experiments based on the
measured data demonstrate that the use of STL decomposition and the combination model
can effectively extract the information in soil moisture series using its concise and clear
structure. The proposed model in this paper has a stable performance improvement of
5%-30% over a single model and existing prediction models in different prediction time
domains. In long-range prediction, the proposed model also achieves the best accuracy in
the shape and temporal domains described by using dynamic time warping (DTW) index
and temporal distortion index (TDI). In addition, the generalization performance
experiments show that the combined method proposed in this paper has strong reference
value for time series prediction of natural complex systems.
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10 Abstract: Ali Network data based on the Qinghai-Tibetan Plateau (QTP) can provide 

11 representative coverage of the climate and surface hydrometeorological conditions in the cold 

12 and arid region of the QTP. Among them, the plateau soil moisture can effectively quantify the 

13 uncertainty of coarse resolution satellite and soil moisture models. With the objective of 

14 constructing an "end-to-end" soil moisture prediction model for the Tibetan Plateau, a combined 

15 prediction model based on time series decomposition and a deep neural network is proposed in 

16 this paper. The model first performs data preprocessing and seasonal-trend decomposition using 

17 loess (STL) to obtain the trend component, seasonal component and random residual component 

18 of the original time series in an additive way. Subsequently, the bidirectional gated recurrent unit 

19 (BiGRU) is used for the trend component, and the long short-term memory (LSTM) is used for 

20 the seasonal and residual components to extract the time series information. The experiments 

21 based on the measured data demonstrate that the use of STL decomposition and the combination 

22 model can effectively extract the information in soil moisture series using its concise and clear 

23 structure. The proposed model in this paper has a stable performance improvement of 5%-30% 

24 over a single model and existing prediction models in different prediction time domains. In long-

25 range prediction, the proposed model also achieves the best accuracy in the shape and temporal 

26 domains described by using dynamic time warping (DTW) index and temporal distortion index 

27 (TDI). In addition, the generalization performance experiments show that the combined method 

28 proposed in this paper has strong reference value for time series prediction of natural complex 

29 systems.

30
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32

33 1 Introduction

34 1.1 Background

35 As the highest plateau in the world, the Qinghai-Tibet Plateau (QTP) is an important 

36 ecological security barrier for the world, playing many roles in water conservation and 

37 biodiversity protection. As an important indicator of surface hydrological information, soil 

38 moisture plays an important role in regional energy and the land water cycle (Milly et al., 1994) 

39 and is an important parameter in hydrological, meteorological and environmental studies. Its 

40 temporal variation and spatial distribution regulate the pattern, diversity and succession 

41 characteristics of vegetation (Zhu et al., 2017). The main grassland type on the QTP is alpine 

42 grassland, and the soil moisture in the root layer is mainly affected by rainfall recharge factors. 

43 Therefore, an in-depth understanding of soil water dynamics is helpful to better understand soil 

44 water maintenance and predict the potential impact of future rainfall pattern changes on key 

45 processes of alpine steppe ecosystems (Xing et al., 2009). It is of great significance to study the 

46 spatial and temporal variation pattern of surface soil moisture on the QTP and build a soil 

47 moisture prediction model based on long-term time series data for the study of alpine grassland 

48 ecological carrying capacity, ecological construction of grassland restoration and reconstruction, 

49 and meteorological disaster monitoring in the QTP.

50 1.2 Literature review

51 Time series generated by complex systems are commonly found in various fields, such as 

52 astronomy, hydrology, meteorology, environment, and finance. These time series often exhibit 

53 highly intricate nonlinear characteristics and manifest as multivariate and large-scale in nature. 

54 At the same time, the data are characterized by nonstationarity and noise due to the complex 

55 evolution of the system and external disturbances (Han et al., 2019). Traditionally, the time 

56 series involved in these areas have been modelled and predicted using numerical models, and Su 

57 et al. (2013) developed a numerical prediction model for soil moisture content on the QTP using 

58 a series of interpolation methods and a time-point-by-time extended Kalman filter based on the 

59 basic framework given by the European Centre for Medium-Range Weather Forecasting 

60 (ECMWF), with significant performance improvements over existing numerical models. 

61 However, the generalization of the numerical methods is limited, necessitating the expenditure of 

62 considerable time designing intricate mathematical models to address different scenarios. It also 
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63 imposes a significant computational burden.

64 In recent years, with the development of data science and measurement techniques, soil 

65 moisture prediction models that are entirely driven by data have become progressively more 

66 abundant. Data-driven models strive to approximate complex real-world situations as closely as 

67 possible by leveraging extensive data, and they have found wide applications in the domain of 

68 complex system time series. Some researchers have proposed soil moisture prediction models 

69 that integrate multiple sources of data. For instance, Togneri et al. (2022) introduced a model 

70 based on LightGBM and sensor network data, while Luo et al. (2023) proposed a model based on 

71 back propagation (BP) neural networks and optical and thermal infrared (TIR) spectroscopy. Zhu 

72 et al. (2023) presented a model based on random forests (RF) and climate observation data such 

73 as evapotranspiration, and Yin et al. (2023) proposed a method based on support vector machines 

74 (SVM) and soil state data such as soil temperature. Moreover, several researchers have explored 

75 the integration of various observation data from different sources, including satellite data, sensor 

76 data, and in situ data, to establish numerous soil moisture prediction models for diverse 

77 application scenarios. These models utilize deep learning methods such as residual learning (Li Q, 

78 Li Z et al., 2022), long short term memory (LSTM) (Filipović et al., 2022), convolutional neural 

79 network (CNN) and bidirectional gated recurrent unit (BiGRU) (Yuan et al., 2022), the 

80 combination of attention mechanism and LSTM (Li Q, Zhu Y et al., 2022), as well as a specially 

81 designed artificial neural network (ANN) (Singh et al., 2023). Although these models have 

82 achieved high accuracy, they still require laborious feature engineering. Additionally, the 

83 availability of data severely limits the practical application of these models since they rely on 

84 large amounts of additional data as inputs.

85 Establishing an "end-to-end" soil moisture prediction model holds promise for effectively 

86 addressing the above issues. Traditional statistical learning methods for time series, also known 

87 as modern time series analysis, originated from the autoregressive (AR) model proposed by 

88 British statistician G.u. Yule in 1927. In the 1970s, the autoregressive integrated moving average 

89 (ARIMA) model became the central topic of time series analysis. Some studies have proposed 

90 combining the ARIMA model with the BP neural network model to simultaneously consider the 

91 linear and nonlinear characteristics of soil moisture data, resulting in improved predictive 

92 performance compared to using a single model (Wang G, Han Y et al., 2023). Furthermore, 

93 Wang G, Zhuang L et al., (2023) incorporated the GRU model into block Hankel tensor ARIMA, 
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94 achieving even better results. However, ARIMA models and their various derivatives struggle to 

95 handle complex cyclic and trend changes in soil moisture prediction. Therefore, several time 

96 series decomposition methods have been used in the study of complex system time series, 

97 including singular value decomposition (SVD) (Liu et al., 2003), principal component analysis 

98 (PCA) (Chitsaz et al., 2016), and wavelet decomposition (Yang et al., 2018). These 

99 decomposition methods to some extent extract the information inherent in soil moisture series, 

100 but they rely on strong mathematical assumptions that are often difficult to meet in practical 

101 scenarios. Empirical modal decomposition (EMD) and its derivatives, such as ensemble 

102 empirical mode decomposition (EEMD) and complete ensemble empirical mode decomposition 

103 with adaptive noise (CEEMDAN), can extract even more complex information from the series. 

104 Prasad et al. (2019) combined EEMD and extreme learning machine (ELM) to propose a short-

105 term soil moisture prediction model based on multivariate sequences. However, similar models 

106 such as EEMD are designed to process signal sequences, and the numerous intrinsic mode 

107 functions (IMFs) produced by the decomposition reduce the interpretability of the model, 

108 significantly increase computational costs, and often suffer from issues such as mode mixing or 

109 incomplete decomposition due to random factors (Qin et al., 2019).

110 As a statistical method, seasonal-trend decomposition using loess (STL) exhibits good 

111 adaptability to various types of time series data with different properties. Models based on STL 

112 decomposition have demonstrated excellent performance in numerous fields of complex system 

113 time series prediction. Ding et al. (2023) combined STL with the random forest to investigate the 

114 influence of meteorological factors and precursor emissions on ozone concentrations. Xu et al. 

115 (2022) developed a framework called SDIPBC, which utilized STL and LSTM models to address 

116 and optimize sequence boundaries in streamflow prediction. Qin et al. (2019) applied STL to 

117 passenger flow prediction. STL decomposition demonstrates tremendous potential in soil 

118 moisture prediction problems.

119 1.3 Contributions

120 This paper introduces STL decomposition to the field of soil moisture prediction for the first 

121 time and proposes an "end-to-end" framework for soil moisture prediction, which enables highly 

122 accurate prediction of soil moisture content with insufficient information and without extensive 

123 additional feature engineering. In addition, its main advantages are as follows:
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124 1) The model has a concise and clear structure with low computational cost. The study 

125 demonstrates that STL decomposition effectively extracts trend and periodic information from 

126 the soil moisture content series. The proposed model further fits the subseries obtained from STL 

127 decomposition using a recurrent neural network model. Each component of the model has clear 

128 practical meaning and a concise structure compared to existing decomposition-prediction models. 

129 In addition, with the special design, parallel computation of the components can be achieved, 

130 further reducing the inference time.

131 2) The proposed model exhibits good stability and generalization performance. The model 

132 consistently shows excellent prediction stability across various real-world scenarios tested over 

133 long time scales. At the same time, the proposed model has the best performance in terms of the 

134  index, which measures the stability of different prediction steps of the soil moisture prediction �
135 models proposed in this paper. In addition to soil moisture prediction, the proposed model also 

136 shows excellent results in soil heat flux prediction. This study provides significant guidance for 

137 predicting time series in complex natural systems.

138 3) The multistep prediction values of the proposed model achieve the best performance in 

139 both temporal and morphological aspects. Since the accuracy of soil moisture content series in 

140 the temporal and morphological domains is crucial for subsequent analysis, experiments 

141 conducted in this study show that the proposed model performs the best in terms of the dynamic 

142 time warping (DTW) index and temporal distortion index (TDI). Thus, the proposed model has 

143 high practical value.

144

145 2 Data sources and research methods

146 2.1 Data sources and data preprocessing

147 The experiment to choose the soil moisture measured data from the National Qinghai-Tibet 

148 Plateau Scientific Data Center included the observation data of soil temperature and humidity of 

149 the QTP. The observational data in this dataset consist of four in-situ reference networks at 

150 regional scales, namely, the Naqu, Maqu, Ali and Pari networks with different climatic and 

151 vegetation types. The Ali network, which includes the Ali and Shiquanhe regions, is located on 

152 the China-India border, approximately 1-2 km from the small village of Rutol and approximately 

153 8 km from the inland lake Pangang Tso Lake. All soil moisture stations are distributed between 

154 32°30′-33°30′ N and 79°50′-80°03′ E, at an altitude of approximately 4260 m. The Ali network is 
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155 located in the arid southwestern part of the QTP, with an average annual precipitation of 87 mm, 

156 mainly concentrated in summer, evaporation of 2465 mm, an average annual temperature of 2°C 

157 and mostly sunny days throughout the year, and its temperature and precipitation data by month 

158 are shown in Fig. 1. The landscape where the stations are located is mainly desert or sparse 

159 grassland. This type of landform covers approximately 23% of the total area of the QTP (Fang et 

160 al., 2007). At each station of Ali Network, soil moisture content with an accuracy of  is 10
‒ 5

161 recorded hourly at depths of 5, 10, 30, 50 and 80 cm. Based on previous research experience 

162 (Yan et al., 2009), it is known that microwave data can only reflect the surface soil moisture of a 

163 few centimetres, and considering that there is a large number of missing observational data of all 

164 sites of Ali Network before 2011, in this paper, soil moisture observation data recorded by the 

165 soil moisture sensor at a depth of 5 cm at the AL02 site of Ali Network every one hour between 

166 2012 and 2016 were used for research.

167 This paper divides the dataset according to the experience ratio of the training set and the 

168 test set of 8:2. Since the original data are time series data, the data are divided into the training 

169 set and the test set by taking 2015-9-16 0:00 as the partition node. Visualization of the training 

170 set and test set data is shown in Fig. 2. Finally, the sequence was normalized to map it to the 

171 interval [-1,1].

172

173 2.2 Research methods

174 2.2.1 STL decomposition

175 The STL decomposition proposed by Cleveland et al. (1990) decomposes the time series 

176 into trend, seasonal and remainder components. STL decomposition has good generality and 

177 robustness and is applicable to time series data of various cycles or frequencies. The core of the 

178 algorithm is to extract the seasonal trend information contained in the time series more 

179 accurately by introducing local regression smoothing. STL decomposition represents the original 

180 sequence in the additive way as Eq. (1):

181 x� = �� + �� + ��    (� = 1,2,3,…,�) #()

182 where  is the trend term,  is the seasonal term, and  is the remainder term.�� �� ��
183 The iterative process of the STL decomposition algorithm can be briefly described as 

184 follows:

185 1) Set the initial iteration value: .� = 0, ��� = 0
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186 2) Detrending: .�� ‒ ���
187 3) Carry out smoothing on each detrended periodic subsequence, and the sequence 

188 obtained by combining all periodic subsequences is denoted as .�� + 1�
189 4) For , low-pass filtering is carried out using the three times sliding average and once �� + 1�
190 LOESS smoothing,  is obtained.�� + 1�
191 5) Calculate the seasonal terms: � .�� + 1� = �� + 1� ‒ �� + 1�
192 6) Calculate the trend term: The trend term  is obtained by LOESS smoothing �� + 1� x

�� ‒
193 .�� + 1�
194 7) If  converges or reaches the maximum number of iterations, the iteration terminates; �� + 1�
195 otherwise, go back to step 2).

196 The decomposition process of STL is mainly controlled by parameters ,  and . The �� �� ��
197 parameter  is the cycle length in the sequence, and the smoothing parameter of the periodic np

198 subsequence  is the parameter of the process in the third step. Generally, an odd number that is ��
199 slightly larger than the number of cycles contained in the original sequence is taken. The trend 

200 smoothing parameter  is the parameter of the LOESS process in the sixth step. Cleveland R B n�
201 suggests a minimum odd number greater than  (Cleveland et al., 1990).

1.5��
1 ‒ 1.5/��

202 2.2.2 LSTM

203 The LSTM model is a kind of RNN model that was first proposed by Hochreiter & 

204 Schmidhuber (1997), which can solve the gradient disappearance and gradient explosion 

205 problems faced by RNNs in the process of long time series (Rakthanmanon et al., 2012) and is 

206 specifically designed to avoid the long-term dependence problem (Fig. 3). Compared with the 

207 traditional RNN model, the LSTM model can perform better in a longer time series. The hidden 

208 layer of the original RNN has only one state, so it is very sensitive to short-term input. The 

209 LSTM model adds another state based on the RNN, which is used to store the long-term state, 

210 called the cell state.

211 At the present moment, LSTM has three inputs: the current input value , the output value x�
212 of the LSTM at the previous moment and the cell state of the LSTM at the previous moment ℎ� ‒ 1 

213 . There are two outputs: the LSTM output value at the current moment  and the cell state at �� ‒ 1 ℎ�
214 the current moment .��
215 LSTM implements this mode through three gating mechanisms in the algorithm, namely, 

216 the input gate, forget gate and output gate. The input gate and output gate are used to receive, 
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217 output, and correct parameters. The input gate determines how much of the network's input  is ��
218 saved to the cell state at the current time. The output gate determines how much of the cell state 

219  is output to the current output value  of the LSTM. The forget gate determines how much of �� ℎ�
220 the cell state of the previous moment  is retained to the cell state of the current moment .�� ‒ 1 ��
221 The LSTM determines the final output value  as Eqs. (2)-(5). First, it calculates the ℎ�
222 activation state value  of the forget gate at the current moment :�� �
223 �� = �(�� ⊗ (��ℎ� ‒ 1) + ��)#()

224 where  is the sigmoid function and  represents dot multiplication. After the vector is �( ∙ ) ⊗

225 multiplied by the weight matrix, it is transformed by the activation function as a gated state.

226 Then, calculate the value of the input gate  and the value of the candidate state of the input i�
227 cell  at moment :�� �
228 �� = �(�� ⊗ (��ℎ� ‒ 1) + ��)
229 �� = �(�� ⊗ (��ℎ� ‒ 1) + �� #()

230 The updated value  of the cell state under the current time  can be obtained from the �� �
231 above calculation:

232 �� = �� ⊗ �� ‒ 1 + �� ⊗ �� #()

233 Finally, calculate the current output value of the output gate according to the update value 

234 of the cell state at the current time :�
235 �� = �(�0 ⊗ (��ℎ� ‒ 1) + �0)

236 ℎ� = �� ⊗ tanh (��) #()

237 2.2.3 BiGRU

238 GRU is a simplification of the LSTM model proposed by Cho et al. (2014). The LSTM 

239 model effectively alleviates the problem of gradient disappearance in the traditional RNN model. 

240 However, the shortcomings of the LSTM model, such as complex parameters and difficult 

241 training, are gradually exposed, restricting the further application of LSTM. The GRU redesigns 

242 the internal structure of the LSTM unit based on the gating idea, thus reducing the computation 

243 time and training complexity.

244 Similar to the LSTM model, for the input sequence , the GRU can {�1,�2,�3,�,��,���}

245 successively obtain its hidden layer state  at time step  according to Eqs. (6)-(9):ℎ� �
246 �� = �(���� +  �� +  �ℎ� ℎ� ‒ 1 +  �ℎ�) #()

247 �� = �(���� +  �� +  �ℎ� ℎ� ‒ 1 +  �ℎ�) #()
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248  �� = tanh (���� +  �� +  �� ⊗ (�ℎ�ℎ� ‒ 1 +  �ℎ�))  #()

249 ℎ� =  (1 ‒  ��) ⊗  �� +  �� ⊗  ℎ� ‒ 1#()

250 where  is the hidden layer state of time step ,  is the gated state updated at each ℎ� ‒ 1 � ‒ 1 ��,��,��
251 time step, is a sigmoid function, and  is the bias term.σ( ∙ ) b

252 BiGRU (bidirectional GRU) builds two reverse GRU models at the same time, modelling 

253 time sequence information forward and backwards, and the output of each time step is the 

254 concatenation of the output of the two GRU models. It is generally believed that the BiGRU 

255 model can better extract the front and back dependencies in time series and has a better effect for 

256 sequences with a certain front or back correlation (Zhu et al., 2019).

257 2.2.4 Combined prediction model

258 Fig. 1 shows that the observed data of soil moisture have a very significant seasonal 

259 variation rule with a one-year cycle. Soil moisture in summer is much higher than that in the 

260 other three quarters, and the peak value of soil moisture in summer has a trend of gradual 

261 increase with the passage of time. Based on the nature of plateau soil moisture time series data, 

262 this paper combined STL decomposition with the BiGRU model and LSTM model and proposed 

263 a new neural network combination prediction model based on STL decomposition to make use of 

264 the information extraction ability of STL decomposition and the time series fitting ability of the 

265 neural network model simultaneously. The overall framework of the model is shown in Fig. 4.

266 Based on a series of data preprocessing steps, the model first extracts the trend change 

267 information and periodic change information contained in the data through STL decomposition, 

268 and the original sequence is decomposed into the trend component, seasonal component and 

269 remainder component. During decomposition, to avoid data leakage and prove the effectiveness 

270 of the model, the subsequence as a training set was first decomposed alone, and then the whole 

271 sequence was decomposed to obtain the test set. Then, the BiGRU model is used for the obtained 

272 trend component, and an LSTM model is used to fit the timing information for the seasonal 

273 component and the remainder component. Finally, the combined model extracts the hidden layer 

274 state of the last time step of each cyclic neural network model and outputs the predicted values of 

275 the three components through a fully connected layer. STL decomposed the sequence in an 

276 additive way, which made it convenient to model the three components independently. The 

277 predicted values of the three components were added to obtain the final prediction results for the 

278 plateau soil moisture content.
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279

280 3 Experimental analysis

281 3.1 Performance metrics

282 In this experiment, the root mean square error (RMSE), mean absolute error (MAE) and 

283 adjusted goodness of fit (adjusted ) were used to compare the experimental results output by �2

284 each model and judge the model�s single-step and short-range prediction performance. Smaller 

285 values of RMSE and MAE indicate higher model accuracy. The closer  is to 1, the higher the �2

286 prediction accuracy of the model is, and the adjusted  eliminates the influence of sequence �2

287 length and the number of features in the model on the index so that the  of different models can �2

288 be compared with each other. The calculation formulas of RMSE, MAE, and adjusted  are �2

289 shown in Eq. (10), Eq. (11) and Eqs. (12)-(13), respectively.

290 ���� =
1� �∑� = 1

(� (�)���� ‒ � (�)����)2
= ��� #()

291 ��� =
1� �∑� = 1

|� (�)���� ‒ � (�)����| #()

292 �2
= 1 ‒ ∑� (�(�) ‒ �(�)

)
2∑� (� ‒ �(�)

)
2

 #()

293 adjusted �2
= 1 ‒ (1 ‒ �2)(� ‒ 1)� ‒ � ‒ 1

 #()

294 where ,  and  represent the true value, the model estimated value and the sample sequence �(�) �(�) �
295 mean, respectively.  is the sequence length, and  is the number of features in the model.� �
296 In long-term forecasting (e.g., when the prediction horizon is 24 h), it is crucial to assess the 

297 accuracy of the predicted sequences in both the temporal and shape aspects, in addition to 

298 evaluating the "point-to-point" accuracy using the above three indicators. This study employs the 

299 dynamic time warping (DTW) metric based on the Euclidean distance, as proposed by Sakoe & 

300 Chiba (1978), to evaluate the accuracy in the shape aspect. The temporal distortion index (TDI) 

301 introduced by Frías-Paredes et al. (2017) is utilized to measure the accuracy in the temporal 

302 aspect. Smaller values of DTW and TDI indicate a higher prediction accuracy of the model.
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303 3.2 Experimental environment and parameter setting

304 The experimental environment adopted in this paper is an Intel Xeon 8358P 2.6 GHz CPU 

305 and NVIDIA RTX A5000 GPU, and the model is built based on PyTorch under Python 3.8.

306 The early stop mechanism is introduced in the first pretraining. When the training model 

307 loss function is without gain in 10 iterations, the iteration will be stopped. This measure can not 

308 only ensure the fitting accuracy of the model but also effectively prevent overfitting and save the 

309 training time of the model. The results of pretraining show that the model generally achieves the 

310 optimal effect when the number of iterations is approximately 80. Therefore, the training cycle is 

311 set as 100 in the subsequent experiment in this paper. The results of pretraining also show that 

312 due to the powerful fitting ability of BiGRU and LSTM models, the model with a simple 

313 structure can already achieve sufficient fitting ability under the problem studied in this paper, 

314 while the overly complex model structure will make the performance worse. To make the model 

315 obtain as much historical information as possible and exclude too much noise at the same time, 

316 the prediction window size was set as one year, that is, 24×365 hours. Based on various 

317 considerations, the main super parameters and training parameters set in the model training 

318 process are shown in Table 1.

319

320 3.3 Experimental results and analysis

321 3.3.1 STL decomposition results

322 The plateau soil moisture data used in this study have an obvious annual cycle, and the data 

323 sampling frequency is once per hour. Therefore, the cycle length parameter  is set as 24×365 n�
324 hours, and the parameter  is set to 7, which is slightly larger than the number of cycles n�
325 contained in the data. The parameter  is determined according to the empirical rule described in n�
326 Section 2.2.1. The three components obtained by STL decomposition are shown in Fig. 5.

327 According to the decomposition results, the STL algorithm can adequately extract the trend 

328 and periodic information contained in the sequence, and the seasonal term clearly shows the 

329 periodic variation in soil moisture in the plateau. The remainder sequence has a mean value of 0 

330 and fluctuates randomly nearby, which also proves that the STL decomposition adopted is 

331 effective. Fig. 5 also shows that the plateau soil moisture showed an increasing trend during 

332 2012-2016, but there was a low trough during 2014-2015.
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333 3.3.2 Prediction performance of the combined model

334 Fig. 6 shows the effect of the depth model on the test set for prediction of the three 

335 components obtained by STL decomposition. For Fig. 6(a)-(c), when the data points are scattered 

336 as closely as possible along the diagonal representing perfectly accurate predictions, it indicates 

337 higher prediction accuracy of the model. From the figure, it can be observed that the model 

338 achieves a good fit and prediction accuracy for the soil moisture content data in the plateau 

339 region. With few exceptions, most data points fall along the diagonal. Fig. 6(d)-(e) are used to 

340 observe the distribution of residuals obtained for each component. The variance of the prediction 

341 error of the model is extremely small for all three components and the mean value is extremely 

342 close to 0. This indicates that the three components obtained by STL decomposition can be 

343 effectively handled by the deep recurrent neural network structure.

344 The comparative experimental data in Table 2 and Fig. 7 show that for the trend component, 

345 the BiGRU model used in this paper is the best, while for the seasonal component and the 

346 remainder component, the adopted LSTM model has the best performance.

347 The STL-BiGRU, STL-LSTM and STL-RNN are chosen to compare and validate the use of 

348 the combined models for the overall soil moisture content series on the QTP. The LSTM, CNN-

349 BiGRU and LSTM-Attention models, which are commonly used in time series and multivariate 

350 soil moisture prediction models, are also selected as comparative models due to the lack of 'end-

351 to-end' prediction models for soil moisture prediction in existing studies. The performance of 

352 these three commonly used models in combination with STL decomposition is also examined. 

353 The prediction series and evaluation metrics obtained from each model are shown in Fig. 8 and 

354 Table 3, respectively.

355 The predicted values given by the reanalysis method ERA5 can roughly reflect the trend of 

356 soil moisture content, but there is a large gap compared to the measured values. The comparison 

357 models, although closer to the measured values, not only have larger errors in prediction, but also 

358 tend to significantly overestimate or underestimate the sudden changes in soil moisture content. 

359 The proposed combined model in this paper achieves the best results among all the compared 

360 models, and the RMSE metrics are reduced by 4.72%-22.92% compared to the STL-RNN, STL-

361 BiGRU, and STL-BiLSTM models using only a single depth model, which proves the 

362 effectiveness of the combined model approach. There was also a 7.72%-28.27% performance 

363 improvement over the undecomposed LSTM, LSTM-Attention and CNN-BiGRU and a more 
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364 significant improvement over STL-CNN-BiGRU and STL-LSTM-Attention with more complex 

365 structures. 

366 In this paper, we mainly use RMSE to evaluate the multistep prediction performance of the 

367 model, while DTW and TDI are used to examine the long-range prediction performance of the 

368 model (prediction horizon of 24 h), and the results are shown in Table 4 and Table 5.

369 The proposed combined model achieves the best results in all prediction horizons. The 

370 RMSE of the combined model improved by 6%-25% over the single models with STL 

371 processing for prediction steps of 2 h, 8 h, 16 h, and 24 h and by 5%-10% over the models 

372 without STL processing. For DTW and TDI, the proposed model also achieves the best value at 

373 the most extreme prediction horizon of 24 h, demonstrating the performance of the proposed 

374 model for multistep prediction.

375 To further quantitatively assess the stability of the model in making predictions at different 

376 forecast horizons, drawing from the work of Zhang et al. (2018), this study introduces the S 

377 index as shown in Eq. (14):

378 � =
1� �∑� = 1

�� ‒ �0��  #()

379 Where  represents the number of different forecast horizons tested,  denotes the th forecast � d� �
380 horizon,  represents the RMSE of the model at the th forecast horizon, and  represents the �� � �0

381 RMSE of the model for a single-step forecast. The  index for each model is presented in Table 6.�
382

383 4 Generalized performance analysis

384 Aiming to further investigate the generalization performance of the proposed model, in this 

385 part, the proposed combined model is used to make a fitting prediction of the soil heat flux time 

386 series data, and the same comparison model is selected as in Section 3.3. The soil heat flux time 

387 series data were obtained from the National Qinghai-Tibet Plateau Scientific Data Center 

388 (http://dx.doi.org/10.11888/Meteoro.tpdc.270910). In this paper, observations from the BJ site of 

389 the Naqu Station of Plateau Climate and Environment (NPCE-BJ) at a soil depth of 10 cm during 

390 2007-2013 were taken (Zhu et al., 2019). The data were not missing in the selected time period. 

391 The study of Ma et al. (2020) shows that this series also has obvious periodic and trend changes, 

392 and its data characteristics are similar to the soil moisture content series investigated in this paper, 
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393 which is suitable to be used as the dataset for generalization performance analysis. The 

394 experimental results are shown in Fig. 9.

395 The results of the generalization performance experiments show that the models also exhibit 

396 optimal results over the comparison models on the new data set. The combined model proposed 

397 in this paper generally shows a 3%-5% performance improvement over the single model in the 

398 comparison model at 1, 2, 8, 16, and 24 h prediction horizon, and a 10-50% performance 

399 improvement over the LSTM, LSTM-Attention, and CNN-BiGRU models commonly used in 

400 time series. The experimental results provethat the proposed model has strong generalization 

401 ability in the field of geography and climate of QTP.

402

403 5 Conclusion

404 In this paper, a combined prediction model based on STL decomposition and a deep 

405 recurrent neural network is proposed to address the complex characteristics of soil moisture 

406 content time series on the Tibetan Plateau. The proposed model achieves "end-to-end" prediction 

407 through a simple and clear structure, thus requiring no additional complex feature engineering or 

408 other information input. This paper introduces STL decomposition to the field of soil moisture 

409 prediction for the first time and demonstrates that the decomposition can effectively extract and 

410 separate long-term trend variation, periodic seasonal variation and random perturbation of soil 

411 moisture series in the plateau. The three component series obtained from the STL decomposition 

412 are extracted and fitted by a BiGRU and two LSTM models, and the best results are obtained. 

413 The RMSE of the combined model proposed in this paper reaches 0.01936, and the adjusted  �2

414 reaches 0.99330, which is a 5%-30% performance improvement over the single model or 

415 existing models. Meanwhile, the model proposed in this paper demonstrates the best stability in 

416 different prediction steps, especially in making long-range predictions, and the model proposed 

417 in this paper can balance the accuracy in predicting sequence morphology and time domain. It is 

418 demonstrated that the STL-based neural network combination model has high accuracy, 

419 robustness and effectiveness for soil moisture sequences in the plateau, which has high practical 

420 application value and shows the feasibility of applying deep learning methods to soil moisture 

421 prediction in the plateau. The proposed method also has reference value for other complex 

422 natural system time series prediction problems, such as soil state indicator sequences.

423
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Table 1 Main parameter settings of the BiGRU and LSTM models
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1 Table 1 Main parameter settings of the BiGRU and LSTM models

Parameter Value

Predicted time window size 24×365

Batch size 200

Training rounds 100

Number of hidden layer neurons 32

Number of model layers 1

Loss function MSE

Activation function ReLU

Optimizer Adam

2

3
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Table 2 RMSE predicted by different models for each component

PeerJ reviewing PDF | (2023:03:83266:1:1:NEW 28 Jun 2023)

Manuscript to be reviewed



1 Table 2 RMSE predicted by different models for each component

Trend Seasonal Remainder

GRU 0.00018 0.01669 0.00965

BiGRU 0.00011 0.01675 0.00962

LSTM 0.00013 0.01605 0.00949

BiLSTM 0.00015 0.01667 0.00958

RNN 0.00019 0.01814 0.00983

CNN-BiGRU 0.00401 0.04619 0.02450

2
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Table 3 Comparison of evaluation metrics across models for single-step forecasting
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1 Table 3 Comparison of evaluation metrics across models for single-step forecasting

Model RMSE MAE adjusted ��
STL-BiGRU-LSTM 0.01936 0.00462 0.99330

STL-RNN 0.02032 0.00501 0.99160

STL-BiGRU 0.02069 0.00552 0.99220

STL-LSTM 0.02512 0.00679 0.99276

STL-CNN-BiGRU 0.05287 0.02138 0.94997

STL-LSTM-Attention 0.02612 0.00830 0.98778

2

PeerJ reviewing PDF | (2023:03:83266:1:1:NEW 28 Jun 2023)

Manuscript to be reviewed



Table 4(on next page)

Table 4 RMSE of models with different prediction step sizes
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1 Table 4 RMSE of models with different prediction horizon

2 h 8 h 16 h 24 h
Model

RMSE Δ RMSE Δ RMSE Δ RMSE Δ
Proposed Model 0.02854 - 0.06105 - 0.08131 - 0.09426 -

STL-LSTM 0.03281 +������ 0.06967 +������ 0.09148 +������ 0.10393 +������

STL-BiGRU 0.03031 +����� 0.06687 +���	� 0.09194 +�	��
� 0.1012 +
�	��

LSTM 0.03564 +������ 0.06925 +�	��	� 0.10361 +�
��	� 0.11277 +������

LSTM-Attention 0.03525 +�	���� 0.06423 +����� 0.08627 +����� 0.10532 +���
	�

CNN-BiGRU 0.03102 +����� 0.06636 +��
�� 0.08787 +���
� 0.10208 +��	��

2
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Table 5 Comparison of DTW and TDI of each model
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1 Table 5 Comparison of DTW and TDI of each model

Proposed Model STL-LSTM STL-BiGRU LSTM
LSTM-

Attention
CNN-BiGRU

DTW 0.12798 0.13164 0.13808 0.14144 0.25624 0.21491

TDI 0.47729 0.56860 0.74114 0.61623 0.98432 0.85565

2
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Table 6 Comparison of prediction stability S of each model
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1 Table 6 Comparison of prediction stability  of each model�
Proposed 

Model
STL-LSTM STL-BiGRU LSTM

LSTM-

Attention
CNN-BiGRU

� × 1000 4.20 4.21 4.60 4.49 5.03 4.41

2
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Figure 1
Figure 1 Monthly temperature and precipitation in Ali Network area

PeerJ reviewing PDF | (2023:03:83266:1:1:NEW 28 Jun 2023)

Manuscript to be reviewed



Figure 2
Figure 2 Plateau soil moisture observation sequence and division of the training and test
set
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Figure 3
Figure 3 LSTM model expansion diagram
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Figure 4
Figure 4 The overall framework of the model
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Figure 5
Figure 5 STL decomposition results
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Figure 6
Figure 6 The prediction error of the model for the three components
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Figure 7
Figure 7 Comparison of the effects of different models on each component sequence
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Figure 8
Figure 8 Comparison of the prediction of different model and the prediction error of the
proposed model
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Figure 9
Figure 9 RMSE of each model in the generalization performance experiment
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