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ABSTRACT
Background: Genetic analysis of gladiolus germplasm using simple sequence repeat
(SSR) markers is largely missing due to scarce genomic information. Hence,
microsatellites identified for related genera or species may be utilized to understand
the genetic diversity and assess genetic relationships among cultivated gladiolus
varieties.
Methods: In the present investigation, we screened 26 genomic SSRs (Gladiolus
palustris, Crocus sativus, Herbertia zebrina, Sysirinchium micranthum), 14
chloroplast SSRs (Gladiolus spp., chloroplast DNA regions) and 25 Iris Expressed
Sequence Tags (ESTs) derived SSRs across the 84 gladiolus (Gladiolus × grandiflorus
L.) genotypes. Polymorphic markers detected from amplified SSRs were used to
calculate genetic diversity estimates, analyze population structure, cluster analysis
and principal coordinate analysis (PCoA).
Results: A total of 41 SSRs showed reproducible amplification pattern among the
selected gladiolus cultivars. Among these, 17 highly polymorphic SSRs revealed a
total of 58 polymorphic alleles ranging from two to six with an average of 3.41 alleles
per marker. Polymorphic information content (PIC) values ranged from 0.11 to 0.71
with an average value of 0.48. A total of 4 SSRs were selectively neutral based on the
Ewens–Watterson test. Hence, 66.66% of Gladiolus palustris, 48% of Iris spp. EST,
71.42% of Crocus sativus SSRs showed cross-transferability among the gladiolus
genotypes. Analysis of genetic structure of 84 gladiolus genotypes revealed two
subpopulations; 35 genotypes were assigned to subpopulation 1, 37 to subpopulation
2 and the remaining 12 genotypes could not be attributed to either subpopulation.
Analysis of molecular variance indicated maximum variance (53.59%) among
individuals within subpopulations, whereas 36.55% of variation among individuals
within the total population. The least variation (9.86%) was noticed between two
subpopulations. Moderate (FST = 0.10) genetic differentiation between two
subpopulations was observed. The grouping pattern of population structure was
consistent with the unweighted pair group method with arithmetic mean (UPGMA)
dendrogram based on simple matching dissimilarity coefficient and PCoA.
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Conclusion: SSR markers from the present study can be utilized for cultivar
identification, conservation and sustainable utilization of gladiolus genotypes for
crop improvement. Genetic relationships assessed among the genotypes of respective
clusters may assist the breeders in selecting desirable parents for crossing.

Subjects Agricultural Science, Biotechnology, Genetics, Plant Science
Keywords Cross transferability, Genetic diversity, Gladiolus, Microsatellites, Conservation,
Heterozygosity, Cross genera, Cross species, Polymorphism, Genetic structure

INTRODUCTION
Gladiolus (Gladiolus × grandiflorus L.) is a commercial bulbous flower cultivated
worldwide for its attractive, multi-coloured spikes. Gladiolus is one of the largest genera
(>265 species) in the family Iridaceae (Raycheva, Stoyanov & Denev, 2011). The majority of
the wild species are diploid (2n = 30) (Gladiolus segetum, Gladiolus illyricus, Gladiolus
palustris, and Gladiolus tristis etc.), whereas modern cultivars are tetraploids (Gladiolus ×
grandiflorus L.) (Imanishi, 1989). Cultivated gladioli are believed to be originated from
natural hybridization among number of wild species (Barnard, 1972; Imanishi, 1989). It is
easy to hybridize gladioli owing to their outbreeding nature and high heterozygosity.
Hybridization and polyploidy have been greatly responsible for the evolution of gladiolus
(Nemati et al., 2012). As a consequence of continuous hybridization and selection,
gladiolus has been endowed with amazing flower diversity in terms of colour, size, shape
and growth habit. Its cut flowers are widely used for decorating vases, bouquet preparation
and flower arrangements with huge demand in domestic as well as international markets
(Chaudhary et al., 2018). Gladiolus ranks fifth in area and production among bulbous
flowers cultivated worldwide. In India, it is cultivated in an area of 10.44 thousand hectare
with a production of 259.64 thousand MT (National Horticulture Board, 2021).
Development of novel gladiolus varieties is a continuous process to meet consumer
demand in floriculture market. Assessment of genetic variability for superior desirable
traits will assist in selection of elite genotypes for crossing programme. Further,
understanding the genetic relationship of the parent cultivars would enhance the chances
of obtaining new varieties. Also, genetic diversity analysis is a prerequisite for efficient
utilization and conservation of existing gladiolus germplasm.

Phenotypic variability of any plant is a result of differences in either DNA sequences or
specific genes/modifiers (De Vicente et al., 2006). Characterization of a crop germplasm
using morphological and physiological traits is not reliable because they are non-abundant
and their expression is influenced by environmental changes (Provan et al., 1999).
Molecular markers circumvent the demerits of non-conventional markers and act as
efficient tools to differentiate the closely related genotypes at genotypic level.
Characterization of gladiolus cultivars using DNA markers is essential to establish clear
distinction between accessions, identification of desirable source for biotic and abiotic
stress tolerance, detection of genetic redundancy and in monitoring genetic diversity
changes during conservation. In addition, the accurate identification, documentation and
conservation of cultivars or breeding lines is very important in order to protect the plant
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breeder’s rights owing to influx of huge number of new varieties into global markets every
year (Heckenberger et al., 2006).

Application of molecular markers for germplasm characterization, conservation and
crop improvement of gladiolus is very limited despite its popularity. In previous reports,
molecular markers such as randomly amplified polymorphic DNA (RAPD) (Moreno et al.,
2011; Provan et al., 1999), inter simple sequence repeats (ISSR) (Chaudhary et al., 2018;Qu
et al., 2008; Singh et al., 2017b), sequence characterized amplified region (SCAR) (Liu et al.,
2009; Rymer et al., 2010) and amplified fragment length polymorphism (AFLP)
(Kutlunina, Permyakova & Belyaev, 2017; Provan et al., 1999; Squirrell et al., 2003; Ranjan
et al., 2010) have been utilized for the assessment of genetic diversity and phylogeny of
gladiolus species and cultivars. However, more reliable and easily reproducible markers
like SSRs are meagre in gladiolus.

Simple sequence repeats have been most preferred markers for genetic studies due to
their co-dominant inheritance, high reproducibility, high polymorphism, excellent
genome coverage and multi-allelic nature (Perrier & Jacquemoud-Collet, 2006).
Developing a new set of SSRs for concerned species is a costly affair and consumes more
time as it involves sequencing of genomic regions around repeats for design of flanking
primers (Singh et al., 2017c). Moreover, efficient sequencing requires the intended crop to
be diploid, homozygous and with a small genome size. In bulbous flowers, large
sequencing efforts (whole genome or a part of genome) for identification of sequence
regions flanking simple repeats and development of SSR primers are scarce and genomic
information in public databases is lacking or rather very limited (Krens & Kamo, 2013).
Traditional methods of sequencing enriched libraries for the development of genome-wide
SSRs is difficult in cultivated gladiolus due to its large genome size and high heterozygosity.
Hence, high closeness due to the conserved genomic regions of crops belonging to the
same species or genera may be utilized to study cross-species transferable SSRs. In this
manner, SSR markers identified in one plant species can be used directly to study genetic
diversity and evolutionary history across closely related species. Heterologous
amplification of microsatellites relies on the nucleotide sequence similarity across flanking
regions in genome of related species. Therefore, examining cross transferability of SSRs
may reduce cost and time required for designing and synthesis of SSRs particularly in
species with limited or no genomic information (Peakall & Smouse, 2012).

In last few years, microsatellite markers have been developed for iridaceous flowers like
Crocus sativus (Nasir et al., 2012), Herbertia zebrina (Forgiarini et al., 2017), Sisyrinchium
micranthum (Sun et al., 2012). Recently, a few chloroplast SSRs from plastid sequences of
Gladiolus (Rossetto, 2001), genomic SSRs from Gladiolus palustris, an endangered
European tetraploid species (Malkocs et al., 2019), and expressed sequence tags derived
SSRs from Iris species were developed (Takahashi, Yokoi & Takahata, 2016). Both the
chloroplast SSRs and SSR markers derived from ESTs or transcriptome were expected to
have high cross species transferability because the earlier had presence in gene-rich regions
(Szczepaniak et al., 2016) and the latter are located very close to or within functional genes.
Despite the ESTs being highly conserved, EST-SSRs often show significant polymorphism
among plant species although to a lesser extent than genomic SSRs (Kalia et al., 2011).
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Cross transferability of SSRs have been investigated in few ornamental plants like
Aspidistra spp. (Huang et al., 2014), cacti (Bombonato et al., 2019) etc. So far, there are no
reported studies on cross-species and cross-genera transferability of genomic or EST
derived SSRs in gladiolus. Furthermore, microsatellites information on gladiolus species
and related genera available in public databases has not been utilized to assess genetic
diversity and characterization of gladiolus genotypes. With these facts, the current study
utilized potential microsatellites from related species and genera to detect the extent of
cross-transferability as well as to analyze genetic diversity, population structure and infer
genetic relationship among gladiolus genotypes.

MATERIALS AND METHODS
Plant material and DNA isolation
Plant material consisted a total of 84 Indian and exotic bred gladiolus genotypes collected
from different research institutes across India and maintained at research farm of Division
of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi.
The details of gladiolus genotypes including parentage, place of collection, flower colour,
plant height and flowering time is provided in Table S1. Portions of this text were
previously published as part of a preprint (Hiremath et al., 2021). Total genomic DNA of
individual genotype was isolated from randomly selected young, healthy leaves using a
modified cetyltrimethyl ammonium bromide (CTAB) protocol of Doyle & Doyle (1990)
and further purified to remove excess salts and phenolic residues. For this purpose, 1/10th

volume of sodium acetate (pH 5.8) and two volumes of absolute alcohol were added to the
DNA pellet. The purified genomic DNA was subjected to gel electrophoresis on 0.8%
agarose gel stained with ethidium bromide and visualized using a UV transilluminator.
DNA quantity was estimated by comparing the band intensities of each sample along with
λ DNA (Cat # SD0011; Thermo Fisher Scientific, Waltham, MA, USA). The DNA samples
were finally quantified with Nanodrop ND-1000 Spectrophotometer (Nanodrop
Technologies Inc, Wilmington, DE, USA). Part of the isolated DNA was diluted with TE
buffer to make working concentration of 20 ng/µl and stored in freezer (−20 �C) until
further use for polymerase chain reaction (PCR) analysis.

Source of SSRs and PCR analysis
A total of 65 microsatellite markers identified for gladiolus and related genera/species
available in public domain viz. cpSSRs (Rossetto, 2001), genomic SSRs (Forgiarini et al.,
2017; Malkocs et al., 2019; Nasir et al., 2012; Sun et al., 2012), EST derived SSRs from Iris
spp. (Takahashi, Yokoi & Takahata, 2016) and intergenic spacer sequences (Rymer et al.,
2010) were screened for amplification and detection of polymorphism among gladiolus
genotypes. All primers were custom synthesized (Invitrogen, Carlsbad, CA, USA) at
100 pmol/ml concentration and stored at −20 �C. Primer working stocks (10 pmol/ml)
prepared by adding 5 ml forward and 5 ml reverse primers in 90 ml nuclease free water were
stored at 4 �C. Initially, all synthesized primers were screened for amplification using a
gradient or a touch-down PCR protocol in few randomly selected gladiolus genotypes to
standardize the annealing temperature. PCR amplification was performed in a thermal
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cycler with flex gradient technology (peqSTAR�; VWR, Darmstadt, Germany) in 10 µl
reaction volume containing 2 µl (20 ng/µl) genomic DNA template, 1 µl of 10X Taq buffer,
1 µl dNTPs (10 mM each), 2 µl of both forward and reverse primer, 0.3 µl 1U Taq DNA
polymerase (Genei laboratories, Peenya, Bengaluru, India) and 3.7 µl of nuclease free
water.

For most of the SSR primers, PCR thermal profile involved initial denaturation at 95 �C
for 4 min, followed by 35 cycles of denaturation at 94 �C for 1 min, annealing at 52–60 �C
(specific to each primer) for 45 s, extension at 72 �C for 2 min and a final extension at
72 �C for 7 min before cooling down to 4 �C. Touch-down PCR cycling programme was
used for few SSRs with the following conditions: initial denaturation at 95 �C for 5 min,
followed by 10 cycles of 95 �C for 1 min, annealing (with a touch-down of 59–54 �C,
−0.5 �C per cycle for GP 4 & IM 39, 50–45 �C, −0.5 �C per cycle for IM 108 & IM 123,
55–50 �C, −0.5 �C per cycle for IM 112) for 45 s, and 72 �C for 2 min; 25 cycles at 95 �C for
1 min, annealing (54 �C for GP 4 & IM 39, 45 �C for IM 108 & IM 123, 50 �C for IM 112)
for 45 s, and 72 �C for 2 min; and a final extension at 72 �C for 7 min before cooling down
to 4 �C. Gel electrophoresis was performed to resolve PCR products using 3% agarose
SFR� (Super Fine Agarose) in 1× Tris Acetate EDTA (TAE) buffer. The resolved products
were visualized under UV light and photographed by using gel documentation system
(Syngene, Iselin, NJ, USA). A 100 bp DNA ladder (Fermentas International Inc., Waltham,
MA, USA) was used as size standard to determine allele size. The details of primer names,
sequences (5′–3′), optimized annealing temperature, allele size for amplified SSRs are
given in Table S2.

Polymorphism detection and genetic diversity analysis
Clearly visible and consistently reproduced PCR fragments for each SSR primer were
considered for manual scoring of bands. Alleles were scored as ‘1’ (for presence), ‘0’ (for
absence) and ‘9’ (missing data) for a particular band to generate binary data matrix. Total
number of alleles for each amplified SSR marker was recorded across all the genotypes.
The genotypic data obtained this way was subjected to calculate genetic diversity measures.
Polymorphic information content (PIC) for each SSR loci was estimated by determining
the frequency of alleles per locus using the formula, PIC = 1 − ∑ (Pi)2 where, Pi is the
relative frequency of the ‘ith’ allele of a SSR loci (Perrier & Jacquemoud-Collet, 2006).
The PIC value indicates the genetic variation and also discriminatory power of a marker.
Primer resolving power (Rp) was calculated as per the formulae given by Prevost &
Wilkinson (1999), Rp = ∑Ib, where ‘Ib’ is band informativeness = [1 − {2(0.5 − p)}] and ‘p’ is
the proportion of the genotypes containing the band. Marker index (MI) for each
polymorphic SSR locus was calculated as described by Powell and co-workers (Perrier &
Jacquemoud-Collet, 2006). The effective multiplex ratio (EMR) was calculated as the
number of polymorphic loci present in the germplasm. The percentage of polymorphic
bands (PPB) was computed as proportion of total polymorphic bands to total number of
bands. Allelic differences at a single locus in a population need to be quantified to measure
genetic variation. Therefore, allelic diversity measures viz. observed number of alleles (Na),
number of effective alleles (Ne), Shannon’s information index (I), observed heterozygosity
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(Ho), expected heterozygosity (He) and fixation index (F) were estimated using GenAlEx
version 6.5 (Ohri & Khoshoo, 1983). Further, Nei’s gene diversity (h) and gene flow
(Nm = ((1/Fst) − 1)/4) were estimated using the Popgene v.1.32 software.
The Ewens–Watterson Test was performed to check neutrality of each microsatellite loci
for whole population used in the study (Manly, 1985).

Population structure analysis
The software programme STRUCTURE v2.3.4 was used to study the underlying
population structure among the 84 gladiolus genotypes based on the principle of Bayesian
clustering (Pragya et al., 2010). The admixture model with correlated allelic frequencies
was assumed considering the ancestry of individual genotype in the population. Twenty
independent runs were assessed for each fixed ΔK (1 to 10) and each run consisted of
50,000 burn-in length and 100,000 Markov Chain Monte Carlo (MCMC) iterations.
The optimum number of subpopulations was identified using STRUCTUREHARVESTER
(Evanno, Regnaut & Goudet, 2005). Individual genotype was assigned to a subpopulation if
at least 70% of its estimated genome fraction value was derived from that group and
genotypes with membership probabilities (Q value) less than 0.70 were assigned to a mixed
group as admixture.

The SSR genotypic data with individuals assigned to the subpopulations was further
used to compute AMOVA (analysis of molecular variance) using GenAlEx software.
The genetic relationships among populations were analyzed by computing AMOVA based
on allelic frequencies and the number of mutational differences between molecular
haplotypes. Allelic patterns across subpopulations depicting number of private alleles,
common alleles, and abundant alleles were computed. Pair-wise Fst values were estimated
for genetic differentiation of subpopulations. The subpopulations were further analyzed on
genetic diversity statistics viz., Na, Ne, I, Ho, He, uHe using the GenAlex 6.5.

Cluster analysis
The 0–1 binary data was utilized to calculate pairwise genetic similarity matrix using
Jaccard’s coefficient. A radial UPGMA dendrogram was also constructed based on
Neighbourhood Joining (NJ) algorithm using simple matching dissimilarity matrix with
the help of DARwin 6.0.10 programme (Peakall et al., 1998). Robustness of each node of
NJ tree was assessed with 5,000-bootstrap replicates. Principal coordinate analysis (PCoA)
was performed using GenAlEx v6.5 based on the pair-wise genetic distance matrix between
the genotypes and the first two principal coordinates were plotted in two-dimensional
space. Mantel test was performed to test the goodness of fit of the similarity matrix
generated by genomic, EST and chloroplast derived SSRs (Mantel, 1967).

RESULTS
PCR analysis and cross transferability
A total of 65 SSRs belonging to gladiolus species and different genera of Iridaceae family
were used to amplify DNA from 84 gladiolus genotypes. Genomic SSRs identified for
Crocus sativus (Nasir et al., 2012), Gladiolus palustris (Malkocs et al., 2019) and EST-SSRs
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identified for Iris spp. (Takahashi, Yokoi & Takahata, 2016) revealed 71.42%, 66.66% and
48% of cross amplification in all the selected gladiolus genotypes, respectively. However,
few genomic SSRs from Herbertia zebrina and Sysirinchium micranthum could not show
any amplification. A total of 41 SSRs produced amplicons in all the gladiolus genotypes.
Chloroplast derived SSRs, genomic SSRs and EST-SSRs revealed 100%, 60.71% and 48%
amplification in all the gladiolus germplasm, respectively (Table 1). The source of SSR
primers developed for different species and their amplification pattern among the gladiolus
germplasm is given in Table S3. A total of 17 polymorphic SSRs were obtained which were
further utilized in genetic analysis.

Genetic diversity statistics
Molecular profiling of 84 gladiolus genotypes using 17 polymorphic SSRs revealed a total
58 polymorphic alleles ranging from 2 (G9) to 6 (GP4) with an average of 3.41 alleles per
marker. Molecular information generated using 17 polymorphic SSRs is depicted in
Table 2. Average polymorphic information content was 0.48 with a range of 0.11 (G9) to
0.71 (G12). Resolving power of primers varied from 1.95 (GP2) to 3.14 (G5) with mean
value of 2.48. Marker indices for polymorphic loci diverged from 0.95 (G9) to 2.38 (GP4).
Effective multiplex ratio diverged from 2 to 6 and also all SSR loci were 100% polymorphic.
Based on Ewens–Watterson test, four non neutral microsatellite loci viz. G12, GP7, GP13
and IM31 were detected as their observed homozygosity values lied outside the lower and
upper limit of 95% confidence interval (Table S4). Allele wise genetic diversity parameters
for all the genotypes are represented in Table S5. Number of effective alleles (Ne) ranged
from 1.07 (GP2) to 3.35 (G12) with an average of 2.04 ± 0.2. Average Shannon’s
information index (I) was 0.76 ± 0.09 with maximum of 1.27 (G12) and minimum of 0.16
(GP2). Observed heterozygosity (Ho) values ranged from 0 (G9) to 0.75 (IM31) whereas
expected heterozygosity (He) varied from 0.06 (GP2) to 0.70 (G12) with mean value of 0.43
± 0.05. Fixation index (F) values ranged from −0.09 (IM31) to 1.00 (G9) with a mean value
of 0.24 ± 0.08. Gene flow (Nm) for each SSR loci varied from 0.31 (GP2) to 144.84 (G9)
with mean value of 54.61 ± 22.02. Values for Nei’s genetic diversity (h) extended from 0.06
(GP2) to 0.70 (G12).

Table 1 SSR markers used in the study and their amplification pattern.

Sl.
No.

Type of marker
(species/genera derived from)

No. of
screened
primers

No. of
amplified
primers

Amplification
%

% of
polymorphic
markers

1 Chloroplast derived SSRs (Gladiolus) 12 12 100 58.33

2 Genomic SSRs
(Gladiolus palustris, Crocus sativus, Herbertia zebrina, Sysirinchium
micranthum & Chloroplast DNA regions)

28 17 60.71 29.41

3 EST derived SSRs (Iris spp.) 25 12 48.00 41.66

Total 65 41
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Population structure and cluster analysis
Population structure of gladiolus genotypes was analyzed using Bayesian model approach.
All the genotypes were assigned to two distinct subgroups based on maximum likelihood
and delta K value (ΔK = 2) by their inferred genome fraction value (Fig. 1). The structure

Table 2 Data on allelic diversity generated from 17 polymorphic SSRs in gladiolus.

Sl.
No

Marker
name

Primer (5′–3′) Source Tm
(�C)

PF Allele size
range (bp)

PIC RP MI EMR PPB
(%)

1 G5 F: GCTCACAACAATAATCCTTCCC
R: CAATGAACTCAGCAATACCAGC

Singh et al. (2017a) 60 4 270–300 0.64 3.14 1.91 4 100

2 G7 F: GTGTCTTCGGTGCTTTTCTCTT
R: CAGCGATAACCTAGAACGAACA

Singh et al. (2017a) 60 4 260–320 0.29 2.00 1.91 4 100

3 G8 F: TCTATGTCAGTGCTCTACCGGA
R: GAAGCAAACGAGTCTGTGGAC

Singh et al. (2017a) 60 3 280–300 0.62 2.36 1.43 3 100

4 G9 F: TATAGAGGAATGCGTGTCCGAT
R: TACTGCATGACGAGGAAATCAC

Singh et al. (2017a) 60 2 400–420 0.11 2.00 0.95 2 100

5 G10 F: TGCCACTCCAGCATAACTTCTA
R: ACTCCTTTTCCTCCCATTCTTC

Singh et al. (2017a) 60 4 310–330 0.45 2.36 1.91 4 100

6 G11 F: AAAGTCCCTCCTCTCCTCTGAT
R: GAGCTTGTTACTGAACGGAACC

Singh et al. (2017a) 60 3 480–510 0.64 2.60 1.43 3 100

7 G12 F: GGCATCCTTCCTCTCCGT
R: CGGCCTTGGGTGTAGAAGTAG

Singh et al. (2017a) 60 4 200–240 0.71 2.79 1.91 4 100

8 GP 2 F: TTGTTACTGGTGCGGACTCC
R: CAGGTCCGATTGCTTGAGGA

Malkocs et al. (2019) 58 3 210–270 0.12 1.95 1.43 3 100

9 GP 4 F: ATGCCTTTGTCCTCTCACCT
R:
TTTGTCCCTAATTGGAACACGTC

Malkocs et al. (2019) 54 6 180–310 0.52 2.17 2.38 5 100

10 GP 7 F: CCAAGTAAGTGATGGCGGC
R: GGGTCTAGAGAAGGCTTGGG

Malkocs et al. (2019) 56 3 190–210 0.66 2.62 1.44 3 100

11 GP 13 F: AAACCCTCACTTCGGAGATCA
R:
TAAAGTCAGTCAGCTGTAACACTG

Malkocs et al. (2019) 54 3 280–300 0.66 2.67 1.44 3 100

12 GP 15 F: GGGTCATCGCCTGTCATGAA
R: TCGTATCGGCTTGTTGGCTG

Malkocs et al. (2019) 54 4 190–210 0.68 3.05 1.91 4 100

13 IM 31 F: AAGCAAAAGGTTTTCCATTCC
R: GTTTCTTGTCGAGGAACATGC

Tang et al. (2009) 52 4 300–420 0.69 2.90 1.91 4 100

14 IM 86 F: GGGTTTGTATTGTTTGTTGGAGA
R: GGGTGATGTGGTCCTTGTAGA

Tang et al. (2009) 60 2 200–220 0.21 2.00 0.96 2 100

15 IM 108 F: TCTCCTCCTGTCCGTCTATCC
R: AGTCGTCCAAATCTCCGAACT

Tang et al. (2009) 45 2 320–390 0.45 2.43 0.96 2 100

16 IM 39 F: CCCTAGCAAACATCTCTTCCA
R: TGTTATCAGCAAGCAGTCCAG

Tang et al. (2009) 54 3 380–500 0.25 2.00 1.44 3 100

17 IM 224 F: AGAGAAGAGAGCATGGCGATA
R: GCGAGAAGTGGCATAAAGAGA

Tang et al. (2009) 46 4 200–280 0.41 2.07 1.91 4 100

Total 58 8.11 42.10 27.27

Average 3.41 0.48 2.48 1.60

Note:
PF, Polymorphic fragments; PIC, Polymorphic information content; RP, Resolving power; MI, Marker index; EMR, Effective multiple ratio; PPB (%), The percentage of
polymorphic bands.
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depicted two sub-populations (S1 and S2) composed of gladiolus genotypes studied
(Fig. 1). Out of 84 genotypes, 72 were assigned to two sub groups and 12 were retained in
the mixed group as admixture. Sub-population 1 (green group) consisted of 35 genotypes
representing 41.66%, whereas sub-population 2 (red group) contained 37 genotypes
representing 44.04% of the total number of the genotypes in the study. Analysis of
molecular variance and F statistics differentiating subpopulations is presented in Table S7.
Maximum variance (53.59%) was revealed among individuals within subpopulations
whereas 36.55% of variation observed among individuals within total population.
However, 9.86% variation was noticed between two subpopulations. Fixation indices
including FST, FIS and FIT values were 0.10, 0.41 and 0.46. Subpopulation 1 had highest
average genetic diversity parameters than subpopulation 2 viz. Na (3.12 ± 0.26), Ne (1.99 ±
0.21), I (0.73 ± 0.10), Ho (0.34 ± 0.05) and He (0.41 ± 0.06) (Table S8). However, highest F
(0.22 ± 0.09) value and polymorphic loci % (100.00%) was observed in subpopulation 2.

Radial UPGMA dendrogram created based on simple matching dissimilarity matrix
differentiated 84 genotypes into two distinct major clusters with 42 genotypes each (Fig. 2).
Composition of Cluster I and II was quite similar to the composition of subpopulation 1
and 2, respectively (Table S6). Coefficients of dissimilarity ranged from 0.16 to 0.89 with an
average value 0.48. Punjab Lemon Delight and Vicki Lin (0.89) had highest degree of
dissimilarity while least value was observed between Pusa Archana and Pusa Bindiya
(0.16). Principal coordinate analysis also depicted similar groupings as in population
structure and UPGMA cluster. Principal coordinate 2 explained maximum variance of
21.28% followed by first principal coordinate with variance of 11.64%. Although the
marker effectiveness indicated goodness of fit of three SSR marker types, there was no
Mantel correlation between genomic, chloroplast and EST-SSRs.

DISCUSSION
Cross transferability and PCR amplification
Molecular markers facilitate precise and quick varietal identification, germplasm
characterization and conservation. Microsatellite markers have been the most preferred in
molecular studies because of their codominance, high discrimination power, multiallelic

Figure 1 Estimated population structure of 84 gladiolus genotypes as revealed by 17 polymorphic SSR markers for ΔK = 2 from an assumed
range of 1–10 based on Evanno method. Blue color indicates sub-population 1, yellow color indicates sub-population 2.

Full-size DOI: 10.7717/peerj.15820/fig-1
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nature and cross transferability within genera/family (Perrier & Jacquemoud-Collet, 2006).
They are easy to use, cost effective and amenable to automation as compared to other
markers. Development of novel SSRs for concerned species involves sequencing of flanking
genomic regions around simple repeats and is a costly affair in the absence of genomic
information (Singh et al., 2017c). In geophytes, particularly in gladiolus, it is comparatively
difficult to achieve whole or part of genome sequence due to high heterozygosity,
polyploidy and huge genome size (Krens & Kamo, 2013). Under such circumstances, a
feasible strategy to detect microsatellite loci for a target species is through cross-species and
cross-genera transferability of SSRs (Mantel, 1967). In the present investigation, 17 highly

Figure 2 Radial UPGMA dendrogram of 84 gladiolus genotypes constructed based on simple
matching dissimilarity coefficient matrix using 17 polymorphic SSRs. The numerical values repre-
senting the different genotypes are the genotype ID given in Table S5. The numbers in blue within tree
nodes represent respective bootstrap values. Full-size DOI: 10.7717/peerj.15820/fig-2
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polymorphic SSRs were detected from a set of 65 microsatellites reported within iridaceae
family members. Seven chloroplast SSRs of gladiolus, five genomic SSRs of Gladiolus
palustris and five EST derived SSRs of Iris could successfully amplify in gladiolus
suggesting transferability due to relatedness in cultivars. Chloroplast and genomic SSRs
have been widely used to study phylogenetic evolution of plants in recent years (Singh
et al., 2017a; Squirrell et al., 2003). It is established that chloroplast genome is characterized
by conserved genic sequences, non-recombination and maternal inheritance in plants
(Provan et al., 1997). Chloroplast SSRs revealed higher level of diversity in rice and barley
species in contrast to chloroplast derived RFLPs (Pritchard, Stephens & Donnelly, 2000;
Provan, Powell & Hollingsworth, 2001). Further, the microsatellites reported for Gladiolus
palustris showed positive cross species transferability (66.66%) in gladiolus cultivars. This
indicated the presence of conserved genomic regions between Gladiolus palustris and
modern gladiolus cultivars. Cross species amplification of these microsatellites has been
also studied in individuals of Gladiolus imbricatus and Gladiolus tenuis (Malkocs et al.,
2019). In support of our findings, close genetic relationship between modern gladiolus
cultivars and Gladiolus palustris was revealed using chloroplast DNA regions (Singh et al.,
2017a). In addition, Iris EST-SSRs also portrayed successful cross genera amplification
(48%) in gladiolus. Our findings are consistent with the prediction that
cross-transferability of SSRs can vary from 50% to 100% within a genus, while
transferability across genera is generally less than 50% (Peakall & Smouse, 2012). SSR
markers derived from ESTs or transcriptome have high rate of cross transferability as they
are highly conserved, located very close to or within functional genes (Kalia et al., 2011).
The possibility of cross transferability is high when the repeat sequences and flanking
region consisting selected primer region is conserved across taxa, although the
polymorphism generated may be less. A number of cross-transferable monomorphic
markers observed in this study may be attributed to the same fact. It was also seen that
mantel correlation was negligible (<0.06) between genomic, chloroplast derived and
EST-SSRs that could be ascribed to highly conserved nature of gladiolus
chloroplast-derived and Iris EST-SSR markers and more diverse nature of genomic SSRs
indicating genetically diverse grouping patterns for the three SSR types. In a similar line of
study, Debener (2012) analyzed genetic diversity of Euphorbia pulcherrima accessions
using EST-SSRs developed for Euphorbia esula through cross species amplification.
In ornamentals, congeneric transferability of microsatellite markers has been investigated
in Iris spp. (Singh et al., 2018), Aspidistra spp. (Huang et al., 2014) and cacti (Bombonato
et al., 2019).

Marker efficiency and allelic diversity measures
Molecular profiling of 84 gladiolus genotypes using 17 polymorphic SSRs revealed that at
least nine markers were highly informative (PIC > 0.5). Representative gel electrophoresis
profiles for markers G5 and GP13 are presented in Fig. 3. Abundant polymorphism and
more genomic coverage of molecular markers increases accuracy in genetic diversity
studies (Perrier & Jacquemoud-Collet, 2006). This reduces the amount of genotyping
required for phylogenetic analysis of crop plants. According to Botstein et al. (1980), a
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DNA marker with PIC value more than 0.5 is said to be highly informative. PIC and Rp
(>0.50 and >2.0, respectively) values for most of the loci suggested that SSRs were efficient
enough to distinguish gladiolus germplasm in the study. Higher PIC value of SSRs may be
attributed to their codominant and multi-allelic nature. Marker indices define total utility
of marker system in estimating genetic variation within germplasm pool (Chaudhary et al.,
2018; Rymer et al., 2010). GP4 had highest marker index value of 2.38. Estimates of PIC, RP
and MI signify the overall ability of such markers in detecting genetic variation and infer
genetic relationships between accessions (Powell, Machray & Provan, 1996a). In the
current study, SSR markers showed comparatively higher polymorphism against those
DNA markers used in earlier reports (Provan et al., 1999; Moreno et al., 2011; Chaudhary
et al., 2018; Singh et al., 2017b).

Allele—wise mean genetic diversity parameters indicated effectiveness of these SSRs to
characterize the gladiolus germplasm used in the present study. Average h (equivalent to
average He) indicated higher frequency of heterozygotes at single locus when chosen
randomly. Average He was comparatively higher than Ho for tested SSRs. Inbreeding
coefficient values for most of the SSRs were low suggesting less fixation of alleles. Average
Nm revealed high allelic diversity among gladiolus genotypes. Similarly, allelic diversity has
been estimated using EST-SSRs in Iris spp. (Takahashi, Yokoi & Takahata, 2016; Singh
et al., 2018; Tacuatiá et al., 2012; Tang et al., 2018) and genomic SSRs in Crocus (Nasir
et al., 2012), Herbertia (Forgiarini et al., 2017) and Gladiolus (Malkocs et al., 2019).
Non neutral markers indicated their possible linkage to phenotypic traits or genes under

Figure 3 Gel electrophoresis profile of 84 gladiolus genotypes revealed by G5 and GP13. Full-size DOI: 10.7717/peerj.15820/fig-3
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selection. Kirk & Freeland (2011) suggested that non neutral markers may show unusual
genetic divergence for traits under selection.

Population structure and cluster analysis
STRUCTURE analysis based on Bayesian approach grouped the overall gladiolus
germplasm into two subpopulations however, no clear distinction among the Indian and
exotic germplasm was established. Exotic genotypes could not be demarcated from Indian
bred genotypes because introduced exotic gladioli have been used as parents in crossing
programme and therefore, fall within pedigree of Indian genotypes (Table S1). It is known
that no gladiolus species is native to India and it was introduced to India in later part of
19th century. Cultivated gladioli (Gladiolus × grandiflorus) are complex hybrids and have
been evolved from interspecific hybridization among wild species viz. Gladiolus cardinalis,
Gladiolus daleni, Gladiolus oppositiflorus, Gladiolus papilio, Gladiolus carneus, Gladiolus
cruentus, Gladiolus tristis, and Gladiolus saundersii (Huxley, Griffiths & Levy, 1992). This is
evident from the results where 12 out of 84 genotypes shared less than 70% of its estimated
genome fraction with either of the two subpopulations and thus revealed mixed
populations. In a similar line of study, Chaudhary et al. (2018) revealed presence of mixed
population among gladiolus germplasm while analyzing STRUCTURE of 53 gladiolus
genotypes using ISSR markers. AMOVA results showed minor variation between two
subpopulations whereas individuals within total population depicted maximum variance.
Wright’s F statistics differentiated whole germplasm into two subdivided population based
on level of allele frequencies shared among individuals. According to De Vicente, Lopez &
Fulton (2004), if FST value is within the range of 0.05–0.15, then subpopulations are
assumed to be moderately differentiated at genetic level (De Vicente et al., 2006). Moderate
(FST = 0.10) genetic differentiation of allelic frequencies was observed among two
subpopulations. The average heterozygotes in each subpopulation (FIT = 0.41) and among
subpopulations (FIT = 0.46) indicated existence of large non-random mating among
individuals within subpopulations. This may be attributed to complex ploidy level, high
heterozygosity and cross pollination nature of Gladiolus. Various factors including pollen
movement, germplasm exchange, natural selection, reproduction system and geographical
distribution decide the level of variability existing among the populations. Subpopulation 1
was genetically more diverse than subpopulation 2 accounting highest average genetic
diversity estimates.

Genetic relationships
In our study, the grouping pattern arising from STRUCTURE were consistent with those
obtained from UPGMA dendrogram (Fig. 2) and PCoA (Fig. 4) in terms of genotype
number and composition of clusters excluding few admixtures. A detailed insight into
genetic relationship among gladiolus varieties was inferred from polymorphic SSR data
based on Jaccard’s similarity matrix and UPGMA clustering. Two major clusters
containing 42 genotypes each were identified at an average pairwise similarity of 0.49.
Highest degree of similarity for cultivar pairs viz. Dhanvantari—Fire Flame (Jaccard’s
coefficient = 0.97) followed by Yellow Star—Neel Rekha (Jaccard’s coefficient = 0.96) was
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recorded and it was evident from their close presence in Cluster II, while lowest degree of
similarity between cultivar pairs viz. Punjab Dawn—Punjab Lemon Delight and Arka
Arti—Punjab Lemon Delight was observed and thus their presence in different clusters
could be noticed. Based on simple matching dissimilarity matrix, Punjab Lemon
Delight—Vicki Lin (coefficient of dissimilarity = 0.89) had highest degree of dissimilarity.
Presence of Punjab Lemon Delight—Vicki Lin in cluster I and II respectively, could be
justified to their clustering pattern. Punjab Lemon Delight and Vicki Lin were found to be
genetically distinct among gladiolus genotypes used in the study.

Cultivar pairs which shared common parent/s (either male/female or both) in their
derivation were found closely spaced in cluster I. Indian bred cultivars namely Arka Amar
(Watermelon Pink × Arka Aarti), Arka Darshan (Watermelon Pink × Shirley), Arka Sapna
(GreenWoodpecker × Friendship), Pusa Chandni (GreenWoodpecker ×White Butterfly),
Punjab Glad 1 (Happy End × True Yellow) and Punjab Glance (Happy End × Yellow
Stone) were grouped together owing to common female parent during hybridization.
While Punjab Pink Elegance (Suchitra × White Prosperity) and Punjab Lemon Delight
(Jacksonville Gold ×White Prosperity) were noticed in the same cluster showing similarity
in their male parentage. Thus, presence of Suchitra, Jacksonville Gold and Yellow Stone in
the same group could be highly obvious. Occurrence of Pusa Sarang (OP seedling obtained
from ‘White Oak’), Pusa Shagun (White Oak × Oscar), Pusa Mohini (Ave × Christian
Jane) and Pusa Kiran (OP seedling obtained from ‘Ave’) in cluster I was evident showing
their affinity towards parentage. However, rest of the genotypes could not share any
common parentage but clustered together. This might be attributed to highly heterozygous
nature of crop.

Correspondingly, cluster II was also formed by the genotypes sharing common lineage.
Presence of Punjab Dawn (Suchitra × Melody), Arka Arti (Shirley × Melody), Amethyst

Figure 4 Two dimensional PCoA scatter plot showing composition of two clusters. Bullets in blue
with numbers represent genotypes of subpopulation 1 whereas bullets in orange with numbers indicate
genotypes of subpopulation 2 (Table S5). Full-size DOI: 10.7717/peerj.15820/fig-4
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(Lavender Puff × Tropic Sea), Neelima (Snow Princess × Tropic Sea), Arka Naveen
(74–39-1 × Tropic Sea), Pusa Sringarika (Mayur × Heady Wine) and Pusa Urmi (Berlew ×
Heady Wine) in cluster II might be attributed to owing to their common male parentage
during crossing. Similarly, Punjab Morning (Sancerre × White Prosperity) and Anjali
(Sancerre × Rose Spire) were placed close together with female parent ‘Sancerre’. Malaviya
Shatabdi, an induced mutant of Punjab Dawn was also present in this cluster. Kalima and
Pusa Suhagin were open pollinated seedlings of Sylvia and found related to each other in
this cluster. Even though Pusa Srijana and Pusa Urmi had common parentage i.e., Berlew ×
Heady Wine, however, their presence in cluster I and II, respectively might be due to
chance similarity in their parentage at genotypic level. Few genotypes that did not share
any common parentage were also grouped together in both the clusters because of greater
degree of similarity in genetic constitution of ancestors. It was also suggested that
chloroplast SSRs or EST derived SSRs may not differentiate the related species and
cultivars due to conserved genome or positions within genic regions in the genome of
ancestors. However, pedigree information was not available for some of the genotypes as it
is essential for comparative analysis with SSR profiles. In general, our results were more
consistent with clustering pattern obtained based on AFLP (Provan et al., 1999), RAPD
(Powell et al., 1996b) and ISSR (Chaudhary et al., 2018) data. In a similar study, Singh and
co-workers described phylogenetic relationship among gladiolus cultivars using sequenced
chloroplast DNA regions (Singh et al., 2017a).

CONCLUSIONS
To conclude our study, we are first to report cross transferability of SSRs developed for
Gladiolus palustris and Iris spp. to analyze genetic diversity, population structure and
genetic relationships among cultivated/modern gladiolus genotypes. Microsatellite
markers detected in the current study have great discriminatory power and highly
informative to study genetic diversity and molecular characterization of gladiolus
germplasm. However, genetic variability obtained in the STRUCTURE of gladiolus
germplasm was narrow indicating use of limited gene pool in breeding new varieties.
Further, genetic relationships assessed among gladiolus genotypes will assist the breeders
to select desirable parents for hybridization. Identified SSRs will be helpful for
identification, documentation and conservation of gladiolus varieties and also can be very
useful in marker assisted breeding programme. These markers also help in protection
against unauthorized commercialization of varieties and protection of plant breeder rights.
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