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ABSTRACT
Recent developments in high-throughput sequencing (HTS) technologies and
bioinformatics have drastically changed research in virology, especially for virus
discovery. Indeed, proper monitoring of the viral population requires information on
the different isolates circulating in the studied area. For this purpose, HTS has greatly
facilitated the sequencing of new genomes of detected viruses and their comparison.
However, bioinformatics analyses allowing reconstruction of genome sequences and
detection of single nucleotide polymorphisms (SNPs) can potentially create bias and
has not been widely addressed so far. Therefore, more knowledge is required on the
limitations of predicting SNPs based on HTS-generated sequence samples.
To address this issue, we compared the ability of 14 plant virology laboratories, each
employing a different bioinformatics pipeline, to detect 21 variants of pepino mosaic
virus (PepMV) in three samples through large-scale performance testing (PT) using
three artificially designed datasets. To evaluate the impact of bioinformatics analyses,
they were divided into three key steps: reads pre-processing, virus-isolate
identification, and variant calling. Each step was evaluated independently through an
original, PT design including discussion and validation between participants at each
step. Overall, this work underlines key parameters influencing SNPs detection and
proposes recommendations for reliable variant calling for plant viruses.
The identification of the closest reference, mapping parameters and manual
validation of the detection were recognized as the most impactful analysis steps for
the success of the SNPs detections. Strategies to improve the prediction of SNPs are
also discussed.

Subjects Bioinformatics, Genomics, Plant Science, Virology
Keywords Bioinformatic, Genomic, Virus, Plant, Variant

INTRODUCTION
Establishing high-throughput sequencing (HTS) technologies and developing
bioinformatics methods for analyzing the generated sequencing data have greatly
improved knowledge of viral diversity, including plant viruses (Pappas et al., 2021).
Complete or nearly complete virus genomes can be generated by de novo assembly of raw
reads into longer contigs. In this process, variants can be identified, differing from the
original virus (considered as the reference) by mutations, like single nucleotide
polymorphisms (SNPs), i.e., insertions/deletions/substitutions (Ramesh et al., 2021).
Finding individual virus variants from a mixed population via variant calling is essential
for understanding viral evolution and genetic diversity. As the recent COVID-19
pandemic has shown, continuous monitoring of virus genome evolution is essential to
implement societal and sanitary measures for human health (Hirabara et al., 2022). This
monitoring is also key for plant viruses (Rubio, Galipienso & Ferriol, 2020), especially since
it is well known that (+) RNA viruses mutate rapidly. Indeed, genome evolution due to the
high mutation and recombination rates may allow RNA viruses to increase their host range
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and adapt to new environments (Elena, Fraile & García-Arenal, 2014; Gibbs & Weiller,
1999; Simon-Loriere & Holmes, 2011; Tromas et al., 2014; Kutnjak, Elena & Ravnikar,
2017). The generation of accurate genome is therefore becoming a key challenge for proper
integration of genome data into virus epidemics monitoring. Any base modification of a
genome can be decisive, so the proper detection of single nucleotide polymorphisms
(SNPs) in contigs built fromHTS data is a crucial step in bioinformatics pipelines (Kutnjak
et al., 2015) and the identification of SNPs present at low frequencies in the sequences (and
therefore absent in the consensus sequence) is important too and often overlooked.

Virus low frequency variants are important to detect as they can change the dynamic of
an infection. Indeed, minor variants can change the fitness of Coxsackievirus B3 in human
lung cells (Bordería et al., 2015). In several citrus varieties, Citrus tristeza virus (CTV)
symptoms may be caused by low frequency variants (Černi et al., 2008). Therefore,
monitoring the viral populations, including the low frequency ones, is important for plant
treatment or disease prevention (Kutnjak, Elena & Ravnikar, 2017). Virus population
studies often rely on consensus sequences that may hide the minor variant composition
(Domingo & Perales, 2019). That is why understanding our abilities (and limits) to detect
low frequency variants is important for population studies applications as shown recently
on Uganda cassava brown streak virus (UCBSV) for which the analysis of minor SNPs
identified three distinct haplotypes with contrasted geographical spread throughout
Rwanda (Nyirakanani et al., in press).

Most of the benchmarks done on SNPs analysis focused mainly on the variant calling
step (Deng et al., 2021; Barbitoff et al., 2022; Guirao-Rico & González, 2021) or dealt with
specific issues like polyploidy (Clevenger et al., 2015). It was observed that mapping
(alignment) seems less impactful than the variant caller (Barbitoff et al., 2022), more
amplification cycles led to false positive SNPs detection (Deng et al., 2021) or to a better
understanding of the frequencies impact on the variant detection (Guirao-Rico &
González, 2021). For plant viruses, reference samples have been designed recently
(Tamisier et al., 2021). They can be used in benchmarking studies for virus detection and
genome characterization including, to a lesser extent, SNPs detection, as each sample
addresses specific challenges (closely related isolates of the same species, presence of
SNPs…). In eukaryotes, variants with frequencies below 5% are considered low-frequency
variants and below 1% are rare-frequency variants (Guirao-Rico & González, 2021; Bomba,
Walter & Soranzo, 2017); in this study, we followed these definitions.

The studies mentioned above corresponded to systematic benchmarks carried out by a
single or a few research teams. Such small-scale comparisons are necessary, but they will
not necessarily reflect the performance of the algorithms once the scientific community
uses them. Therefore, a valuable and complementary methodology is to organize
performance testing, including many laboratories that routinely use bioinformatic analyses
to generate viral genomes and detect SNPs in these genomes. Performance testing of
laboratory protocols by end-users has been a common approach for over a decade. It has
recently been applied also for bioinformatics analyses focused on detecting plant viruses in
10 HTS samples containing 12 plant viruses that were shared between 21 participants
(Massart et al., 2019) or for both laboratory and bioinformatics analyses (Gaafar et al.,
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2021). Performance testing by end-users has been useful in identifying the critical steps in
bioinformatics analyses. For example, the detection results obtained (Massart et al., 2019)
underlined the importance of the reads abundance in the detection as well as expertise in
result interpretation. Performance testing is a key step toward the identification of the
strength and weaknesses of protocols and contributes to the definition of reliable protocols
that could be further applied by many laboratories.

Prior to this publication, preliminary performance testing was conducted on real
samples (tomato artificially inoculated by an infectious clone of pepino mosaic virus
(PepMV)) to monitor the laboratories’ abilities to detect SNPs (unpresented data). This
preliminary evaluation delivered key outcomes such as the difficulty in validating the
presence of low/rare frequency variants detected by some participants (limiting the
evaluation of the performance of the bioinformatics analyses), the very high complexity of
bioinformatics pipelines relying on multiple steps, and the need to focus on well-defined
questions. Based on these outcomes, the decision was made to reduce the complexity by
generating four artificial samples on only one well-known virus, pepino mosaic virus
(PepMV). PepMV is a positive sense ssRNA classified in the species Pepino mosaic virus
(genus Potexvirus, family Alphaflexiviridae) known to infect tomato, eggplant and potato
plants. Because of the specificity of this study, we created our own artificial samples
keeping in mind the good practices shown in the community effort on samples production
for bioinformatic validation (Tamisier et al., 2021) and the usual frequency of PepMV
sequences in dataset from infected tomato. In addition, the complexity of pipelines was
managed by dividing the bioinformatics pipelines for SNPs detection into three
fundamental steps. The three steps were decided based on our hypothesis regarding their
relative importance on the final results: read quality trimming, read assembly and SNPs
calling. In addition, the expert validation of SNPs detected was also independently
analyzed.

We describe in this study a performance testing of bioinformatics protocols by the end
users, meaning that all the steps from the reception of HTS raw data until the
interpretation of SNPs predicted were evaluated. End-users corresponded to 14 plant
virology laboratories with different levels of expertise in bioinformatic and variant
analyses. The study reported here evaluated the sensitivity and reproducibility of variant
analysis applying various bioinformatic strategies currently used in the plant virology
community. Each participating laboratory received the same datasets at the same time but
without information on its composition in isolates of PePMV (blind test). To precisely
decipher the impact of the three above-mentioned steps, data were sent in different
formats in consecutive steps: raw sequencing reads, quality-controlled reads and aligned
reads where the next format was only sent after analysis of the previous was completed.
Our approach is, therefore, complementary to the traditional benchmarking
methodologies already carried out, as it evaluated the overall bioinformatic analysis, and
not only the variant caller algorithm, to show the key points leading to the failure or
success of the variant identification and the SNPs manual validation.
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MATERIALS AND METHODS
Origin of the sequencing data
Simulated samples from PepMV were generated using the sequencing reads simulator
ART (Huang et al., 2012). ART (V2.5.8) was used for simulating paired-end reads using
the built-in quality profile for HiSeq 2500. The reads were artificially generated from the
chosen genome sequences, with mutations added manually to the different samples using
multiple criteria (frequencies, length, quality). The detailed samples composition is shown
in Table 1, in addition, all datasets are freely available (https://doi.org/10.5281/zenodo.
7431632).

Sample 1 was constructed to estimate the limit of detection of low-frequency SNPs. This
sample was generated by adding one bp substitution (sometimes called single nucleotide
variants (SNVs) by informatic tools), one bp deletion and one bp insertion in the sequence
of PepMV, isolate CH2 with reference DQ000985.1. Nine underlying variants were
generated, each containing several mutations. For instance, the first variant was generated
by substituting an A for a G at position 339, deleting an A at position 900, and inserting a T
after position 6,336. This sample was relatively simple, as only one isolate is present with
nine (artificial) variants and was a simple combination of the targeted virus and (host)
tomato plant (HG975518.1). It consists of artificial sequencing reads of 125 nucleotides
long with a high-quality score (Q20:94%, Q30:88%) (see File S1). The expected difficulty in
SNPs detection is on the low-frequency variants (between 60% and 0.01% frequencies) that
might be below the capacity of detection of most participants.

Sample 2 was constructed to evaluate whether non-identified reads not too closely
resembling the targeted virus may disturb the variant calling. This sample was generated by
introducing mutations on the sequence of two isolates of PepMV—Ch2 (DQ000985.1) and
Spanish LE2000 (AJ606359.1; belonging to the EU genotype). In addition, dark matter
reads were created and added. Dark matter is defined as sequences of unidentified origin
that are not assigned to any known taxonomic group, and may represent a problem in viral
metagenomics (Krishnamurthy &Wang, 2017). This dark matter was artificially generated
from a randomized sequence following the organism-specific model of Clostridioides
difficile (NZ_CM000441.1) using the “random-seq” tool of the RSAT platform (November
2019) (Nguyen et al., 2018). Overall, this sample was composed of the targeted virus,
tomato plant, and dark matter with reads that were 125 nucleotides long and presented a
high quality (Q20:94%, Q30:89%) (see File S1). The difficulty of variant detection for this
sample was supposed to be identifying the two isolates and detecting the low-frequency
variants despite the background noise of the dark matter.

Finally, sample 3 was constructed to examine whether adding sequence noise/dark
matter and reads representing a related virus would impact variant detection. Only one
isolate was used (DQ000985.1), for which the most frequent (60%) variant is identical to
the reference. Variant three was generated at 6% frequency with the reverse of the
positive sense RNA of PepMV, therefore the prediction (T925G, G1646T, ins3392T� in
forward, and reverse A5489C, C4768A, ins3021A�) can be considered as correct.
On variants 3 and 4, there was a mutation in homopolymers (same nucleotide repetition)
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area, meaning that the coordinate predicted can change a little. As an example, the
deletion del2363A� is in a region on which there are four ‘A’ in a row (2,363–2,366),
meaning the SNPs predictor cannot know which one of the four ‘A’ was deleted;
therefore, any predicted ‘A’ deletion within those coordinates was considered as correct.

Table 1 Composition of samples. Sample 1 is composed of tomato plants and the targeted virus; it comprises one isolate and nine variants (26 SNPs
in total), with SNPs frequencies ranging from 60% to 0.1%. Sample 2 is a combination of PepMV, tomato plant and dark matter; it contains two
isolates with nine variants (nine SNPs in total), with frequencies ranging from 60% to 0.1%. Finally, sample 3 is made of PepMV, tomato plant, dark
matter and ToBRFV (tomato brown rugose fruit virus); it contains one isolate with six variants (14 SNPs in total), with frequencies ranging from
60% to 0.2%. The SNPs represented with an asterisk (*) are SNPs for which the coordinates can be different due to tandem repetition.

Sample Organism Reference Variant Number reads Relative frequency

Sample 1 Solanum lycopersicum HG975518.1 All 1,600,000 (2 × 8,00,000) 80%

PepMV DQ000985.1 400,000 (2 × 200,000) 20%

PepMV DQ000985.1 A339G, A900-, ins6336T 240,480 (2 × 120,240) 60.12%

C2668A, G319-, ins2191C 80,160 (2 × 40,080) 20.04%

G3830C, A5439-, ins5894C 40,080 (2 × 20,040) 10.02%

A2170T, A3769-, ins3912T 24,048 (2 × 12,024) 6.01%

A2672C, G4090- 8,016 (2 × 4,008) 2.00%

G3371C, T6381-, ins2557C 4,008 (2 × 2,004) 1.00%

A5726C, G4518-, ins3885C 2,004 (2 × 1,002) 0.50%

A2523G, A2065-, ins2942T 802 (2 × 401) 0.20%

C5328T, G1580-, ins1334G 402 (2 × 201) 0.10%

Sample 2 Solanum lycopersicum HG975518.1 All 1,600,000 (2 × 800,000) 66.66%

Dark matter – 400,000 (2 × 200,000) 16.66%

PepMV DQ000985.1 & AJ606359.1 400,000 (2 × 200,000) 16.66%

PepMV DQ000985.1 A861C 240,480 (2 × 120,240) 60.12%

AJ606359.1 A4918T 80,160 (2 × 40,080) 20.04%

C339G 40,080 (2 × 20,040) 10.02%

C3830T 24,048 (2 × 12,024) 6.01%

T2576G 8,016 (2 × 4,008) 2.00%

G2916C 4,008 (2 × 2,004) 1.00%

C2523G 2,004 (2 × 1,002) 0.50%

T1230C 802 (2 × 401) 0.20%

G3024T 402 (2 × 201) 0.10%

Sample 3 Solanum lycopersicum HG975518.1 All 1,496,036 (2 × 748,018) 57.71%

Dark matter – 400,000 (2 × 200,000) 14.28%

ToBRFV MK648157.1 400,000 (2 × 200,000) 14.28%

PepMV DQ000985.1 400,000 (2 × 200,000) 14.28%

PepMV DQ000985.1 No mutation 240,480 (2 × 120,240) 60.12%

G1983C, A4031C, A5067G 80,160 (2 × 40,080) 20.04%

T217G, G2752A 50,502 (2 × 25,251) 12.63%

A5489C, C4768A, ins3021A* 24,048 (2 × 12,024) 6.01%

T1258G, T1602A*, del2363A* 4,008 (2 × 2,004) 1.00%

A368-, ins1787T, ins3536C 802 (2 × 401) 0.20%
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In addition to the PepMV, tomato, dark matter (same as sample 2), tomato brown rugose
fruit virus (ToBRFV, MK648157.1) were added (see Table 1). All reads on this sample are
250 nucleotides long and present a medium quality (Q20:88%, Q30:59%) (see File S1).
The background noise (dark matter and ToBRFV) is more important than sample 2 and
might have a bigger impact on the variant calling ability (especially with ToBRFV reads
closer to PepMV than the dark matter). The potential impact of the read quality
difference could be compared to sample 2. The longer reads coupled with the lower
quality should allow more diversity between participants’ result of the cleaning of the
reads.

Organization of the performance testing
In total, 14 laboratories from eight different countries participated in the performance
testing reported here with the coordination of Liège University (Belgium). Each participant
was free to choose the algorithms and parameters for each of the three defined steps of the
bioinformatics analysis. Importantly, the participants carried out the process step by step,
as described in Fig. 1.

In order to prevent too much diversity in the approaches used, a selection of
intermediate process results was used as common datasets from which each lab had to start
the next step. The overall idea was to allow the comparison of method/laboratory
performance as each participant used the same input files for each step. The information
on the bioinformatics analyses (anonymized by replacing laboratories name by letters)
carried out for all steps by the 14 participating laboratories is available in File S2.

I. Pre-processing step
The participants received the three designed datasets in blind. They might, in this step,

perform actions to select reads to keep for further analysis, like pairing, merging, trimming,
or nothing at all. The results they were asked to send corresponded to a FASTQ file for
each dataset containing sequences considered ready by the participant for the following
steps. In addition, the bioinformatics analysis carried out had to be reported (algorithm
and parameters used).

To compare the received FASTQ files (14 files from each sample = 42 files), the PT
coordinator used several criteria (see next chapter). From each original dataset, three files
(referred as B, C, and D) showing the most divergent conditions of pre-processing reads
(relax cleaning, average cleaning and strict cleaning) were selected for the next step.
In addition, the initial files referred to as A could have been used throughout all steps
(optional for each participant) and were different for each participant (to try to evaluate
the full pipeline impact) as different tools were used. The most pertinent criteria to define
average or strict cleaning was decided according to the result observed.

II. Identification
The nine FASTQ files (three per sample) were sent to all participants in blind (they just

knew the original dataset origin). In addition, the participants carried out the analysis on
their own FASTQ files generated during step 1. The goal for the participants was to identify
the appropriate PepMV reference sequence(s) and to align the sequencing reads on it
(them) (without the need to search for other viruses). Many different methods could be
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applied: de novo assembly, mapping, Kmer search and dendrogram. The expected result
was the mapping of reads on the correct reference(s) in bam format.

The success of this step depended on the participant’s ability to identify the correct
reference(s). Further on, the coordinator analyzed the 140 bam (alignment) files received
(14 laboratories × (3 samples × 3 datasets + own file)) using several criteria: number of
reads mapped, the alignment quality, and coverage. From each dataset, three bam files
were selected based on the criteria differences and were called E, F, and G. In total, three
bam files per dataset (nine bam files in total) were selected for step 3.

III. Variant calling
The nine bam files were sent in blind to the participants (they only knew the original

dataset). In addition, each participant also processed the bam file generated from their own
analysis (if any).

This step involved identifying the SNPs present in each bam file by any method of their
choice and confirming the detection (manual confirmation).

Figure 1 Analysis steps. The test was organised into three steps for each sample. (I) Pre-processing of
reads, three datasets were selected from the results to be performed by every lab for the second step. (II)
Identification of target virus reference, three mapping files resulting were selected for the last step. (III)
Variant calling, the way SNPs predictor tools were used, and manual validation of detection were
compared. Full-size DOI: 10.7717/peerj.15816/fig-1
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Criteria for data analysis at each step
For the pre-processing step, the result comparison was based on classical reads statistics:
number, quality and length. In addition, the tools and parameters used by the participants
(pairing, merging, adapter removing, quality trimming, duplicate trimming) were
gathered. The procedure can change the expected output significantly if duplicates are
removed and reads are paired and merged, generating a lower number but sometimes
longer (when merged) reads. The statistics were obtained from Geneious Prime (2020.0.5;
Biomatters, Auckland, New Zealand), and the procedure (for all steps) is available in
File S2.

In the second step, the mapping result files were compared using Geneious Prime
(2020.0.5; Biomatters, Auckland, New Zealand) to extract the following statistics: reference
used, number of reads mapped, mean coverage, coverage range, identical sites) while
keeping track of tools used to examine how they affected the observed results.

Finally, for SNPs calling, the comparison was more challenging as there is no standard
way to compare SNPs detection. Due to the high number of files obtained from different
sources (n = 140), the analysis of the data files was automated by a custom script.
Furthermore, the use of terminology in fields of the results files was checked and
harmonized between laboratories. As an example, the “Manual validation field” could
contain several different words for the same meaning (“YES”, “yes”, “ok”, etc.), that needed
to be replaced with only one term per meaning.

The inferred SNPs were compared to the expected SNPs using three parameters: (i)
mutation type (only SNPs were considered), (ii) position of the SNPs, and (iii) reference/
allele correspondence (A/T C/-, etc.). The position of each predicted SNPs was compared
to the expected position of the mutation in each sample. A tolerance of +/−1 was accepted
for all positions as some predictors may start to count with 0 or 1. In addition, some
positions were less precise, as a mutation in homopolymer regions can be reported
correctly at several coordinates. Finally, for the third variant of sample 3, the mutation and
reads were given from the reverse strand, and all positions for reverse and forward strands

Figure 2 Confusion matrices used in the frame of the performance testing for SNPs detection. The
intersection of the actual and predicted results is displayed with TP = correct hit, TN = correct rejection,
FP = wrong detection and FN = missed hit. Values were calculated for software detection (S) and manual
validation (MV). Full-size DOI: 10.7717/peerj.15816/fig-2
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were checked. The comparison methodology applied for the analysis of the results is
available as a Python notebook (v3.7) here: https://github.com/johrollin/jupyter_variant_
calling

Criteria for evaluating SNPs detection
To be considered “correct”, the detection of SNPs had to pass the three parameters
described above. To obtain the “correctness” analysis, we made two confusion matrices:
the first one is based on the software detection (S). In contrast, the second one uses the
manual validation (MV) performed.

Confusion matrices are layouts that allow the performance monitoring of predictions.
On the software part, we considered as True Positive (TPs) all the expected SNPs that were
predicted (regardless of their validation status by the participant), the False Positive (FPs)
as all the wrong detections of SNPs, the False Negative (FNs) as the number of expected
SNPs that were not predicted. Finally, the True Negative (TNs) was not calculated as it did
not make sense here (the number of non-predicted SNPs can not be known). We also
calculated the True Positive and False negative rates, which correspond to the percentage
of expected SNPs found (TP) or missed (FN) among the total number of expected SNPs for
the sample (see Table 1).

On the manual validation matrix, a True Positive (TPmv) was an expected SNPs
predicted with a positive validation status. A False Positive (FPmv) corresponded to the
wrong detection of SNPs that were positively validated. A False Negative (FNmv) was an
expected SNPs validated as negative, and, finally, a True Negative (TNmv) represented a
wrongly predicted SNPs that was negatively validated (rejected by manual validation).
We also calculated the True Positive and False negative rates, which corresponded to the
percentage of expected SNPs found and positively validated (TP) or negatively validated
(FN) among the total number of expected SNPs predicted by the software for the sample.

RESULTS
Result impacting decision on protocol
Step 1: reads pre-processing

The objective of the pre-processing step was to evaluate the difference in the
read-cleaning strategies of participants and to further evaluate their impact on the next
steps of the analysis. We obtained several FASTQ files from each participant (65 files in
total); the statistics on the reads retained after this step files were studied and are available
in File S3.

The data transformations carried out by the participants, in various combinations were:

� Pairing: associate the two reads of the same pair together; the modification made on one
of the reads may impact the second one.

� Merging: merge the two paired reads to obtain one longer read.

� Adapter trimming: removing small (Illumina) adapters that may be on reads because
they can interfere with downstream analyses.

� Quality trimming: remove nucleotides (or read) based on their base calling quality score.

Rollin et al. (2023), PeerJ, DOI 10.7717/peerj.15816 10/25

https://github.com/johrollin/jupyter_variant_calling
https://github.com/johrollin/jupyter_variant_calling
http://dx.doi.org/10.7717/peerj.15816/supp-3
http://dx.doi.org/10.7717/peerj.15816
https://peerj.com/


� De-duplication: remove identical reads if several are present.

Not all of these data transformations were performed by all laboratories, and the order
in which they were performed was also different. These transformations and their order
are important because they can impact the number of reads, their average length and the
quality of the remaining reads, which were the metric for the dataset selection for the
following step. The individual effect of each transformation on reads is known (Lebas et al.,
2022). In our case, it is their combination that is interesting.

The results were analyzed according to two axes. First, the consistency in read number,
quality, and length between the original file and the cleaned ones were checked between the
three samples. In the second axis, the differences observed in applied methodology and
obtained results were compared between laboratories.

An obvious trend is that a higher average base quality is obtained when more
nucleotides are removed. Merging was performed by three participants and was identified
as a critical step in comparing the different datasets since it significantly changed the
statistics. Therefore, those datasets were analyzed separately from the non-merged ones.
When merging, the quality of the remaining read is higher, but the number of remaining
nucleotides is lower. That is expected since the overlapping part of a pair of reads is used
for merging. On the non-merged resulting FASTQ files, we saw that similar combination
of methods provided similar results, with the slight difference explained by the variation of
parameter/version of used tools. No unexpected results were obtained on these steps when
analyzed alone (before comparing to other step).

To monitor the eventual effect of the pre-processing on the overall analysis, a selection
of datasets to be used by all labs for the next step was performed. The criteria for the
selection were discussed and agreed among participants. A combination of metrics
corresponding to read number and length (impactful on coverage ability which is believed
to be very significant for later variant calling), and quality score was used to select the
datasets that are described in Table 2. The Illumina adapter effect on the trimming was not
evaluated as they are not generated by the read simulator tool.

Condition B was kept for step 2 to include one file with merged reads as its result files
were more constant in terms of high quality and read number (operations used to generate
each dataset are available in File S2). It also presented a higher number of merged reads
than the remaining unmerged reads (File S3). This dataset represented high-quality reads
mostly merged. Conditions C had better quality confidence than average, even if it
provided fewer reads than the others, which may play a key role in the last step. Condition
D is similar to the majority of other datasets by most metrics. The fact that it did not have
any outlier metrics made it a good candidate for the next step as a standard read cleaning
case representative.

Step 2: Reference identification and read mapping
The participants aimed to identify the correct reference(s) and to provide a mapping file

for further variant calling. Information about those results was extracted and detailed in
File S4. The key result of this step was reference identification. The participants used a
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variation of assemblers (Geneious, CLC Genomics Workbench, Tadpole, Velvet, Spades)
and/or alignment (BLAST or mapping) approaches. Alternative strategies of de novo
assembly and mapping to all PepMV references (and no other virus species) were used by
one participant, while de novo assembly and BLAST to a database containing all PepMV
references (and no other virus species) were used by two participants. Most (8) laboratories
used an approach that works without the virus prior knowledge with (de novo) assembly
and alignment (BLAST) to a database of various (plant) viruses. No major difference
between strategies or tools was found. In total, of the 14 participants, 11 found the correct
(DQ000985.1) reference for sample 1, and 10 labs found the two correct references
(DQ000985.1, AJ606359.1) for sample 2 (two labs found reference DQ000985.1 only).
Finally, 11 labs found the correct reference (DQ000985.1) for sample 3. We investigated
the methods used to find the reference, focusing on the case(s) where it failed and
identifying four different causes for not identifying the correct reference(s):

� The alignment (BLAST) database used for reference identification was too small (the
correct references were not present).

� The database (BLAST) contained redundancies, meaning several identical reference IDs
were found. This will not impact variant calling ability. Nevertheless, if several identical
sequences are used for the mapping, the reads are likely to be divided between references
depending on the mapping options, impacting the respecting SNPs frequencies and the
confidence of their detections.

� Several PepMV references are described, while only one was correct (incomplete BLAST
selection criteria were applied)

� Only the best BLAST result was kept, meaning that the second reference for sample 2
was not identified.

Table 2 summary of quality metrics of the nine selected datasets for the following steps. The metrics number of reads (Read NB), read length
range (minimum to maximum read length), mean (read) length and the number of nucleotides (NB nucleotides) were used to monitor the
remaining amount of informative data remaining. Mean confidence (based on confidence scores provided by the base calling program) and the
quality score metrics were used to assess the quality/confidence of the remaining data. Quality scores are an estimation of the probability of a base
(call) being wrong, Q20 represent 1 in 100 error rates, Q30 is 1 in 1,000, Q40 1 in 10,000, meaning that a higher Q score indicates a smaller
probability of error, but keeping only the high quality reads mean less informative data kept for further analysis.

Condition Sample Reads NB Read length range Mean length Mean confidence Q20 Q30 Q40 NB nucleotides

B 1 979,286 30–230 131 38 99% 95% 71% 128,377,190

B 2 1,031,979 30–230 133 38 99% 95% 68% 137,398,669

B 3 1,348,006 68–400 400 31 94% 73% 19% 538,687,668

C 1 1,246,836 20–125 118 37 99% 95% 29% 146,452,744

C 2 1,644,810 20–125 119 37 98% 94% 21% 195,589,523

C 3 898,660 20–250 113 30 96% 69% 0% 101,325,451

D 1 1,969,770 48–125 116 36 96% 90% 18% 228,638,480

D 2 2,369,778 45–125 118 36 96% 91% 15% 278,612,958

D 3 2,660,434 50–250 187 29 93% 67% 0% 497,181,717
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Table 3 Mapping metrics of the chosen dataset for the following steps. Three datasets were chosen from the participant results. The number of
identical sites corresponds to identical di-nucleotide throughout all reads for a given position on the reference. Mean coverage is the average vertical
coverage (also referred to as depth), corresponding to the mean number of reads covering each reference position. The coverage range is the
minimum to maximum vertical coverage for each position.

Sample Condition Step 1 ID Reference NB reads Identical site Mean coverage Coverage range

1 E B DQ000985 364,068 1,660 (25.6%) 7,182 15–7,966

1 E C DQ000985 400,001 1,569 (24.2%) 7,797 15–8,611

1 E D DQ000985 400,003 1,571 (24.3%) 7,794 15–8,611

1 F B DQ000985 364,145 1,467 (22.6%) 7,185 15–7,967

1 F C DQ000985 400,001 1,485 (22.9%) 7,798 15–8,611

1 F D DQ000985 400,007 1,484 (22.9%) 7,795 15–8,611

1 G B DQ000985 366,495 162 (2.1%) 7,197 1–8,058

1 G C DQ000985 400,007 1,474 (22.8%) 7,718 1–8,611

1 G D DQ000985 400,026 1,449 (22.0%) 7,677 1–8,611

2 E B AJ606359 151,023 3,642 (56.3%) 2,957 9–3,320

2 E C AJ606359 159,530 3,603 (55.7%) 3,091 1–3,457

2 E D AJ606359 159,553 3,599 (55.6%) 3,091 9–3,457

2 F B AJ606359 151,053 3,455 (51.1%) 2,803 1–3,320

2 F C AJ606359 159574 3,489 (52.5%) 3,006 1–3,457

2 F D AJ606359 159,634 3,432 (51.6%) 3,002 1–3,457

2 G B AJ606359 152,220 229 (3.0%) 2,795 1–3,339

2 G C AJ606359 162,033 3,384 (50.1%) 3,016 2–3,457

2 G D AJ606359 162,167 3,331 (48.7%) 2,989 1–3,457

2 E B DQ000985 225,668 2,721 (42.3%) 4,450 8–4,911

2 E C DQ000985 240,481 2,672 (41.5%) 4,688 9–5,220

2 E D DQ000985 240,497 2,670 (41.5%) 4,687 9–5,220

2 F B DQ000985 225,687 2,498 (38.4%) 4,349 1–4,911

2 F C DQ000985 240,482 2,569 (39.9%) 4,625 1–5,220

2 F D DQ000985 240,498 2,568 (39.5%) 4,623 1–5,220

2 G B DQ000985 227,072 169 (2.3%) 4,370 1–4,972

2 G C DQ000985 240,486 2,581 (39.6%) 4,544 1–5,220

2 G D DQ000985 240,502 2,545 (39.0%) 4,543 1–5,220

3 E B DQ000985 199,995 7 (0.1%) 12,503 15–13,588

3 E C DQ000985 98,022 46 (0.7%) 1,577 3–1,814

3 E D DQ000985 391,777 18 (0.3%) 11,023 14–12,033

3 F B DQ000985 199,997 2 (0.0%) 12,478 15–13,593

3 F C DQ000985 97,840 41 (0.6%) 1,581 3–1,819

3 F D DQ000985 393,289 14 (0.2%) 11,050 14–12,079

3 G B DQ000985 200,004 2 (0.0%) 11,772 2–13,593

3 G C DQ000985 98,427 41 (0.6%) 1,531 1–1,821

3 G D DQ000985 393,321 8 (0.1%) 10,504 1–12,079
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We also evaluated the resulting mapping against the selected references using statistics
extracted from the bam file (read number, identical site, mean coverage, coverage standard
deviation, coverage range) (see File S4). For samples 1 and 2, the metrics obtained by the
laboratories were all close to the expectation. For sample 3, differences due to the impact of
step 1 were observed. Table 3 displays these differences observed between conditions B, C
and D.

All conditions of samples 1 and 2 presented very homogeneous statistics. Only
condition B provided fewer reads as it represented the merged condition (comparison with
non-merged should not be done). On the other hand, only sample 3 showed some
differences, as condition C (High quality) provided fewer reads than others. In all
conditions, the number of identical sites dropped below 1%, probably because sample 3
presented lower-quality reads than the two other samples. Because the difference between
statistics was not so high, we decided to select the new conditions (E, F, G) for step 3 based
on the tool/parameters used.

Condition E represented the mapping results obtained using CLC genomics (QIAGEN
CLC Genomics Workbench) with standard parameters (see lab B mapping parameters in
File S2) used; the number of reads in that file was close to the expectation (see Table 1).
Condition F is a case with Geneious standard parameters (see lab D mapping parameters
in File S2) applied and read numbers also close to expectation. Finally, Condition G used
Geneious with a more relaxed parameter, using the same parameter set as dataset F but
allowing more mismatches (see lab Z mapping parameters in File S2) and presented
divergence on identical site numbers.

The reasoning behind this selection was to test if the same SNPs would be predicted
between the tools/parameters (meaning that the same reads were mapped at the same
position). For example, the comparison between F and G should provide interesting
information since the reads number was very close; the differences seen (if any) would be
due to the very few read differences.

Step 3: SNPs calling
We obtained 9,624 SNPs detections, which were analyzed by comparing them to the

expected SNPs using three parameters (mutation type, position of the SNPs, and reference/
allele). All laboratories gave results using the forward strand coordinate, meaning that the
reads were automatically reversed by the tool(s) used for the mapping.

Table 4 shows the expected SNPs’ results compared to the predicted ones grouped by
dataset conditions combined. For example, dataset BE represents the merged reads (with
high quality) mapped with CLC Genomics with standard parameters. By knowing the true
positive percentages (TP%) and true positive rate, we can deduce the false positive
percentages (FP%) and False negative rate (expected SNPs missed). There are no major
differences between alternative pre-processing datasets (B, C, D), with 75% TP on average
for all three conditions. On the alternative mapping parameter, the percentage of true
positives decreases from dataset E (90% TP) to F (76% TP) and G (59% TP). On G (relaxed
parameters for mapping), an overprediction of SNPs (last column) was observed and
explains the lower percentage.

Rollin et al. (2023), PeerJ, DOI 10.7717/peerj.15816 14/25

http://dx.doi.org/10.7717/peerj.15816/supp-4
http://dx.doi.org/10.7717/peerj.15816/supp-2
http://dx.doi.org/10.7717/peerj.15816/supp-2
http://dx.doi.org/10.7717/peerj.15816/supp-2
http://dx.doi.org/10.7717/peerj.15816
https://peerj.com/


Contrary to what was expected, sample 3, which was designed to be the most
complicated sample, showed the best results (86% TP for all conditions). Sample 1 also
showed very good TP (82%), while sample 2 showed only 57% TP (average TP% (all)).
If we consider the true positive rate (expected SNPs found), sample 1 performs worst with
45%, sample 3 has 52%, and sample 2 shows the best true positive rate with 60%. There is
more overprediction for sample 2 compared to the number of expected SNPs, which
allowed us to recover more correct SNPs than for the two other samples. There were some
discrepancies between conditions depending on the sample used: BG for sample 1 and
condition BG, CG, and DG for sample 2 overpredicted a lot more SNPs than other
conditions. This overprediction was always linked to a worse TP/FP balance, while the TP/
FN balance was not different. For sample 3, performance metrics are less variable across
different conditions. The overpredictions of the relaxed mapping condition (G) are
observed in the cases where the number of identical sites was lower for G than other
conditions (see Table 3).

Most of the participating laboratories correctly identify SNPs with relative frequencies
above 1%. This is largely, because as described in File S2, most the bioinformatics pipelines
are tailored to identify SNPs with frequencies above 1%. The important difference between
detections for all frequencies and frequencies above 1% came from the true positive and
false negative rates. Indeed, they rose when rare-frequency variants were no longer
considered. First, the number of SNPs to consider is 17 (instead of 26) for sample 1, 6 (9)
for sample 2 and 11 (14) for sample 3. At the same time, the true positive rate (expected
SNPs predicted) rose to 65% (instead of 45%) for sample 1, 82% (60%) for sample 2 and
66% (52%) for sample 3. It indicated that a large part of the expected SNPs that were
missed (false negative rate) are the ones with low frequencies. Additional analysis on SNPs
frequencies showed that all laboratories obtained different frequency detections compared
to the expectation for sample 2 (File 5).

Table 4 Impact of the conditions combination on variant calling detection for all samples. The condition: B (merged + high-quality control), C
(intermediary quality control) and D (Standard quality control) were combined with E (CLC standard mapping parameters), F (Geneious standard
mapping parameters) and G (Geneious relaxed mapping parameters) to provide statistics on variant calling detection. The True Positive percentage
(TP%) correspond to the definition of TPs (Fig. 2): percentage of expected SNPs that were predicted on all detections. The true positive rate is the
percentage of expected SNPs on all SNPs expected. “average NB” correspond to the average number of SNPs predicted.

Conditions Combination TP% True positive rate Average NB of SNPs predicted

BE Merged high QC + CLC 88% 53% 11.6

BF Merged high QC + Geneious 78% 54% 11.7

BG Merged high QC + Geneious relaxed 59% 52% 29.7

CE Intermediary QC + CLC 90% 52% 10.5

CF Intermediary QC + Geneious 77% 51% 11.2

CG Intermediary QC + Geneious relaxed 59% 51% 23.9

DE Standard QC + CLC 92% 54% 9

DF Standard QC + Geneious 73% 52% 12.8

DG Standard QC + Geneious relaxed 59% 52% 36.6
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Once the SNPs detection was done, the participant could manually check the prediction
to confirm or reject the SNPs detection. The criteria used varied between laboratories, but
common criteria can be highlighted. Almost all participants visually examined the
mapping and focused their efforts on areas more prone to error (mapping low coverage or
SNPs with low frequencies). Then they evaluated if the detection might have come from
mismapped reads by analyzing the quality of the alignment and quality of the read
sequences. More precise information on the manual validation process is available in File
S2.

Table 5 Impact of the samples and condition on variant calling detection with alternative frequencies filters. The TP% and true positive rate
have the same meaning as in Table 4. To evaluate the impact of SNPs with rare-frequency (all frequencies), the performance criteria were also
calculated for the SNPs with a frequency higher than 1%.

Samples Conditions TP%
(all)

TP%
(>1%)

True positive
rate (all)

True positive rate
(>1%)

Average NB of SNPs
predicted (all)

Average NB of SNPs predicted
(>1%)

Sample 1 BE 89% 90% 48% 68% 15/26 14/17

BF 77% 85% 46% 66% 18/26 13/17

BG 64% 68% 44% 66% 38/26 19/17

CE 92% 93% 47% 67% 13/26 12/17

CF 79% 88% 43% 62% 15/26 12/17

CG 81% 88% 43% 62% 15/26 12/17

DE 92% 93% 47% 67% 13/26 12/17

DF 79% 88% 43% 62% 16/26 12/17

DG 80% 87% 43% 62% 15/26 13/17

Sample 2 BE 87% 95% 56% 76% 6/9 5/6

BF 74% 76% 62% 85% 8/9 7/6

BG 30% 30% 59% 81% 42/9 38/6

CE 87% 91% 56% 76% 6/9 5/6

CF 64% 63% 62% 85% 10/9 10/6

CG 15% 14% 61% 83% 48/9 47/6

DE 94% 97% 61% 82% 6/9 5/6

DF 50% 49% 62% 85% 15/9 15/6

DG 14% 13% 62% 85% 58/9 56/6

Sample 3 BE 89% 89% 54% 69% 8/14 8/6

BF 84% 84% 54% 68% 9/14 8/6

BG 83% 83% 54% 68% 9/14 9/6

CE 89% 89% 53% 66% 8/14 8/6

CF 87% 87% 49% 62% 7/14 7/6

CG 82% 81% 49% 62% 8/14 8/6

DE 89% 89% 54% 68% 8/14 8/6

DF 89% 89% 51% 64% 7/14 7/6

DG 83% 83% 51% 64% 8/14 8/6

Average 75% 77% 52% 71% 17.30 14.07
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The average expected SNPs detection was 13 (instead of 26) for sample 1, 6 (9) for
sample 2, and 8 (14) for sample 3. Interestingly, the TPmv follows the same pattern as in
Table 5, where the E condition provides better results than F and G, and the overprediction
of condition 1 BG and conditions 2 BG, CG and DG lower the FPmv. This is expected as
most of the correct SNPs are missed by the variant calling for those conditions. As an
example, in sample 2 condition BG, 25% of the SNPs were correctly found and validated
(TPmv), but only 2% were correctly found and rejected by the validation (FNmv). Most of
the overprediction was in TNmv (67%) as the validation rejected the wrong detections;
only 7% (FPmv) of the wrong detection was validated. That means that the manual
validation was very efficient in differentiating between correct and wrong detections.
As evidence by the true positive and false negative rates, with true positive rates on average
of 87% (sample 1), 96% (sample 2) and 86% (sample 3). The strategy of focusing on key
areas of the mapping, and discarding SNPs predicted in a suspicious zone (badly aligned
reads), seemed very efficient. Nevertheless, as it relies on manual (visual) examination, the
quality might vary depending on the expertise of the scientist.

DISCUSSION
The division of the overall analysis into three steps, from the reception of the reads to the
SNPs detection, was very beneficial to structure the comparison between laboratories,
conditions and to have checkpoints where the differences between laboratories can be
traced to. It also highlighted some important points on specific steps regarding variant
calling.

The relative importance of pre-processing
Our results showed that the pre-processing step was not very impactful as not much
difference was observed between participants’ read files (see File S3) or sample treatment.
The sample started with Q30:88% | Q20:94% (sample 1), Q30:89% | Q20:94% (sample 2)
and Q30:59% | Q20:88% (sample 3). The main difference was the merged reads that
provided different statistics (fewer but longer reads). Neither the alternative cleaning at a
different level of read quality (conditions C and D) nor the merge (condition B) impacted
the SNPs detections. No real difference in the resulting true positive rate was observed in
the results. These results seemed to indicate that above a certain minimal quality limit
(here Q20 > 90%), any additional quality trimming does not change the variant calling
ability. No attempt on trimming with a minimum quality of 30 was made (it would have
had a larger impact on sample 3). More tests with lower-quality data should be performed
to confirm this hypothesis and identify the quality limit. Additionally, the effect of the
presence of Illumina adaptor was not evaluated.

Importance of reference identification
The second step, including the identification of the reference genome to be used for
mapping, was very important as, if it failed, the variant calling would be strongly biased.
We identified the database composition as the main reason for the possible failure. Indeed,
the scope of the reference database is important because if not enough representative
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sequences are present, the compared sequences might be too distant, and overprediction of
SNPs can occur. In fact, the more reference sequences in the database, the better it is for the
detection, but the analysis will take longer. In general, using the most closely related
reference as possible is more beneficial, but if another (little bit less related) reference is
used, this will also allow to reconstruct the genome, and investigate SNPs.

Most participants used a de novo assembly to obtain contigs (sequence fragments easier
to identify). They then performed a first BLAST against a RefSeq database (including only
one representative sequence) to have a first (quick) overview of the putative identity of the
contigs. Then, as the contigs linked to PepMV were identified, they used the contigs (all of
them or the pre-selected PepMV one) as input for a second BLAST analysis against a larger
database containing all PepMV sequences to select the closest reference.

One of the laboratories used an alternative approach that also worked; first, the virus
identification was performed using a similar approach (assembly and alignment) through
the VirusDetect pipeline (Zheng et al., 2017). Once the PepMV virus was confirmed, all
reference sequences for that virus were downloaded, and whole genome alignments with a
phylogenetic tree construction were performed. Then one reference from each clade in the
tree was selected, and all original reads were mapped to this group of diverse references.
Once it was clear which clades of references were present, the procedure was repeated
(with different combinations of references) to find the most closely related reference. A
possible advantage of this approach is that mapping is faster than BLAST. Also, by
analyzing the references in more detail (phylogenetically), more insight was obtained in
the relationships between the publicly available sequences.

Read alignment and variant calling
The alternative mapping parameters comparison (condition E, F or G) showed some
differences. Indeed, a similar true positive rate was obtained with each condition but with
different levels of background noise (SNPs wrongly predicted). Condition E (mapping with
CLC) and condition F (mapping with Geneious) used relatively similar parameters
(described in File S2), but F gave more false positive than E. Condition G (mapping with
Geneious with relax parameter) generated the most background noise with SNPs
overpredictions, this was very variable between conditions. We believe that the wrong
detections with relaxed parameters can be explained by erroneously adding some reads in
the mapping that provided mismatches interpreted by the variant calling tool as SNPs.
Even if that hypothesis seems very logical, it does not explain overpredictions in G, nor the
differences seen between E and F. Table 3 showed that, between the three conditions, the
metric on reads was very similar, which made the difference even more surprising.
The differences between conditions corresponded to 100 reads, while the mean coverage
was close to 10,000 reads (depth). This would indicate that if the wrong reads leading to
wrong detections are among the 100 differential reads, we should have most of the false
detections near a 1% frequency. Since Table 5 showed that most of the wrong detections
are not below a 1% frequency, the explanation for the difference in mapping remains
unclear. An additional analysis focusing more on mapping methods/parameter differences
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would be required to understand how the (minor) modifications in the read pool and
placement can impact the variant calling afterwards.

Using different variant caller tools did not change the results; the only change observed
was in the number of SNPs predicted when the frequency used as the limit of detection was
different between laboratories. This differs from most of the variant caller benchmarks
(Deng et al., 2021; Barbitoff et al., 2022; Guirao-Rico & González, 2021). But they focus
mainly on the variant caller step with only sometimes considering the previous step

Table 6 Manual validation of the variant calling depending on the sample. Table 6 shows the complete confusion matrix (FPmv, TPmv, FPmv,
FNmv) for the manual validation of SNPs predicted by the variant caller, allowing the evaluation of the manual validation of the detection.
The TPmv corresponds to the expected SNPs found and positively validated, FPmv shows the unexpected SNPs positively validated, TNmv
represents unexpected SNPs negatively validated, and finally, FNmv shows expected SNPs found and negatively validated. Here, the true positive rate
represents the expected SNPs found and validated and the false negative rate the expected SNPs found but not validated. In this table, the number of
SNPs to consider depends on the amount predicted by the variant calling step.

Samples Conditions TPmv
%

FPmv
%

TNmv
%

FNmv
%

True positive
rate

Average NB of SNPs predicted and
with validation

Sample 1 (average expected SNPs within
prediction: 13.04)

BE 79% 5% 5% 11% 88% 13.35

BF 66% 16% 9% 9% 89% 16.28

BG 51% 5% 36% 8% 80% 31.5

CE 83% 4% 1% 12% 87% 11.42

CF 68% 15% 7% 10% 88% 14

CG 70% 13% 7% 10% 87% 13.5

DE 83% 4% 1% 12% 87% 11.42

DF 68% 15% 7% 10% 88% 13.92

DG 69% 13% 8% 10% 88% 13.57

Sample 2 (average expected SNPs within
prediction: 5.97)

BE 83% 9% 5% 4% 96% 5.21

BF 67% 8% 22% 4% 96% 7.35

BG 25% 7% 67% 2% 96% 39.85

CE 83% 13% 0% 4% 96% 5.21

CF 58% 9% 29% 4% 96% 9.14

CG 12% 15% 72% 1% 96% 44.14

DE 93% 3% 0% 4% 96% 5.07

DF 43% 11% 42% 4% 96% 13.71

DG 16% 10% 73% 1% 95% 46.14

Sample 3 (average expected SNPs within
prediction: 8.23)

BE 88% 1% 0% 11% 89% 6.85

BF 83% 2% 5% 10% 90% 7.5

BG 82% 1% 6% 10% 90% 7.57

CE 85% 0% 0% 15% 85% 6.57

CF 82% 2% 1% 15% 84% 6.42

CG 76% 2% 8% 15% 84% 7.14

DE 84% 0% 0% 16% 84% 6.71

DF 83% 0% 0% 17% 83% 6.35

DG 75% 0% 8% 17% 83% 7

Average 69% 7% 16% 9% 90% 13.96
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(mapping or de novo assembly), which probably tends to highlight variant caller
differences. One other explanation is also that we have a less complex sample (fewer SNPs
to predict for each sample) compared to most of the benchmark samples (between 1 3274
SNPs (Deng et al., 2021)).

Impact of sample complexity on detection ability
The samples were designed with different levels of complexity. Sample 1 was simple, with
tomato plant and PepMV reads present. The presence of two isolates (with 78% nucleotide
identity) in sample 2 did not seem to impact the SNPs detection but rather the frequencies
of the prediction compared to the expectation. Sample 3 was supposed to be the more
complex as it provided lower sequencing quality (Q30:59% | Q20:88% instead of Q30: 88%
| Q20:94%) and the additional viral background noise but with longer reads to compensate.
Our method to build simulated samples was similar to the one in Guirao-Rico & González
(2021) but it differed from Deng et al. (2021) (resequencing from known viral strain
mixed). As both the read cleaning step and viral background noise were not very impactful
on SNPs detection, it is not surprising that sample 3 (longer reads) provided the best result,
and overall, all samples performed well.

Importance of manual validation
Amanual validation step might be very important as it allows the biologist to discard SNPs
that are not correct and filter the SNPs relevant for downstream analysis. In this study,
most of the participants performed a visual examination of the mapping to point out the
positions that could be problematic for the variant caller. This method was very efficient
since, in all conditions for all samples, it allowed to discard some of the wrongly predicted
SNPs. On average, the true positive rate was 90% in Table 6 (all samples, all conditions).
Meaning that the validation confirms 90% of the expected SNPs that the variant caller
predicted. The manual validation discarded most of the overprediction (TNmv > 67% for
condition G on sample 2). This indicates that most of the over detections were on positions
where the alignment was visually doubtful.

The experience with SNPs detection was very variable among participants, as three out
of 14 did not employ any manual confirmation. Of the 11 laboratories that performed it,
that step was very beneficial for 10 of them (see File S6). A too-strict manual filter caused
the failure to improve the result with the manual examination (>10% frequencies) for the
remaining laboratory. In real life several aspects can make the expert curation more
difficult, as too many SNPs can be predicted making manual checking a slow and long
process. However, expert validation of SNPs detection is a very important step of the
variant calling, and even if performed by non-experienced scientists, it remains beneficial.

CONCLUSION
In this study, we simulated three plant samples containing PepMV with different variants
at several frequencies. Then, a performance study with 14 laboratories was carried out to
highlight the key points leading to the failure or success of the SNPs detection in plant
viruses. We showed that steps often considered very important (Koboldt, 2020), like pre-
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processing, were not that impactful when the base quality was already decent (Q30 > 88%
for sample 1 and 2). The effect of the complexity of the datasets was not as conclusive
because the dark matter or the viruses mix did not add the expected level of complexity.
In addition, the SNPs frequency analysis only showed us that higher frequencies SNPs are
easier to predict than low frequencies. The two most important factors corresponded to the
strategy to identify the closest reference for mapping and the manual validation of the
predicted SNPs. Finally, the mapping parameters impacted our results, with relaxed
conditions performing worse. The laboratory obtained overall high TP prediction, with the
same SNPs missed by most of them which show a high repeatability on the variant calling.
The more experienced participants obtained improved performance thanks to their
manual validation. This performance testing is useful to show a variety of strategies leading
to variant calling; the community-based performed analysis shows applicable pipelines
that can be used to improve end-user variant calling.
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