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The Ali Network data based on the Tibetan Plateau can provide representative coverage of
the climate and surface hydrometeorological conditions in the cold and arid region of the
Qinghai-Tibet Plateau (QTP). Among them, the plateau soil moisture can effectively
quantify the uncertainty of coarse resolution satellite and soil moisture models. Aiming at
constructing a soil moisture prediction model for the QTP, this paper proposes a combined
prediction model based on time series decomposition and a deep neural network. First, the
model is preprocessed and decomposed by seasonal and trend decomposition using loess
(STL), and the trend component, seasonal component and random remainder component
of the original time series are gained in an additive way. Then, a bidirectional gate
recurrent unit (BiGRU) model was used for the trend items, and a long short-term memory
artificial neural network (LSTM) model was used to extract the fitting time sequence
information for the seasonal component and the remainder component. Finally, the
predicted value of the plateau soil moisture content sequence was output by the model.
Based on the hourly data of soil moisture content at a depth of 5cm collected from the
AL02 site of Ali Network on the QTP during 2012-2016, the model RMSE was 0.01936 and
adjusted R2 to 0.99330. It is significantly better than LSTM without STL decomposition and
models with more complex structures, such as attention mechanisms or convolutional
neural network (CNN) filters. At the same time, the model is better than the single STL-
RNN, STL-BiGRU or STL-LSTM, which proves the effectiveness and accuracy of the
combined model proposed in this paper and shows the feasibility of the deep learning
method in the prediction of soil moisture in the plateau.
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9 Abstract: The Ali Network data based on the Tibetan Plateau can provide representative 

10 coverage of the climate and surface hydrometeorological conditions in the cold and arid region 

11 of the Qinghai-Tibet Plateau (QTP). Among them, the plateau soil moisture can effectively 

12 quantify the uncertainty of coarse resolution satellite and soil moisture models. Aiming at 

13 constructing a soil moisture prediction model for the QTP, this paper proposes a combined 

14 prediction model based on time series decomposition and a deep neural network. First, the model 

15 is preprocessed and decomposed by seasonal and trend decomposition using loess (STL), and the 

16 trend component, seasonal component and random remainder component of the original time 

17 series are gained in an additive way. Then, a bidirectional gate recurrent unit (BiGRU) model 

18 was used for the trend items, and a long short-term memory artificial neural network (LSTM) 

19 model was used to extract the fitting time sequence information for the seasonal component and 

20 the remainder component. Finally, the predicted value of the plateau soil moisture content 

21 sequence was output by the model. Based on the hourly data of soil moisture content at a depth 

22 of 5cm collected from the AL02 site of Ali Network on the QTP during 2012-2016, the model 

23 RMSE was 0.01936 and adjusted  to 0.99330. It is significantly better than LSTM without �2

24 STL decomposition and models with more complex structures, such as attention mechanisms or 

25 convolutional neural network (CNN) filters. At the same time, the model is better than the single 

26 STL-RNN, STL-BiGRU or STL-LSTM, which proves the effectiveness and accuracy of the 

27 combined model proposed in this paper and shows the feasibility of the deep learning method in 

28 the prediction of soil moisture in the plateau.
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32 1 Introduction

33 1.1 Background

34 As the highest plateau in the world, the Qinghai-Tibet Plateau (QTP) is an important 

35 ecological security barrier for the world, playing many roles in water conservation and 

36 biodiversity protection. As an important indicator of surface hydrological information, soil 

37 moisture plays an important role in regional energy and the land water cycle [1] and is an 

38 important parameter in hydrological, meteorological and environmental studies. Its temporal 

39 variation and spatial distribution regulate the pattern, diversity and succession characteristics of 

40 vegetation [2]. The main grassland type on the QTP is alpine grassland, and the soil moisture in 

41 the root layer is mainly affected by rainfall recharge factors. Therefore, an in-depth 

42 understanding of soil water dynamics is helpful to better understand soil water maintenance and 

43 predict the potential impact of future rainfall pattern changes on key processes of alpine steppe 

44 ecosystems [3]. It is of great significance to study the spatial and temporal variation pattern of 

45 surface soil moisture on the QTP and build a soil moisture prediction model based on long-term 

46 time series data for the study of alpine grassland ecological carrying capacity, ecological 

47 construction of grassland restoration and reconstruction, and meteorological disaster monitoring 

48 in the QTP.

49 1.2 Literature review

50 Time series generated by complex systems are ubiquitous in astronomy, hydrology, 

51 meteorology, environment, finance and other fields. Traditionally, time series in this field are 

52 often modeled using numerical models or traditional statistical methods, and predictions are 

53 made. Among them, traditional statistical learning modeling methods for the development of 

54 time series, namely, modern time series analysis, first came from the autoregressive (AR) model 

55 proposed by British statistician G.U. Yule in 1927. Beginning in the 1970s, the autoregressive 

56 integrated moving average (ARIMA) became a central topic for time series analysis. In the field 

57 of natural ecology, Tan and Zheng [4] used the ARIMA model to conduct a thorough study on 

58 the change trend of the ecological footprint of water resources in China. The results of the 

59 ARIMA (2, 1, 3) model showed that from 2008 to 2012, the per capita ecological footprint of 

60 water resources in China will continue to increase, and the water crisis will become increasingly 

61 severe. Zhou W et al. [5] used the differential integrated moving average autoregression model 
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62 and Holt-Winters exponential smoothing model to predict the surface subsidence in mining areas 

63 based on the induced ordered weighted average (IOWA) operator. In addition, modern numerical 

64 models have also been widely applied in this field. Su Z et al. [6], on the basic framework given 

65 by the European Centre for Medium-Range Weather Forecasts (ECMWF), used a series of 

66 interpolation methods and the current pointwise extended Kalman filter scheme to establish a 

67 numerical prediction model for soil moisture content in the QTP, which has obvious performance 

68 improvement compared with the old model.

69 However, with the development of sensors and Internet of Things technology, the sampled 

70 data from complex systems show multivariable and large-scale characteristics. At the same time, 

71 affected by system evolution and external interference, the data present characteristics such as 

72 nonstationarity and noise [7]. Traditional mathematical modeling methods have difficulty 

73 characterizing such complex relationships, and satisfactory results cannot be obtained in complex 

74 system modeling tasks. At this time, the application of relevant methods and technologies of 

75 machine learning and deep learning for time series analysis and prediction has become a research 

76 hotspot. Support vector machine (SVM) is a machine learning method based on statistical 

77 learning theory. Kim K et al. [8] used a support vector machine to predict the stock price index 

78 and tested the feasibility of the support vector machine for time series prediction through 

79 comparative experiments. Qing C et al. [9] proposed a new multifactor precipitation prediction 

80 model by integrating a time series model and support vector regression and accurately predicted 

81 summer precipitation in the Chifeng region. The recurrent neural network (RNN) in deep 

82 learning is a special kind of neural network that can store and extract dynamic information in 

83 time series through internal self-circulating neurons, and it is very suitable for processing time 

84 series data in ecosystems. However, the classical RNN model has the problem of gradient 

85 vanishing and gradient explosion, which makes it difficult to effectively utilize long-distance 

86 time series information. Long Short-Term Memory neural network (LSTM) solves this problem. 

87 It has the same structure as the standard RNN model, but it has a more refined internal 

88 processing unit. Kratzert F et al. [10] showed the potential of the LSTM as a regional 

89 hydrological model. The results proved that LSTM realized the long-term storage and updating 

90 of the state of the basin.  Yang X et al. [11] combined and applied Particle Swarm 

91 Optimization-LSTM (PSO-LSTM) and Bidirectional LSTM (BiLSTM) models to the 

92 precipitation and air temperature data to predict the glacially derived runoff. The results 
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93 presented in [11] provided a deeper understanding and a more appropriate method of predicting 

94 the glacially derived runoff in glacier-fed river basins. As a simplification and improvement of 

95 LSTM, gate recurrent unit (GRU) has achieved better results on some specific problems. Gao S 

96 et al. [12] proved that GRU and LSTM had similar performance in short-term river runoff 

97 prediction, while the GRU model had fewer model parameters and training calculations. Wang Q 

98 et al. [13] further explored the potential of the GRU model by introducing regional factors into 

99 the model and conducting multistep prediction, and the final model achieved good results.

100 Different from the above modeling of complex time series using a single model, many 

101 recent studies show that, especially in such complex nonstationary time series data, 

102 decomposition-based models have better performance than a single model. The common 

103 decomposition methods include Fourier transform (FT), wavelet decomposition (WD), empirical 

104 mode decomposition (EMD) and seasonal-trend decomposition using LOESS (STL). Li D et al. 

105 [14] noted that different decomposition methods are applicable to different data characteristics 

106 and fields. FT, WD and other methods often have strict mathematical assumptions, which limits 

107 the wide application of these methods. EMD and its derived CEEMDAN and other methods are 

108 completely based on the data-driven idea, but they often have problems such as modal aliasing or 

109 incomplete decomposition of random factors [15]. As a statistical method, STL decomposition 

110 has good adaptability to all kinds of time series data with different properties. The model based 

111 on STL decomposition has been applied to the prediction of time series of many complex 

112 systems. Ding J et al. [16] combined STL with a random forest model (RF) to investigate the 

113 influence of meteorological factors and precursor emission changes on ozone concentration. 

114 Based on the existing STL and LSTM models, Xu Z et al. [17] specifically processed and 

115 optimized the sequence boundary of runoff prediction, thus building a framework called 

116 SDIPBC. Qin L et al. [15] used the grasshopper optimization algorithm when STL was applied 

117 to passenger flow prediction, and the performance was improved to a certain extent.

118 By combining the existing research achievements, it can be found that the current time 

119 series modeling methods of scholars can be mainly divided into three aspects: the traditional 

120 mathematical modeling method, the machine learning method and the deep learning method. 

121 However, in the field of hydrology and meteorology in the QTP region, there are few studies on 

122 the analysis and prediction of long-term soil water content data using STL decomposition or 

123 deep learning methods. In this paper, based on STL decomposition, BiGRU and LSTM models 
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124 were used to build a combined plateau soil moisture prediction model, and the prediction effects 

125 were compared and analyzed to verify the effectiveness and accuracy of deep learning-related 

126 methods in the analysis and prediction of long-term plateau soil moisture data.

127

128 2 Data sources and research methods

129 2.1 Data sources and data preprocessing

130 The experiment to choose the soil moisture measured data from the National Qinghai-Tibet 

131 Plateau Scientific Data Center (http://dx.doi.org/10.11888/Soil.tpdc.270028) included the 

132 observation data of soil temperature and humidity of the QTP. The observational data in this data 

133 set consist of four in situ reference networks at regional scales, namely, the Naqu, Maqu, Ali and 

134 Pari networks with different climatic and vegetation types. The Ali network, which includes Ali 

135 and Shiquanhe, is in the southwest arid region of the QTP and mainly consists of desert steppe 

136 (Figure 1). At each station of Ali Network, soil moisture content with an accuracy of  is 10
‒ 5

137 recorded hourly at depths of 5, 10, 30, 50 and 80 cm. Based on previous research experience [18], 

138 it is known that microwave data can only reflect the surface soil moisture of a few centimeters, 

139 and considering that there is a large number of missing observational data of all sites of Ali 

140 Network before 2011, in this paper, soil moisture observation data recorded by the soil moisture 

141 sensor at a depth of 5cm at the AL02 site of Ali Network every one hour between 2012 and 2016 

142 were used for research.

143 This paper divides the data set according to the experience ratio of the training set and the 

144 test set of 8:2. Since the original data are time series data, the data are divided into the training 

145 set and the test set by taking 2015-9-16 0:00 as the partition node. Visualization of the training 

146 set and test set data is shown in Figure 2. Finally, the sequence was normalized to map it to the 

147 interval [-1,1].

148

149 2.2 Research methods

150 2.2.1 STL decomposition

151 The STL decomposition proposed by Cleveland R B et al. [19] decomposes the time series 

152 into trend, seasonal and remainder components. STL decomposition has good generality and 

153 robustness and is applicable to time series data of various cycles or frequencies. The core of the 
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154 algorithm is to extract the seasonal trend information contained in the time series more 

155 accurately by introducing local regression smoothing. STL decomposition represents the original 

156 sequence in the additive way as Equation (1):

157 x� = �� + �� + ��    (� = 1,2,3,…,�) #()

158 where  is the trend term,  is the seasonal term, and  is the remainder term.�� �� ��
159 The iterative process of the STL decomposition algorithm can be briefly described as 

160 follows:

161 1) Set the initial iteration value: .� = 0, ��� = 0

162 2) Detrending: .�� ‒ ���
163 3) Carry out smoothing on each detrended periodic subsequence, and the sequence 

164 obtained by combining all periodic subsequences is denoted as .�� + 1�
165 4) For , low-pass filtering is carried out using the three times sliding average and once �� + 1�
166 LOESS smoothing,  is obtained.�� + 1�
167 5) Calculate the seasonal terms: � .�� + 1� = �� + 1� ‒ �� + 1�
168 6) Calculate the trend term: The trend term  is obtained by LOESS smoothing �� + 1� x

�� ‒
169 .�� + 1�
170 7) If  converges or reaches the maximum number of iterations, the iteration terminates; �� + 1�
171 otherwise, go back to step 2).

172 The decomposition process of STL is mainly controlled by parameters ,  and . The �� �� ��
173 parameter  is the cycle length in the sequence, and the smoothing parameter of the periodic np

174 subsequence  is the parameter of the process in the third step. Generally, an odd number that is ��
175 slightly larger than the number of cycles contained in the original sequence is taken. The trend 

176 smoothing parameter  is the parameter of the LOESS process in the sixth step. Cleveland R B n�
177 suggests a minimum odd number greater than  in [19].

1.5��
1 ‒ 1.5/��

178 2.2.2 LSTM

179 The LSTM model is a kind of RNN model that was first proposed by Hochreiter and 

180 Schmidhuber in 1997 [20], which can solve the gradient disappearance and gradient explosion 

181 problems faced by RNNs in the process of long time series [21],which is specifically designed to 

182 avoid the long-term dependence problem (Figure 3). Compared with the traditional RNN model, 

183 the LSTM model can perform better in a longer time series. The hidden layer of the original 

184 RNN has only one state, so it is very sensitive to short-term input. The LSTM model adds 
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185 another state based on the RNN, which is used to store the long-term state, called the cell state.

186 At the present moment, LSTM has three inputs: the current input value , the output value x�
187 of the LSTM at the previous moment and the cell state of the LSTM at the previous moment ℎ� ‒ 1 

188 . There are two outputs: the LSTM output value at the current moment  and the cell state at �� ‒ 1 ℎ�
189 the current moment .��
190 LSTM implements this mode through three gating mechanisms in the algorithm, namely, 

191 the input gate, forget gate and output gate. The input gate and output gate are used to receive, 

192 output, and correct parameters. The input gate determines how much of the network's input  is ��
193 saved to the cell state at the current time. The output gate determines how much of the cell state 

194  is output to the current output value  of the LSTM. The forget gate determines how much of �� ℎ�
195 the cell state of the previous moment  is retained to the cell state of the current moment .�� ‒ 1 ��
196 The LSTM determines the final output value  as Equations (2)-(5). First, it calculates the ℎ�
197 activation state value  of the forget gate at the current moment :�� �
198 �� = �(�� ⊗ (��ℎ� ‒ 1) + ��)#()

199 where  is the sigmoid function and  represents dot multiplication. After the vector is �( ∙ ) ⊗

200 multiplied by the weight matrix, it is transformed by the activation function as a gated state.

201 Then, calculate the value of the input gate  and the value of the candidate state of the input i�
202 cell  at moment :�� �
203 �� = �(�� ⊗ (��ℎ� ‒ 1) + ��)
204 �� = �(�� ⊗ (��ℎ� ‒ 1) + �� #()

205 The updated value  of the cell state under the current time  can be obtained from the �� �
206 above calculation:

207 �� = �� ⊗ �� ‒ 1 + �� ⊗ �� #()

208 Finally, calculate the current output value of the output gate according to the update value 

209 of the cell state at the current time :�
210 �� = �(�0 ⊗ (��ℎ� ‒ 1) + �0)

211 ℎ� = �� ⊗ tanh (��) #()

212 2.2.3 BiGRU

213 GRU is a simplification of the LSTM model proposed by Cho et al. [22] in 2014. The 

214 LSTM model effectively alleviates the problem of gradient disappearance in the traditional RNN 

215 model. However, the shortcomings of the LSTM model, such as complex parameters and 
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216 difficult training, are gradually exposed, restricting the further application of LSTM. The GRU 

217 redesigns the internal structure of the LSTM unit based on the gating idea, thus reducing the 

218 computation time and training complexity.

219 Similar to the LSTM model, for the input sequence , the GRU can {�1,�2,�3,�,��,���}

220 successively obtain its hidden layer state  at time step  according to Equations (6)-(9):ℎ� �
221 �� = �(���� +  �� +  �ℎ� ℎ� ‒ 1 +  �ℎ�) #()

222 �� = �(���� +  �� +  �ℎ� ℎ� ‒ 1 +  �ℎ�) #()

223  �� = tanh (���� +  �� +  �� ⊗ (�ℎ�ℎ� ‒ 1 +  �ℎ�))  #()

224 ℎ� =  (1 ‒  ��) ⊗  �� +  �� ⊗  ℎ� ‒ 1#()

225 where  is the hidden layer state of time step ,  is the gated state updated at each ℎ� ‒ 1 � ‒ 1 ��,��,��
226 time step, is a sigmoid function, and  is the bias term.σ( ∙ ) b

227 BiGRU (bidirectional GRU) builds two reverse GRU models at the same time, modeling 

228 time sequence information forward and backward, and the output of each time step is the 

229 concatenation of the output of the two GRU models. It is generally believed that the BiGRU 

230 model can better extract the front and back dependencies in time series and has a better effect for 

231 sequences with a certain front or back correlation [23].

232 2.2.4 Combined prediction model

233 Figure 2 shows that the observed data of soil moisture have a very significant seasonal 

234 variation rule with a one-year cycle. Soil moisture in summer is much higher than that in the 

235 other three quarters, and the peak value of soil moisture in summer has a trend of gradual 

236 increase with the passage of time. Based on the nature of plateau soil moisture time series data, 

237 this paper combined STL decomposition with the BiGRU model and LSTM model and proposed 

238 a new neural network combination prediction model based on STL decomposition to make use of 

239 the information extraction ability of STL decomposition and the time series fitting ability of the 

240 neural network model simultaneously. The overall framework of the model is shown in Figure 4.

241 Based on a series of data preprocessing, the model first extracts the trend change 

242 information and periodic change information contained in the data through STL decomposition, 

243 and the original sequence is decomposed into the trend component, seasonal component and 

244 remainder component. During decomposition, to avoid data leakage and prove the effectiveness 

245 of the model, the subsequence as a training set was first decomposed alone, and then the whole 

246 sequence was decomposed to obtain the test set. Then, the BiGRU model is used for the obtained 
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247 trend component, and an LSTM model is used to fit the timing information for the seasonal 

248 component and the remainder component. Finally, the combined model extracts the hidden layer 

249 state of the last time step of each cyclic neural network model and outputs the predicted values of 

250 the three components through a fully connected layer. STL decomposed the sequence in an 

251 additive way, which made it convenient to model the three components independently. The 

252 predicted values of the three components were added to obtain the final prediction results for the 

253 plateau soil moisture content.

254

255 3 Experimental analysis

256 3.1 Performance metrics

257 In this experiment, the root mean square error (RMSE), mean absolute error (MAE) and 

258 adjusted goodness of fit (adjusted ) were used to compare the experimental results output by �2

259 each model and judge the model�s performance. Smaller values of RMSE and MAE indicate 

260 higher model accuracy. The closer  is to 1, the higher the prediction accuracy of the model is, �2

261 and the adjusted  eliminates the influence of sequence length and the number of features in the �2

262 model on the index so that the  of different models can be compared with each other. The �2

263 calculation formulas of RMSE, MAE, and adjusted  are shown in Equation (10), Equation (11) �2

264 and Equations (12)-(13), respectively.

265 ���� =
1� �∑� = 1

(� (�)���� ‒ � (�)����)2
= ��� #()

266 ��� =
1� �∑� = 1

|� (�)���� ‒ � (�)����| #()

267 �2
= 1 ‒ ∑� (�(�) ‒ �(�)

)
2∑� (� ‒ �(�)

)
2

 #()

268 Adjusted �2
= 1 ‒ (1 ‒ �2)(� ‒ 1)� ‒ � ‒ 1

 #()

269 where ,  and  represent the true value, the model estimated value and the sample sequence �(�) �(�) �
270 mean, respectively.  is the sequence length, and  is the number of features in the model.� �
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271 3.2 Experimental environment and parameter setting

272 The experimental environment adopted in this paper is an Intel Xeon 8358P 2.6 GHz CPU 

273 and NVIDIA RTX A5000 GPU, and the model is built based on PyTorch under Python 3.8.

274 The early stop mechanism is introduced in the first pretraining. When the training model 

275 loss function is without gain in 10 iterations, the iteration will be stopped. This measure can not 

276 only ensure the fitting accuracy of the model but also effectively prevent overfitting and save the 

277 training time of the model. The results of pretraining show that the model generally achieves the 

278 optimal effect when the iteration is approximately 80 times. Therefore, the training cycle is set as 

279 100 in the subsequent experiment in this paper. The results of pretraining also show that due to 

280 the powerful fitting ability of BiGRU and LSTM models, the model with a simple structure can 

281 already achieve sufficient fitting ability under the problem studied in this paper, while the overly 

282 complex model structure will make the performance worse. To make the model obtain as much 

283 historical information as possible and exclude too much noise at the same time, the prediction 

284 window size was set as one year, that is, 24×365 hours. Based on various considerations, the 

285 main super parameters and training parameters set in the model training process are shown in 

286 Table 1.

287

288 3.3 Experimental results and analysis

289 3.3.1 STL decomposition results

290 The plateau soil moisture data used in this study have an obvious annual cycle, and the data 

291 sampling frequency is once per hour. Therefore, the cycle length parameter  is set as 24×365 n�
292 hours, and the parameter  is set to 7, which is slightly larger than the number of cycles n�
293 contained in the data. The parameter  is determined according to the empirical rule described in n�
294 Section 2.2.1. The three components obtained by STL decomposition are shown in Figure 5.

295 According to the decomposition results, the STL algorithm can adequately extract the trend 

296 and periodic information contained in the sequence, and the seasonal term clearly shows the 

297 periodic variation in soil moisture in the plateau. The remainder sequence has a mean value of 0 

298 and fluctuates randomly nearby, which also proves that the STL decomposition adopted is 

299 effective. It can also be seen from Figure 5 that the plateau soil moisture showed an increasing 

300 trend during 2012-2016, but there was a low trough during 2014-2015.
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301 3.3.2 Prediction performance of the combined model

302 Figure 6 shows the prediction effect of the model on the three components and the resulting 

303 plateau soil moisture series on the test set. Figure 6(a) shows the fitting effect of the model on 

304 the sequence, and the residuals of the model on each component and the total sequence at each 

305 time are shown in the bar plot. Figure 6(b) is the comparison between the predicted value and the 

306 observed value. When the data points are scattered as much as possible along the diagonal line 

307 representing the completely accurate measurement, the prediction accuracy of the model is 

308 higher.

309 As seen from the Figure 6, the model has achieved a good fitting prediction effect on the 

310 plateau soil moisture content data. Except for a few anomalies, the remainder column in Figure 6 

311 is very short and converges near zero. For special sections, such as abrupt points and peak values, 

312 the model also gives accurate predicted values, which proves that the model can effectively 

313 extract the information contained in the plateau soil moisture content sequence and show good 

314 robustness to various situations.

315 In the experiment, the model of the three components was built and fitted. The comparative 

316 experimental data in Table 2 and Figure 7 show that for the trend component, the BiGRU model 

317 used in this paper is the best, while for the seasonal component and the remainder component, 

318 the adopted LSTM model has the best performance.

319 For the overall plateau soil moisture content sequence, the STL-RNN, STL-GRU and STL-

320 BiLSTM models were selected in this paper as single models under the premise of STL 

321 decomposition for performance comparison. STL-CNN-BiGRU and STL-LSTM-Attention were 

322 selected as representatives of more complex structural models for comparison, and LSTM was 

323 selected as a model without STL decomposition for comparison. The evaluation index values of 

324 each model are shown in Table 3 and Figure 8.

325 The combined model proposed in this paper achieved the best performance among all 

326 comparison models, and the RMSE decreased by 4.72%, 3.78% and 10.95% compared with the 

327 single models STL-RNN, STL-GRU and STL-BiLSTM, respectively. For STL-CNN-BiGRU, 

328 STL-LSTM-Attention with more complex structures and LSTM without STL decomposition, the 

329 combined model has a more obvious performance improvement, and the RMSE decreased by 

330 63.38%, 25.88% and 28.27%, respectively.

331 In practice, the multistep prediction effect of the model is of more important significance. In 
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332 this paper, the two comparison models with the best performance in the single-step prediction 

333 and the LSTM model without STL decomposition processing are taken as references to 

334 investigate the effects of the proposed model under different prediction horizons. The 

335 experimental results are shown in Table 4 and Figure 9.

336 The combined model proposed in this paper achieves the best performance under each 

337 prediction horizon. The RMSE of the combined model increased by 5.84%, 2.59%, 1.43% and 

338 7.52% at 2 h, 8 h, 16 h and 24 h compared with the single model after STL decomposition and 

339 increased by 9.80%, 11.84%, 13.15% and 8.28% compared with the LSTM without STL 

340 treatment, respectively. With the prediction horizon expanding, the prediction effect of the 

341 combined model has a gradually increasing trend compared with the performance improvement 

342 of other models, which proves the feasibility of the model proposed in this paper in practice.

343

344 4 Generalized performance analysis

345 Aiming to further investigate the generalization performance of the proposed model, in this 

346 part, the proposed combined model is used to make a fitting prediction of the soil heat flux time 

347 series data, and the same comparison model is selected as in Section 3.3. The soil heat flux time 

348 series data were obtained from the National Qinghai-Tibet Plateau Scientific Data Center 

349 (http://dx.doi.org/10.11888/Meteoro.tpdc.270910). In this paper, observations from the BJ site of 

350 the Naqu Station of Plateau Climate and Environment (NPCE-BJ) at a soil depth of 10 cm during 

351 2007-2013 were taken [23]. The data were not missing in the selected time period. The study of 

352 Ma et al. [24] shows that this series also has obvious periodic and trend changes, and its data 

353 characteristics are similar to the soil moisture content series investigated in this paper, which is 

354 suitable to be used as the data set for generalization performance analysis. The experimental 

355 results are shown in Table 5 and Figure 10.

356 The results of the experiment show that the model also shows optimal performance 

357 compared with the comparison model on the new data set. Under 1, 2, 8, 16 and 24 h step 

358 prediction horizons, the combined model proposed in this paper generally has a performance 

359 improvement of 3%-5% compared with the single model in the comparison model. Compared 

360 with the more complex STL-CNN-BiGRU or STL-LSTM-Attention, the performance improved 

361 by 10-70%. The results of this experiment prove that the model proposed in this paper has strong 

362 generalization ability in the study of QTP geography, climate and other fields.
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363

364 5 Conclusion

365 Based on the hourly data of soil moisture content at a depth of 5cm collected from the AL02 

366 site of Ali Network over the QTP from 2012 to 2016, a new combined plateau soil moisture 

367 prediction model was constructed by using STL decomposition, BiGRU and LSTM, and the 

368 prediction effect was compared and analyzed with other structural models. The results show that 

369 (1) STL decomposition can effectively extract and separate the long-term trend changes, periodic 

370 seasonal changes and random disturbances of soil moisture series on the plateau. (2) A BiGRU 

371 and two LSTM models were used to extract and fit the three subsequences obtained by STL 

372 decomposition, and the best results were obtained. (3) The RMSE of the combined model 

373 proposed in this paper reaches 0.01936, and the goodness of fit of adjustment  reaches 0.99330, �2

374 which is significantly higher than the LSTM without STL decomposition preprocessing and the 

375 neural network combined model with a more complex structure, such as using the attention 

376 mechanism or with the CNN layer. (4) The combined model proposed in this paper shows 

377 greater advantages in multistep prediction than in single-step prediction, which proves that the 

378 STL-based neural network combined model presented in this paper shows high accuracy, 

379 robustness and effectiveness for the plateau soil moisture sequence and has high practical 

380 application value. It also shows the feasibility of applying the deep learning method to plateau 

381 soil moisture prediction or other physical geography fields.

382

383 Author Contributions: Conceptualization, T.L.; methodology, X.J.; formal analysis, T.L.; data 

384 curation, X.J.; supervision, B.Z.; writing�original draft preparation, T.L.; writing�review and 

385 editing, B.Z. All authors have read and agreed to the published version of the manuscript.

386 Funding: This research received no external funding.

387 Data Availability Statement: The data used in this article is from the public data set 

388 (http://dx.doi.org/10.11888/Soil.tpdc.270028).

389 Conflicts of Interest: The authors declare no conflicts of interest.

390

391 References

392 [1] Milly P C D, Dunne K A. Sensitivity of the global water cycle to the water-holding capacity of land[J]. 

393 Journal of climate, 1994, 7(4): 506-526.

PeerJ reviewing PDF | (2023:03:83266:0:0:CHECK 8 Mar 2023)

Manuscript to be reviewed



394 [2] Zhu X C, Shao M A, Zhu J T, et al. Temporal stability of surface soil moisture in Alpine Meadow 

395 Ecosystem on Northern Tibetan Plateau[J]. Trans Chin Soc Agric Mach, 2017, 48(8): 212-218.

396 [3] Xing Y, Jiang Q G, Li W Q, et al. Landscape spatial patterns changes of the wetland in Qinghai-Tibet 

397 Plateau[J]. Ecol Environ Sci, 2009, 18(3): 1010-1015.

398 [4] Tan X J, Zheng Q Y. Dynamic analysis and forecast of water resources ecological footprint in China[J]. 

399 Acta Ecologica Sinica, 2009, 29(7): 3559-3568.

400 [5] Zhou W, Zhang W, Yang Y, et al. A combined model prediction method for surface subsidence 

401 monitoring in mining areas[J]. Journal of Geodesy and Geodynamics, 2021, 41(3): 308-312.

402 [6] Su Z, De Rosnay P, Wen J, et al. Evaluation of ECMWF's soil moisture analyses using observations on 

403 the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5304-5318.

404 [7] Han Z, Zhao J, Leung H, et al. A review of deep learning models for time series prediction[J]. IEEE 

405 Sensors Journal, 2019, 21(6): 7833-7848.

406 [8] Kim K. Financial time series forecasting using support vector machines[J]. Neurocomputing, 2003, 55(1-

407 2): 307-319.

408 [9] Qing C, Xiaoli Z, Kun Z. Research on precipitation prediction based on time series model[C]//2012 

409 International conference on computer distributed control and intelligent environmental monitoring. IEEE, 

410 2012: 568-571.

411 [10] Kratzert F, Klotz D, Brenner C, et al. Rainfall�runoff modelling using long short-term memory (LSTM) 

412 networks[J]. Hydrology and Earth System Sciences, 2018, 22(11): 6005-6022.

413 [11] Yang X, Maihemuti B, Simayi Z, et al. Prediction of Glacially Derived Runoff in the Muzati River 

414 Watershed Based on the PSO-LSTM Model[J]. Water, 2022, 14(13): 2018.

415 [12] Gao S, Huang Y, Zhang S, et al. Short-term runoff prediction with GRU and LSTM networks without 

416 requiring time step optimization during sample generation[J]. Journal of Hydrology, 2020, 589: 125188.

417 [13] Wang Q, Zheng Y, Yue Q, et al. Regional characteristics� impact on the performances of the gated 

418 recurrent unit on streamflow forecasting[J]. Water Supply, 2022, 22(4): 4142-4158.

419 [14] Li D, Jiang F, Chen M, et al. Multi-step-ahead wind speed forecasting based on a hybrid decomposition 

420 method and temporal convolutional networks[J]. Energy, 2022, 238: 121981.

421 [15] Qin L, Li W, Li S. Effective passenger flow forecasting using STL and ESN based on two improvement 

422 strategies[J]. Neurocomputing, 2019, 356: 244-256.

423 [16] Ding J, Dai Q, Fan W, et al. Impacts of meteorology and precursor emission change on O3 variation in 

424 Tianjin, China from 2015 to 2021[J]. Journal of Environmental Sciences, 2023, 126: 506-516.

425 [17] Xu Z, Mo L, Zhou J, et al. Stepwise decomposition-integration-prediction framework for runoff 

426 forecasting considering boundary correction[J]. Science of The Total Environment, 2022, 851: 158342.

427 [18] Yan F, Wang Y. Estimation of soil moisture from Ts-EVI feature space[J]. Acta Ecologica Sinica, 2009, 

428 9: 4884-4891.

429 [19] Cleveland R B, Cleveland W S, McRae J E, et al. STL: A seasonal-trend decomposition[J]. J. Off. Stat, 

430 1990, 6(1): 3-73.

431 [20] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.

PeerJ reviewing PDF | (2023:03:83266:0:0:CHECK 8 Mar 2023)

Manuscript to be reviewed



432 [21] Rakthanmanon T, Campana B, Mueen A, et al. Searching and mining trillions of time series subsequences 

433 under dynamic time warping[C]//Proceedings of the 18th ACM SIGKDD international conference on 

434 Knowledge discovery and data mining. 2012: 262-270.

435 [22] Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-

436 decoder for statistical machine translation[J]. arXiv preprint arXiv:1406.1078, 2014.

437 [23] Zhu Q, Zhang F, Liu S, et al. A hybrid VMD�BiGRU model for rubber futures time series forecasting[J]. 

438 Applied Soft Computing, 2019, 84: 105739.

439 [24] Ma Y, Hu Z, Xie Z, et al. A long-term (2005�2016) dataset of hourly integrated land�atmosphere 

440 interaction observations on the Tibetan Plateau[J]. Earth System Science Data, 2020, 12(4): 2937-2957.

PeerJ reviewing PDF | (2023:03:83266:0:0:CHECK 8 Mar 2023)

Manuscript to be reviewed



Table 1(on next page)

Table 1 Main parameter settings of the BiGRU and LSTM models
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1 Table 1 Main parameter settings of the BiGRU and LSTM models

Parameter Value

Predicted time window size 24×365

Batch size 200

Training rounds 100

Number of hidden layer neurons 32

Number of model layers 1

Loss function MSE

Activation function ReLU

Optimizer Adam

2

3
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Table 2(on next page)

Table 2 RMSE predicted by different models for each component
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1 Table 2 RMSE predicted by different models for each component

Trend Seasonal Remainder

GRU 0.00018 0.01669 0.00965

BiGRU 0�000�� 0.01675 0.00962

LSTM 0.00013 0�0��0� 0�00���

BiLSTM 0.00015 0.01667 0.00958

RNN 0.00019 0.01814 0.00983

CNN-BiGRU 0.00401 0.04619 0.02450

2
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Table 3 Comparison of evaluation indexes of each model
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1 Table 3 Comparison of evaluation indexes of each model

Model RMSE MAE  �������� ��
STL-BiGRU-LSTM ����	
� ������
 ��		

�

STL-RNN 0.02032 0.00501 0.99160

STL-GRU 0.02012 0.00483 0.99276

STL-BiLSTM 0.02174 0.00572 0.99155

STL-CNN-BiGRU 0.05287 0.02138 0.94997

STL-LSTM-Attention 0.02612 0.00830 0.98778

LSTM 0.02699 0.00862 0.98945

2
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Table 4(on next page)

Table 4 RMSE of models with different prediction step sizes
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1 Table 4 RMSE of models with different prediction step sizes

2 h 8 h 11 h 24 h
M����

RMSE Δ RMSE Δ RMSE Δ RMSE Δ
STL-BiGRU-LSTM ������� - ���1��� - ������� - ������1 -

STL-LSTM 0.03081 +7.95% 0.06267 +2.65% 0.08248 +1.45% 0.10193 +8.14%

STL-GRU 0.03031 +6.20% 0.06687 +9.53% 0.09194 +13.09% 0.1012 +7.36%

LSTM 0.03164 +10.86% 0.06925 +13.43% 0.09361 +15.14% 0.10277 +9.03%

2
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Table 5 Experimental results of generalization performance
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1 Table 5 E����� �!"#$ results of generalization ���p%� #!&�

1 h 2 h 8 h 1' h 24 h
()*+,

RMSR Δ RMSR Δ RMSR Δ RMSR Δ RMSR Δ

STL-BiGRU-

LSTM
0.05308 - 0.06641 - 0.09137 - 0.09615 - 0.09956 -

STL-GRU 0.05457 +2.81% 0.06865 +3.38% 0.09402 +2.91% 0.10038 +4.40% 0.10259 +3.05%

STL-RSS 0.05583 +5.18% 0.06960 +4.80% 0.09608 +5.16% 0.09951 +3.49% 0.10394 +4.40%

STL-.SS/

B2345
0.09413 +77.34% 0.09776 +47.22% 0.10547 +15.43% 0.10686 +11.15% 0.10670 +7.17%

LSTM 0.05613 +5.75% 0.07412 +11.62% 0.09682 +5.97% 0.10280 +6.92% 0.10358 +4.03%

STL-LSTM-

Attention
0.07150 +34.70% 0.11533 +73.67% 0.13886 +51.99% 0.13447 +39.86% 0.13973 +40.35%

2
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Figure 1
Figure 1 The location of the AL02 site on AL021
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Figure 2
Figure 2 Plateau soil moisture observation sequence and division of the training and test
set
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Figure 3
Figure 3 LSTM model expansion diagram
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Figure 4
Figure 4 The overall framework of the model

PeerJ reviewing PDF | (2023:03:83266:0:0:CHECK 8 Mar 2023)

Manuscript to be reviewed



Figure 5
Figure 5 STL decomposition results
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Figure 6
Figure 6 Model prediction performance on the test set
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Figure 7
Figure 7 Comparison of the effects of different models on each component sequence
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Figure 8
Figure 8 RMSE comparison of each model on the test set

PeerJ reviewing PDF | (2023:03:83266:0:0:CHECK 8 Mar 2023)

Manuscript to be reviewed



Figure 9
Figure 9 RMSE and improvement percentage of the model under different predictions

PeerJ reviewing PDF | (2023:03:83266:0:0:CHECK 8 Mar 2023)

Manuscript to be reviewed



Figure 10
Figure 10 Percentage performance improvement compared to the comparison model in
the generalization performance experiment
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