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ABSTRACT
Enterotypes of the human gut microbiome have been proposed to be a powerful
prognostic tool to evaluate the correlation between lifestyle, nutrition, and disease.
However, the number of enterotypes suggested in the literature ranged from two to
four. The growth of availablemetagenomedata and the use of exact, non-linearmethods
of data analysis challenges the very concept of clusters in the multidimensional space
of bacterial microbiomes. Using several published human gut microbiome datasets
of variable 16S rRNA regions, we demonstrate the presence of a lower-dimensional
structure in the microbiome space, with high-dimensional data concentrated near a
low-dimensional non-linear submanifold, but the absence of distinct and stable clusters
that could represent enterotypes. This observation is robust with regard to diverse
combinations of dimensionality reduction techniques and clustering algorithms.

Subjects Bioinformatics, Genomics, Microbiology, Gastroenterology and Hepatology, Data
Science
Keywords Human gut microbiome, Dimensionality reduction, Clustering, Enterotypes

INTRODUCTION
The human gut is populated by a diverse community of microorganisms. The microbiome
of an individual gut settles in several years after birth and, by rough estimates, contains
more than a thousand genera of bacteria (Gilbert et al., 2018). Gut microbiota forms
a dynamic ecosystem whose composition tends to be constant during the life of an
individual but varies between individuals and may significantly depend on external and
internal factors. The initial sequencing of the gut biota revealed that its composition
tends to form discrete groups (enterotypes) consisting predominantly of taxa Bacteroides,
Prevotella, and Ruminococcus (Arumugam et al., 2011). Enterotypes have been reported
in Arumugam et al. (2011) as ‘‘densely populated areas in a multidimensional space of
community composition’’ which ‘‘are not as sharply delimited as, for example, human
blood groups’’.

In Costea et al. (2017) this concept was revisited, suggesting a more careful definition
reflecting non-discrete structure and non-uniform density of the microbial composition.
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Figure 1 Examples of the clustering partitions. (A) Clusters as well-separated sets of points; (B) clusters
as regions of points with a higher density than the background; (C) absence of clusters, but presence of the
low-dimensional structure. Similar distinction also applies for non-convex clusters. Colors indicate differ-
ent clusters.

Full-size DOI: 10.7717/peerj.15838/fig-1

Still, many recent papers consider enterotypes as discrete clusters in the relative taxonomic
abundance, and here we attempt to follow this approach, but in a more rigorous way. From
a geometric point of view, clusters are defined as dense areas separated by sparse regions.
Clustering is a process of assigning a finite set of objects to separate groups and identifying
the natural structure of the data when the relationship between objects is represented as a
metric, e.g., the Euclidean distance (Maronna, Charu & Chandan, 2015). Enterotypes may
be defined either as well-separated clusters without points between them or as regions with
a higher density of data points, indicating preferential clustering, as shown in Figs. 1A and
1B, respectively. We address both cases using diverse methods and metrics, sensitive for
either the first or both types of clusters.

A major current challenge is to determine the existence of enterotypes via ‘‘a thorough
quantitative investigation of established clustering methods and tests for microbiome
data’’ (Knights et al., 2014). Published studies rely on similar approaches yet differ in the
exact number of enterotypes ranging from two (Li et al., 2018; Yin et al., 2017; Chen et al.,
2017;Nakayama et al., 2017; Kang et al., 2016;Nakayama et al., 2015;Wang et al., 2014;Ou
et al., 2013; Wu et al., 2011) to three (Wu et al., 2017; De Moraes et al., 2017; Vieira-Silva
et al., 2016; Emoto et al., 2016; Robles-Alonso & Guarner, 2013) and four (Gotoda, 2015).
In most papers the presence of enterotypes in the microbiome data is determined by
clustering of the data into K groups, with K selected by optimization of some metric of the
clustering partition quality. The resulting segregation is then visualized in the projection to
the first two or three principal components from the principal components analysis (PCA).
This approach is general and may involve various intermediate steps, different clustering
algorithms, and a variety of metrics; however, it has certain flaws. For example, the PAM
method used in many studies may yield erroneous results for density-based clusters. Also,
widely used in the studies partition quality metrics such as the Calinski–Harabasz Index
(Calinski & Harabasz, 1974) and the Silhouette score (Rousseeuw, 1987) are naturally higher
for convex clusters and may fail to detect density-based partition since they rely on the
estimation of inter-cluster variance and cluster centers.

Bulygin et al. (2023), PeerJ, DOI 10.7717/peerj.15838 2/30

https://peerj.com
https://doi.org/10.7717/peerj.15838/fig-1
http://dx.doi.org/10.7717/peerj.15838


Another common problem is the small size of datasets in comparison to their
dimensionality. The direct application of standard clustering methods for small and
high-dimensional datasets, performed in most of the works, may lead to unreliable results
due to the curse of dimensionality. Clustering implies the notion of dissimilarity between
data samples. When the data dimensionality increases, the concepts of proximity, distance,
or nearest neighbor become less qualitatively meaningful, especially for the commonly used
Euclidean or Manhattan distances (Aggarwal, Hinneburg & Keim, 2001). For example, the
distance to the nearest data point approaches the distance to the farthest data point (Beyer
et al., 1999). The lack of data further amplifies this problem since the data point cloud in
a high-dimensional space becomes sparse, yielding unreliable estimates of the probability
density due to the non-asymptotic lower bound for the regression error (Kohler, Krzyzak
& Walk, 2009; Ibragimov & Has’minskii, 1981). One straightforward way to overcome it is
to reduce the data dimensionality by PCA. However, this would allow one only to find an
affine subspace containing most of the data variance. It may not be sufficient to effectively
decrease the data dimensionality without significant loss of information when the data lies
near a non-linear low-dimensional manifold.

Inconsistency in the number of enterotypes found in different works and the aggravating
factors described above undermine the very notion of enterotypes. Several studies
demonstrated the possibility of a gradient distribution and the absence of well-defined
clusters (Jeffery et al., 2012; Yatsunenko et al., 2012; Claesson et al., 2012; Cheng & Ning,
2019; Costea et al., 2017). Different structures of enterotypes between males and females
were claimed by Oki et al. (2016). In several works, the very concept of enterotypes
was described as inconsistent and uncertain (Knights et al., 2014; Jeffery et al., 2012).
Factors such as the variation in the microbial load between samples (Vandeputte et
al., 2017), robustness of enterotypes clusters (Huss, 2014), and microbiome variation
during short periods of time (Knights et al., 2014) were considered limiting to the use
of the enterotype concept. However, enterotyping of the human gut has been applied
in clinical research. Published studies claimed correlations between enterotypes and
diet (Chen et al., 2017; Nakayama et al., 2017; Kang et al., 2016; Nakayama et al., 2015;
Wu et al., 2011; Klimenko et al., 2018; Shankar et al., 2017; Liang et al., 2017; Xia et al.,
2013), inflammatory gut diseases (Vieira-Silva et al., 2019; Castaño Rodríguez et al., 2018;
Moser, Fournier & Peter, 2017; Dlugosz et al., 2015; Chiu et al., 2014; Huang et al., 2014;
De Wouters, Doré & Lepage, 2012), mental health (Lee et al., 2020), acne (Deng et al.,
2018), stool composition (Tigchelaar et al., 2015; Vandeputte et al., 2015), colorectal
cancer (Thomas et al., 2016), circulatory diseases (Emoto et al., 2016; Jie et al., 2017;
Franco-de Moraes et al., 2017), psoriasis (Codoñer et al., 2018), and infections such as
AIDS (Noguera-Julian et al., 2016) and influenza (Qin et al., 2015; Shortt et al., 2018). The
idea that information about the enterotype of an individual may be a helpful biomarker
not only to correct gut diseases but also to aid other medical interventions (Gilbert et al.,
2018) relies on the assumption that enterotypes are discontinuous clusters that are stable
in time at least on the short scale; this has been challenged recently (Cheng & Ning, 2019).

Here, we look for balanced, stable, and distinct clusters in large stool microbiome
datasets. Balance implies that each cluster should contain a sufficient number of points to

Bulygin et al. (2023), PeerJ, DOI 10.7717/peerj.15838 3/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.15838


be considered as a potential enterotype. Stability means that clusters should not depend on
data bootstrapping, and transformations that preserve the general form of the data point
cloud. Meaningful clusters should not disappear if the dataset is changed in a non-essential
way. Partition of the data into distinctive clusters should correspond to high values of an
appropriate clustering validity index that is applicable both for convex and density-based
clusters. In other words, there should be separating gaps seen as space regions with a lower
concentration of points, whereas clusters correspond to areas of highest concentration.
All these requirements are addressed by appropriate metrics and methods, described in
‘Materials & Methods’. To ensure accurate analysis of the high-dimensional data, we
introduce two new intermediate steps into the common pipeline for the microbiome
clustering analysis: estimation of the intrinsic dimension and manifold learning. These
steps allowed us to significantly reduce data dimensionality while preserving most of the
information. Using such low-dimensional representation of the data, we demonstrate the
absence of stable and distinct clusters in several large datasets of 16S rRNA-genotyped stool
samples. This absence of natural clusters is seen in the example in Fig. 1C.

MATERIALS & METHODS
As the main source of the human gut microbiome data, we used the 16S rRNA genotype
data from the NIH Human Microbiome Project (HMP) (The Human Microbiome Project
Consortium, 2012a; The Human Microbiome Project Consortium, 2012b) and American
Gut Project (AGP) (McDonald et al., 2018). These largest available datasets provide
a sufficient number of data points for correct estimation of the clustering partition
and constructing a manifold (Psutka & Psutka, 2015). Both datasets were collected in
the United States. No patterns driven by geography or lifestyle were explicitly taken
into account in our framework. We did not use longitudinal sampled microbiota
datasets, as we were not concentrating on the dynamics of enterotypes, but rather
on their existence. Similarly, we did not use shotgun sequencing data (Pasolli et al.,
2017), as its characterized taxonomy composition is limited to sequenced genomes.
We used 4,587 HMP samples from stool and rectum body sites downloaded from
the Human Microbiome Project (https://portal.hmpdacc.org) and 9,511 samples from
AGP downloaded from figshare (https://figshare.com/articles/dataset/American_Gut_
Project_fecal_sOTU_relative_abundance_table/6137198) as abundance matrices. For
comparison with the original research (Arumugam et al., 2011), we analyzed Sanger (Gill et
al., 2006), Illumina (Qin et al., 2010), and Pyroseq (Turnbaugh et al., 2008) datasets from
(http://www.bork.embl.de/Docu/Arumugam_et_al_2011/). The results are presented in Text
S3, Table S2, Figs. S2–S5. All datasets were normalized by dividing Operational Taxonomic
Units (OTUs) values by the total sumof abundances for a given data sample. AnOTU found
in less than 1% of the samples or with a standard deviation less than 0.001 were removed to
ease the preprocessing step. To account for outliers with microbiome dominated by single
or few species, e.g., in patients with extreme gut microbiota we repeated the analysis, for
the HMP and AGP datasets with removed OTUs accounting for >70% abundance. The
results were consistent, see Text S5, Tables S3–S4, Figs. S8–S15.
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As the first step of dimensionality reduction after preprocessing, we use PCA to identify
a medium-dimensional linear subspace retaining almost all data cloud variation. The
dataset projected on this subspace does not significantly differ from the original dataset,
while removing dimensions with low variance acts as a filter that provides a more robust
clustering (Ben-Hur & Guyon, 2003). We preserve the variances after projection, since
removing them may hinder the subsequent clustering process and lead to erroneous
results. Instead of limiting the dimensionality reduction process solely to PCA, as in
previous studies, we then determine the intrinsic dimension of the projected data via
the maximum likelihood estimation (MLE) (Levina & Bickel, 2004). This step allows for
capturing a minimal but sufficient number of coordinates representing the most important
features of the dataset. Following themanifold hypothesis (Fefferman, Mitter & Narayanan,
2016), we suppose that a microbial data cloud lies near some lower-dimensional manifold
embedded in the high-dimensional abundance space. The goal of non-linear manifold
learning is to obtain a low-dimensional representation of the data, supposedly lying on
such a manifold, while preserving most of the information. This information may be
expressed as similarities or dissimilarities between data points, e.g., as a matrix of pairwise
distances. At that non-linear projections per se are not interesting, since any data cloud
could perfectly lie on a one-dimensional submanifold.

While this one-dimensional submanifold yields a perfect alignment in terms of
minimization of the distance between the original data point and its projection, it does not
preserve information in terms of pairwise distances. Therefore, it is important to assess
the quality of embeddings provided by manifold learning algorithms. Proper embedding
should preserve local and global structure, e.g., points that are close in the original
space should remain close in the embedding space. Given the intrinsic dimension, we
further reduce data dimensionality using several manifold learning algorithms, namely:
Isomap (Tenenbaum, De Silva & Langford, 2000), locally linear embedding (LLE) (Zhang &
Wang, 2007), denoising autoencoder (AE) (Goodfellow, Bengio & Courville, 2016), spectral
embedding (SE) (Shi & Malik, 2000), t-distributed Stochastic Neighbor Embedding (t-
SNE) (Van Der Maaten & Hinton, 2008), and uniform manifold approximation and
projection (UMAP) (McInnes et al., 2018). A detailed description of these algorithms
and their pros and cons is beyond the scope of this article. These methods are conceptually
different and susceptible mostly for quantitative comparison, rather than qualitative. A
short description is provided in Table S5. For each manifold learning algorithm, dataset,
and taxonomic level, we obtain a low-dimensional embedding. To find the near-optimal
hyperparameters of the manifold learning algorithm for a specific dataset and taxonomic
level, we iterate over various combinations of hyperparameters. For each combination,
we assess how well an embedding produced by an algorithm with this combination of
parameters, represents the original data.

We selected a computationally feasible hyperparameters range, with reasonable
values, according to our expectation of the number of clusters and common machine
learning practice. To ensure reproducibility of the results, we restricted the number of
hyperparameter combinations from eight to 40, depending on the algorithm. For details
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on the training procedures and hyperparameters choice, refer to the software link in the
‘Data Availability’ section.

To compare the dimensionality reduction algorithms with regard to the loss of
information, we construct an inverse mapping from the obtained low-dimensional
manifold back to the original space using k-nearest neighbors regression (Fix & Hodges,
1989) with five nearest neighbors and distance weighting. Then, we estimate the
reconstruction error using the Leave-One-Out procedure (Ruppert, 2004). We report the
resulting error as median of the absolute error (MAE) across all reconstructed points. This
technique assesses how well points coordinates in the original space can be reconstructed
given their neighbors from the embedding space. Inverse mapping from the embedding to
the original space is usually performed by a supervised learning algorithm that minimizes
the reconstruction error. Selecting an algorithm, its hyperparameters, and different ways to
train it would bring ambiguity into our method. Moreover, the MAE alone is an intractable
metric that does not showwhat aspect of the data cloud has beenmisrepresented. Therefore,
we apply two additional criteria of quality of dimensionality reduction (Lee & Verleysen,
2010). These criteria, Qloc and Qglob, represent the preservation of the ‘‘local’’ and the
‘‘global’’ structure and are described in Text S1. It should be noted that Qglob is a more
important metric for the studied problem since local distortion of the data should not
significantly impact the clustering partition that may be implicitly present in the data.
Given hyperparameters that deliver the lowest MAE, we iteratively discard up to 10% of
initial data points with the highest reconstruction MAE, which serves as denoising for a
more stable clustering in the embedding space. It does not affect the clustering partition
results, since these data points are outliers as determined by the Local Outlier Factor
algorithm (Breunig et al., 2000). The latter allows for detecting outliers by deviation of their
local density with respect to their neighbors, from which it follows that they are not related
to any cluster as the latter are densely populated areas in a multidimensional space.

For each low-dimensional embedding, we apply several clustering methods-Spectral
Clustering (Shi & Malik, 2000; Von Luxburg, 2007), PAM, and Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) (McInnes & Healy, 2017). A
detailed description of these algorithms and their pros and cons is beyond the scope of this
article, while a short description is provided in Table S6. HDBSCAN and spectral clustering
are useful when the structure of the clusters is arbitrarily shaped and non-convex. We use
PAM as a baseline and for comparison with related works. For each clustering method, we
iterate over a set of hyperparameter combinations to find a partition that yields the best
clustering validity metrics. As a result, we obtain more robust results not biased by the
peculiarities of the algorithms and the choice of hyperparameters.

Clustering metrics based on the ratio of within-cluster compactness to between-cluster
separation, like the Calinski–Harabasz index (Calinski & Harabasz, 1974), the Silhouette
score (Rousseeuw, 1987), and the Davies–Bouldin index (Davies & Bouldin, 1979) cannot
handle arbitrarily shaped clusters and noise in the form of low-density points scattered
around dense clusters areas. Thus, as the main metric for clustering validity, we consider
Density-Based Clustering Validation (DBCV) (Moulavi et al., 2014), which accounts
for both density and shape properties of clusters, tolerates noise, and is appropriate
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for detecting density-based clusters. We assess the clustering partition stability using
prediction strength (Tibshirani & Walther, 2005) initially proposed for estimating the
number of clusters, which tells us how well the decision boundaries of the clustering
partition, calculated on a data subset, generalize the data distribution. In addition, to be
considered as a stable enterotype, a cluster should contain a sufficiently large number of
data points. Hence, we do not consider spurious clusters that contain less than 5% of data
assuming that such clusters are outliers or artifacts of dimensionality reduction algorithms.
Indeed, they are small, depend on manifold learning algorithms, and are separated from
the main data point cloud. Nevertheless, they significantly impact the clustering quality
metrics. To detect such imbalanced partitions, we use Shannon Entropy (Shannon, 1948)
of the probability distribution of data points to be in a certain cluster. All these metrics are
described in detail in Text S1.

To identify the optimal clustering, we compare DBCV, prediction strength, and entropy
for each partition respective to different clustering hyperparameters. A balanced clustering
partition that corresponds to separation of the data cloud into distinct and stable clusters
should produce a salient local maximum of the DBCV score, Entropy value, and Prediction
Strength. Also, following previous studies, for each clustering partition, we calculate
the Davies–Bouldin Index and the Silhouette score. Lower Davies–Bouldin Index and
higher Silhouette score correspond to better partitions, where clusters are better in terms of
compactness and separation.We summarize all steps described above in a single framework
schematically shown in Fig. 2.

To demonstrate the continuous nature of the stool microbial data distribution,
we construct 2D and 3D coordinate projections of the data using t-distributed
stochastic neighbor embedding (t-SNE) (Van Der Maaten & Hinton, 2008) and UMAP
algorithms (McInnes et al., 2018). For most dimensionality reduction methods, validity
indices, and metrics, implementations from the ‘scikit-learn‘ library (Pedregosa et al., 2011)
were used. For the HDBSCAN clustering method and the DBCV metric the ‘hdbscan‘
package (McInnes & Healy, 2017) from the ‘scikit-learn-contrib‘ was used. For the UMAP
algorithm we applied the implementation from the ‘umap-learn‘ library (McInnes et al.,
2018).

RESULTS
Data preprocessing
The numbers of objects for both datasets and their dimensionality d in the relative taxon
abundance space, before and after preprocessing, are presented in Table 1. The datasets
were analyzed at the Order, Family, and Genus taxonomic levels (denoted O, F, and G,
respectively). The data distribution is inherently sparse due to the insufficient number
of samples and noisy due to the presence of possible outliers. Noise may correspond to
specific patients with exotic microbial communities or be caused by sample collection or
data processing artifacts. Moreover, the procedures may vary between laboratories, leading
to considerable batch effects; for instance, dataset-specific preprocessing has been applied
to correct for microbial blooms in the AGP dataset (Amir et al., 2017). Therefore, we
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Figure 2 Schematic depiction of our framework for clustering high-dimensional data. This procedure
is applied to each dataset (AGP, HMP) at every taxonomy level (O, Order; F, Family; G, Genus). The data
is preprocessed by removing OTUs that are found in less than 1% of the samples or have a standard de-
viation less than 0.001. For the preprocessed data, pairwise distances are calculated: Manhattan (L1), Eu-
clidean (L2), Bray-Curtis (BC), and Jensen–Shannon (JS). PCA representation is obtained by project-
ing the data onto principal components explaining 99% variance. After such projection, the intrinsic di-
mension of the data is estimated. The intrinsic dimension for every dataset at different taxonomy levels is
given, and suboptimal hyperparameters for every manifold learning algorithm are found by minimizing
the reconstruction median absolute error over different hyperparameter combinations. Then, the collec-
tion of data representations is extended by adding the results of nonlinear dimensionality reduction meth-
ods obtained using the found suboptimal hyperparameters. For every data representation in the collec-
tion, various clustering algorithms with different hyperparameters are applied. Partition Around Medoid
(PAM), spectral clustering, and HDBSCAN. Then, for every found partition, clustering metrics are as-
sessed. As a result, only partitions that pass certain metrics thresholds are considered plausible.

Full-size DOI: 10.7717/peerj.15838/fig-2

Table 1 Size and dimensionality d of the AGP and HMP datasets in Order, Family, and Genus taxonomic levels. Initial (init.) dimensionality
corresponds to raw data and processed (proc.) corresponds to data, after removing OTU found in less than 1% of the samples or with a standard de-
viation less than 0.001.

Dataset Size Order d Family d Genus d

init. proc. init. proc. init. proc.

AGP 9511 168 39 258 69 535 108
HMP 4587 179 39 267 70 574 97

cannot merge several individual datasets into one. Indeed, visualization using t-SNE (Van
Der Maaten & Hinton, 2008) and UMAP (McInnes et al., 2018) dimensionality reduction
algorithms illustrates that point in Fig. 3. Hence, to avoid the batch effect, we considered
these datasets separately.

Principal Component Analysis (PCA)
Weobtained significant dimensionality reductionwithminuscule information loss by using
projection on relatively many (16 through 47, dependent on the taxonomy level) principal
components. Dimensionalities dPCA of the PCA projections are reported in Table 2 and
defined as the number of first principal components that meet the selected threshold of
99% of the cumulative explained variance. Contribution of original taxonomic coordinates
to the principal components, also known as the PCA loadings, can be calculated as the
Euclidean normof the corresponding principal vectors coordinatesmultiplied by the square
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Figure 3 3D t-SNE and UMAP visualizations of joined datasets demonstrate batch-effect at Genus tax-
onomy level (tax). Red—AGP, green—HMP dataset.

Full-size DOI: 10.7717/peerj.15838/fig-3

Table 2 Dimensionalities dPCA and dMLE of two datasets (AGP and HMP) in three taxonomy levels (O,
Order; F, Family; G, Genus).

Dataset Tax O Tax F Tax G

dPCA dMLE dPCA dMLE dPCA dMLE

AGP 16 6 34 8 47 8
HMP 18 5 35 6 40 6

Notes.
dPCA, number of the first principal components explaining 99% variance; dMLE , estimated intrinsic dimension..

root of the associated eigenvalue. The cumulative explained variance and PCA loadings are
presented in Fig. 4. Evidently, for both datasets at the Genus level Bacteroides and Prevotella
contribute the most to the variance and the resulting PCA components. At the Family level
it is again Bacteroidaceae and Prevotellaceae for both datasets, but with Ruminococcaceae for
AGP and Enterobacteriaceae for HMP as additional strong drivers of the variance. At the
Order level, the variance is dominated by Bacteroidales, Enterobacteriales, and Clostridiales
for both datasets. To assess the information loss during projection, we calculated the
error of reconstruction from the projected data to the original one. The Median Absolute
Error (MAE) and Qloc and Qglob metrics (for details see Text S1) are presented in Table 3.
Reconstruction of the original data from the data projected on principal components was
obtained using an inverse linear transformation.

Estimation of the intrinsic dimension
We calculated the intrinsic dimensions dMLE for each dataset at each taxonomic level by
applying the Maximum Likelihood Estimation principle to the distances between close
neighbors (Levina & Bickel, 2004). As a dimension estimation we have selected the median
of the intrinsic dimension distribution across the neighborhood cardinality, which varies
from 5 to 100. The distribution is estimated using bootstrapping technique for 50 trials.
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Figure 4 Principal components analysis. Cumulative explained variance and PCA loadings, representing
contribution of the original taxonomy coordinates to the principal components.

Full-size DOI: 10.7717/peerj.15838/fig-4

Table 3 PCA dimensionality reductionmetrics.Median absolute error (MAE) of the linear inverse
transformation from the data projected on the principal components to the original space of taxon abun-
dances. Qloc and Qglob metrics denote preservation of the local and global data structure (see the text for
details). Notation as in Table 2.

Dataset Tax MAE Qloc Qglob

O 0.061 0.90 0.99
F 0.041 0.96 0.99AGP

G 0.050 0.95 0.99
O 0.036 0.91 0.99
F 0.044 0.92 0.98HMP

G 0.058 0.92 0.99

The resulting intrinsic dimensions and the dimensionality after projection on principal
components are presented in Table 2.

Manifold learning
Subsequent non-linear dimensionality reduction from dPCAto dMLE , is performed by
different manifold learning algorithms described in the Materials & Methods section and
Table S5. In Fig. 5, we present the Qloc , and Qglob metrics that represent the preservation of
the local and global data structure after dimensionality reduction. They were evaluated for
all manifold learning methods with near-optimal hyperparameters, applied to all datasets
at different taxonomic levels. Near-optimal hyperparameters were found using manifold
learning algorithms with different combinations of potential hyperparameters and selecting
the oneswith the lowest reconstructionMAE. The correspondingMAEvalues of the original
data reconstruction from a nonlinear embedding are listed in Table 4. It shows that higher
taxonomy levels yield more intricate data representation with higher MAE and lower Qloc ,
Qglob. This is due to data becoming sparser and more dissipated in high-dimensional space,
which hinders data representation by fitting a non-linear manifold.
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Figure 5 Metrics of the data structure preservation for different dimensionality reductionmethods,
taxonomy levels and datasets.Horizontal axis-Qloc metric (local information preservation), vertical
axis-Qglob metric (global information preservation) of the non-linear dimensionality reduction methods.
Datasets (AGP and HMP) and taxonomy levels (O, Order; F, Family; G, Genus) are shown in the inset. SE,
spectral embedding, LLE, locally linear embedding, AE, autoencoder.

Full-size DOI: 10.7717/peerj.15838/fig-5

Table 4 Median Absolute Error (MAE) of the data reconstruction from different manifold learning
embeddings.MAE is assessed using Leave-One-Out procedure. The reconstruction is done by the inde-
pendent k-nearest neighbors regression of the coordinates in the original space of relative taxon abun-
dances from the non-linear embedding. Notation as in Table 2.

Dataset Method Tax O Tax F Tax G

AutoEncoder 0.06 0.19 0.22
t-SNE 0.05 0.20 0.22
UMAP 0.06 0.22 0.24
Isomap 0.06 0.22 0.25
LLE 0.06 0.21 0.24

AGP

Spectral 0.06 0.21 0.24
AutoEncoder 0.09 0.24 0.22
t-SNE 0.09 0.24 0.22
UMAP 0.11 0.27 0.25
Isomap 0.11 0.29 0.27
LLE 0.12 0.29 0.26

HMP

Spectral 0.13 0.34 0.29

Clustering
Weapplied several clusteringmethods using the Euclideanmetric - Spectral Clustering (Von
Luxburg, 2007), PAM and HDBSCAN (McInnes & Healy, 2017)-for each embedding
provided by the dimensionality reduction algorithms. Following related works on the
identification of enterotypes, we also applied clustering to the original data in high-
dimensional space of taxonomic abundances with a variety of distance metrics: Jensen–
Shannon, Manhattan, Euclidean, and Bray-Curtis as in Koren et al. (2013). It should be
noted that we used only the Euclidean and Manhattan metric in the manifold learning
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Figure 6 Silhouette score and Davies–Bouldin Index of the clustering results for the AGP and HMP
datasets. All three taxonomy levels (O, Order; F, Family, G, Genus) are displayed. The point color repre-
sents the entropy of the respective partition.

Full-size DOI: 10.7717/peerj.15838/fig-6

algorithms since distribution-based distances such as Jensen–Shannon are not applicable
after the PCA projection. Originally, Bacteroides, Prevotella, and Ruminococcus have
been considered as the main drivers of microbial variation that contribute most to the
enterotypes (Arumugam et al., 2011). To ensure that there is no evident clustering structure
within these genera, we visualize the three-dimensional distribution of the normalized
abundances of these OTUs in Fig. S6 (top). We observe a continuous distribution with no
apparent natural clusters. We support this observation, by adding this three-dimensional
projection of the datasets into the pool of all representations to which we apply clustering
methods. Such representations are comprised by manifold-learning embeddings, original
data in different metric spaces, and data projected on principal components. The resulting
metrics of all clustering results in different data representations are shown in Figs. 6 and
7. To distinguish between the presence and absence of clusters in the data we consider the
following thresholds. For the Prediction Strength, we consider a score of 0.8 for moderate
support as suggested in Tibshirani & Walther (2005) and Koren et al. (2013). We consider
all positive values of the DBCV metric. For the Silhouette score, we consider a score of
0.5 for moderate clustering as suggested in Wu et al. (2011); Koren et al. (2013); Gentle,
Kaufman & Rousseuw (1991); Arbelaitz et al. (2013). As a threshold value for the Davies–
Bouldin index, we used 0.6 for moderate clustering (Davies & Bouldin, 1979). Under the
assumption that our data capture all microbiome variations that may be possibly related
to enterotypes, we do not consider small clusters that contain less than 5% of the data as
natural clusters related to enterotypes.

To validate the ability of our methods to provide accurate clustering of high dimensional
data, we also provide results on simple synthetic datasets (for details see Text S2). Since the
clustering results directly depend on the algorithm hyperparameters, for each clustering
method we have iterated over combinations of relevant sets of hyperparameter values. For
the spectral clustering algorithm, we considered the range from two to nine as a possible
number of clusters in the data, and 5, 15, 25, 50 as sizes of the neighborhood for computing
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Figure 7 DBCV index and the prediction strength of the clustering results for the AGP and HMP
datasets. All three taxonomy levels (O, Order; F, Family; G, Genus) are displayed. The point color
represents the entropy of the respective partition.

Full-size DOI: 10.7717/peerj.15838/fig-7

the affinity matrix. For the precomputed distance matrices of the original data, we use
values 1, 5, 10, 15 for the ‘‘gamma’’ parameter in construction of the affinity matrix using a
radial basis function. For the PAM algorithm, we used the same range of possible clusters.
For the HDBSCAN hyperparameters, we considered 5, 10, 25, 50 as the minimal cluster
size and 5, 10, 15, 20 as the minimal number of samples in a neighborhood for a point
to be considered a core point. We did not set larger values for the minimal cluster size to
avoid conservative clustering when more points will be considered as noise, and clusters
will be restricted to more dense areas.

In Figs. 6 and 7, we show the distribution of metrics over all clustering results. They are
comprised by partitions calculated for each dataset, taxonomic level, manifold learning
method, and clustering algorithm with different hyperparameters. Clustering partitions
with moderate or strong support for both metrics correspond to points lying at the
intersection of the blue and orange areas. All partitions respective to points in this area
were found to consist of two or three highly imbalanced clusters with more than 95%
of the data points concentrated in one cluster. These partitions are also inconsistent
in terms of clustering validity metrics when either DBCV and Prediction Strength, or
Davies–Bouldin and Silhouette pairs pass the thresholds but not all of them. Small clusters
that constitute less than 5% of the data were found to be unstable among different
partitions of the same dataset, demonstrating high dependence on the manifold learning
and clustering algorithms. As expected, different hyperparameters combinations of the
clustering algorithm can lead to the same partitions for fixed dataset, taxonomic level and
embedding type. Among them, given that they satisfy the clustering metrics, we selected
the one with the highest entropy, which should match the most balanced partition.

In Table 5 we present these partitions with the respective metrics. Only few partitions
into two and three clusters were found at different taxonomic levels, that meet the threshold
criteria of at least one of the metrics pairs: the Davies–Bouldin and Silhouette score or the
DBCV and Prediction Strength. All partitions are stable, according to Prediction Strength.
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Table 5 Selected clustering results with high or moderate clustering partition metrics. Clustering validity metrics and the number of clusters k
for different partitions obtained from different data representations. Repr. denotes a data representation used for clustering. It is either an embed-
ding provided by a manifold learning algorithm (SE - Spectral Embedding, LLE - Locally Linear Embedding) or pairwise distances inferred from the
data (L1 - Manhattan distance in the original space of taxonomic abundances). Spectral, Spectral Clustering algorithm. D-B index, Davies-Bouldin
index. Silh. score, Silhouette score. DBCV, Density-Based Clustering Validation index. Ent., Entropy. Notation as in Table 2.

Tax Repr. Cluster
method

k D-B
index

Silh.
score

DBCV Prediction
Strength

Ent.

O L1 Spectral 2 0.60 0.60 −0.63 0.98 0.06
O LLE Spectral 2 0.49 0.74 −0.86 0.94 0.06
O LLE Spectral 3 0.60 0.60 −0.91 0.91 0.18
O SE Spectral 2 0.50 0.68 −0.91 0.96 0.09
O SE Spectral 3 0.57 0.63 −0.92 0.94 0.19
F t-SNE HBDSCAN 2 1.38 0.14 0.15 1.00 0.09
F UMAP HBDSCAN 2 1.02 0.17 0.22 1.00 0.06

AGP

G UMAP HBDSCAN 2 1.03 0.23 0.25 1.00 0.08
O t-SNE HBDSCAN 2 1.00 0.13 0.12 1.00 0.06
O UMAP HBDSCAN 2 0.87 0.15 0.19 1.00 0.08
O UMAP HBDSCAN 3 1.02 0.06 0.19 1.00 0.16
F UMAP HBDSCAN 2 1.03 0.08 0.10 1.00 0.08
F SE HBDSCAN 2 0.53 0.64 −0.63 1.00 0.09
F t-SNE HBDSCAN 2 1.11 0.09 0.21 0.97 0.09

HMP

G UMAP HBDSCAN 2 1.24 −0.02 0.16 1.00 0.06

Yet, plausible partitions with moderate Silhouette scores varying from 0.60 to 0.74 exhibit
low DBCV index from −0.92 to −0.63. Similarly, partitions with moderate DBCV from
0.10 to 0.25 yield lower Silhouette score in the range from −0.02 to 0.23 and higher
Davies–Bouldin index varying from 0.87 to 1.38. For all presented clustering partitions, the
entropy of the data mass distribution over clusters is low, indicating a highly imbalanced
partition. Themaximal entropy over two found clusters among partitions is 0.09, indicative
of a clustering where 98% of data are concentrated in one cluster. While the entropy of
0.19 for partition into three clusters is higher than for two clusters, it is still imbalanced,
with 96% of the data concentrated in the one cluster. Therefore, there are no partitions
found, that would satisfy all clustering metrics criteria at the same time.

Among all clustering partitions passing the metrics thresholds in Figs. 6 and 7, we
visualize the ones with the highest entropy. The resulting projections for AGP and HMP
datasets, for every pair of metrics, are presented in Figs. 8 and 9. Since these partitions were
found in an embedding space with dimensionality larger than three, we use for visualization
PCA in Fig. 8 and Large Margin Nearest Neighbor method (Weinberger & Saul, 2009) in
Fig. 9. Different approaches were chosen for the sake of better visualization of the clustering
partition. The large margin nearest neighbor method allows for dimensionality reduction
via linear transformation. This transformation is conditioned on the clustering partition
of the data so that neighbor points from the same cluster are kept close, whereas points
from different clusters are separated by a large gap.
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Figure 8 Visualization of the clustering results for the AGP and HMP datasets in the first two princi-
pal components. The visualized clustering partitions have the highest entropy among all other partitions
satisfying Silhouette score and Davies–Bouldin (DB) Index thresholds. Dataset name, taxonomy level, rep-
resentation of the data, clustering algorithm, and the pair of metrics used to select the partition are shown
in the title. SE, spectral embedding. Color indicates different clusters. The percentage of the data belong-
ing to each cluster is depicted on the legend.

Full-size DOI: 10.7717/peerj.15838/fig-8

Figure 9 Visualization of the clustering results for the AGP and HMP datasets, using Large Margin
Nearest Neighbor method. The visualized clustering partitions have the highest entropy among all par-
titions satisfying DBCV index and prediction strength thresholds. Dataset name, taxonomy level, repre-
sentation of the data, clustering algorithm, and the pair of metrics used to select the partition are shown in
the title. Color indicates different clusters. The percentage of the data belonging to each cluster is depicted
on the legend.

Full-size DOI: 10.7717/peerj.15838/fig-9
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Further, we have demonstrated that straightforward assignment of each data point to a
potential enterotype, based on the originally reported distribution of Bacteroides, Prevotella
and Ruminococcus Genera in enterotypes (Arumugam et al., 2011), does not reveal any
natural clusters in different data representations. The corresponding distributions of
clustering metrics and the visualization are presented in Text S4, Figs. S6–S7.

Together, these results imply that various clustering methods along with different
manifold learning algorithms yield only highly imbalanced partitions, with more than 95%
of data concentrated in one cluster. We do not consider clusters that contain less than
5% of the data as enterotypes. We attribute these small clusters to artifacts of manifold
learning algorithms since there is evidence (Cooley et al., 2019; Kobak & Berens, 2019) that
common dimensionality reduction techniques may fail to faithfully represent the original
point cloud distribution, introducing substantial distortion into the data. We observe that
these small clusters are not stable, depending on the clustering method and the manifold
learning algorithm. Hence, the stool metagenomes can hardly be divided into stable and
distinct clusters that could be referred to as enterotypes. Our simulation on a synthetic
dataset, presented in Text S2, Table S1, and Fig. S1, proves that distinct and stable clusters
related to enterotypes have not been found because of their absence in the data rather than
methodology flaws.

Visualization
Despite the lack of distinct and stable clusters in the data, we demonstrate that human
gut microbial communities vary continuously along a low-dimensional manifold. We
observe the structure of such a manifold by mapping the point clouds of data from the
Genus taxonomic level on a two-dimensional plane using UMAP in Fig. 10 and t-SNE
in Fig. 11. As explained above, prior to this step the datasets have been projected on the
principal components capturing 99% of variance. To remove noise and outliers, after
the dimensionality reduction small clusters of points containing less than 1% of the
data were removed using the Local Outlier Factor algorithm (Breunig et al., 2000). To
demonstrate the continuity of the data points distribution, we colored points as specific
taxon relative abundances, corresponding to the genera most relevant for the definition
of enterotypes, according to the initial finding (Arumugam et al., 2011). Salient parts of
the manifold represent higher concentrations of specific OTUs. Small clusters observed in
Figs. 10 and 11 are not related to enterotypes, being the direct result of specific methods
hyperparameters, that may lead to tearing off the salient part of the data manifold.

To estimate the density of points in the visualization, we performed standard kernel
density estimation (KDE) of this 2-dimensional data. The bandwidth parameter of the
KDE is equal to the median value of pairwise distances distribution from every point to 100
closest neighbors. For the two-dimensional visualizations produced by both UMAP and
t-SNE in Figs. 10 and 11, we observe that the density of data distribution is not uniform,
indicating that there are regions of preferential concentrations of data, as shown in Fig.
12 for UMAP and in Fig. 13 for t-SNE algorithm. Nevertheless, this can be related only
to the variations of OTU concentration (Bacteroides and Prevotella) and features of the
dimensionality reduction methods rather than to formation of distinct clusters. This is
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Figure 10 2DUMAP visualization of AGP and HMP datasets for the Genus taxonomy level. Colors re-
flect the relative abundance of specific taxa, see the headers.

Full-size DOI: 10.7717/peerj.15838/fig-10

ensured by the density-based clustering algorithm HDBSCAN, robust to noise and clusters
shape, that would have indicated the existence of clusters by the high DBCV metric.
Therefore, these regions are not related to the enterotypes in the original definition.

We supported this intuition by analyzing the OTU distribution in the high-density
areas of visualizations in Figs. 10 and 11. Removing all regions in Figs. 12 and 13 with
density less than 70% percentile of the total density distribution, we obtained separated,
high-density areas. In Figs. 14 and 15, we show these regions in the two-dimensional
visualization, along with the distributions of the ten most significant OTUs within the
regions. The most significant OTUs are the ones with the largest mean value among all
points that belong to the high-density regions. We observe that for the UMAP visualization
in Fig. 14, the difference in the OTU distribution between clusters is mostly controlled by
Bacteroides and Prevotella and an unclassified OTU at the Genus level, denoted as Rest.
This observation is consistent with the abundance gradient visualization in Figs. 10 and 11,
as well as previously reported results (Costea et al., 2017), indicating the continuous nature
of the OTU distribution with preferential high-density regions. The same applies to the
analysis of the t-SNE visualization in Fig. 15, with the difference, that the variation between
high-density regions is also controlled by Faecalibacterium for AGP and Lactobacillus and
Streptococcus for HMP.
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Figure 11 2D t-SNE visualization of AGP and HMP datasets for the Genus taxonomy level. Colors re-
flect the relative abundance of specific taxa, see the headers.

Full-size DOI: 10.7717/peerj.15838/fig-11

Figure 12 Kernel density estimation (KDE) of 2D UMAP visualization. Color indicates relative likeli-
hood of the point to belong to the data distribution, according to KDE.

Full-size DOI: 10.7717/peerj.15838/fig-12

DISCUSSION
Our results demonstrate that the metagenome distribution is continuous rather than
discrete and lies on a low-dimensional non-linear manifold embedded in the original
high-dimensional space of relative taxon abundances. We posit that most of the previous
observations may have been artifacts caused by limitations of linear methods applied for
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Figure 13 Kernel density estimation (KDE) of 2D t-SNE visualization. Color indicates relative likeli-
hood of the point to belong to the data distribution, according to KDE.

Full-size DOI: 10.7717/peerj.15838/fig-13

Figure 14 Analysis of the high-density regions of 2D UMAP visualization. The colored regions corre-
spond to the kernel density estimation likelihood larger than 70% percentile of the total likelihood distri-
bution. Color indicates different high-density clusters, depicted in the two-dimensional scatter plot with
Z1 and Z2 coordinates. For the first ten selected OTU with the largest mean value among all high-density
regions, the violin plots depict their distribution within each region.

Full-size DOI: 10.7717/peerj.15838/fig-14

the analysis of non-linear, high-dimensional metagenomic data. Also, overfitting in the
data density estimationmay occur due to insufficient numbers of data points. Small sizes of
datasets lead to unstable clustering, especially if the latter is performed in a high-dimensional
space. One may suggest an intuitive explanation of why positive clustering results were
widespread in previous works. In most of them, small datasets were used, which makes
the total number of intermediate microbial patterns negligible. We suppose that datasets
demonstrating moderate clustering in related works have been sampled from high-density
areas in the general taxonomic abundance space. A more discrete structure could arise if
more diverse samples are studied, including people with sharply differing lifestyles and
diets. Still, successful attempts to correct the human gut microbiota were made, e.g., fecal
microbiota transplantation to treat the Clostridium difficile infection (CDI) (Smits et al.,
2013), inflammatory bowel disease (IBD) (Suskind et al., 2015), and obesity (Vrieze et al.,
2012). Connecting the distribution of microbiome abundances and structural features of
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Figure 15 Analysis of the high-density regions of 2D t-SNE visualization. The colored regions corre-
spond to the Kernel Density Estimation likelihood larger than 70% percentile of the total likelihood distri-
bution. Color indicates different high-density clusters, depicted in the two-dimensional scatter plot with
Z1 and Z2 coordinates. For the first ten selected OTU with the largest mean value among all high-density
regions, the violin plots depict their distribution within each region.

Full-size DOI: 10.7717/peerj.15838/fig-15

the microbial manifold with lifestyle, nutrition, or disease may be a promising direction
for further research.

CONCLUSIONS
We have shown the absence of enterotypes, defined as stable dense regions, or as stable and
well separated clusters in the taxonomic abundance space, in human gut microbiomes.
This challenges the current consensus, demonstrating that the metagenome distribution
is continuous rather than discrete. We improved the standard methodology of microbial
data analysis by applying a large variety of linear and non-linear dimensionality reduction
methods to properly estimate the intrinsic dimension. We demonstrate that some of
these methods do preserve the global and local data structure. This allowed us to achieve
robustness of the clusteringmethods and compare results produced by different approaches.
To the best of our knowledge, this is the first study applying a wide range of non-linear
methods for validating the existence of enterotypes, and hence it may serve as a starting
point for a more adequate analysis of metagenome datasets, which may reveal an intrinsic
connection to nutrition, lifestyle, or disease. This study is also relevant for computational
biologists seeking a general approach for clustering in high-dimensional data.
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