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11 Abstract
12 Natural regeneration plays an important role in determining species diversity and evolution. 
13 Exploring causes of variation in regeneration dynamics can provide key insights into the factors 
14 affecting regeneration. However, the relationship between the regeneration of Larix principis-
15 rupprechtii and environmental factors is not clear in north China. Primarily, the three extents of 
16 regenerated L. principis-rupprechtii were selected in Shanxi Province. Then, the redundancy 
17 analysis revealed the environmental factors (topography, stand structure, soil property, and litter) 
18 that affected natural regeneration. The structural equation modeling identified the most importance 
19 of direct and indirect factors that affecting L. principis-rupprechtii natural regeneration. Litter 
20 thickness, canopy density, and adult tree diameter at breast height were positively correlated with 
21 natural regeneration. Aspect and total volume of nitrogen were negatively associated with natural 
22 regeneration. In addition, there was no significant correlation between natural regeneration and 
23 other environmental factors (altitude, slope, adult tree height, stand density, soil water content, soil 
24 organic content, total P, available N, available P, and soil enzyme). Further artificial intervention 
25 measures should be considered to promote plantation regeneration. This finding provides an 
26 effective base for land managers to conduct forest restoration and sustainable management. 
27 Keywords Natural regeneration, Environmental factors, Plantations, Management implication, 
28 Litter layers, Guandi Mountain
29
30 Introduction 
31 Natural regeneration is crucial in forest ecosystems for providing the next generation with canopy 
32 trees (Lombaerde et al., 2019). It is a tendency for tree regeneration to achieve close-to-nature 
33 management (Elisa et al., 2021). The regeneration of overstorey trees can make the forest 
34 ecological system retain a higher biomass diversity and ecological quality (Puhlick et al., 2012). 
35 Natural regeneration is replacing artificial planting in most places in a dominant manner (Christian 
36 et al., 2018; Puettmann et al., 2015). Compared with traditional regeneration, natural regeneration 
37 is the cost-effective time-saving renewal of a stand by its seeds. It can achieve higher seedlings 
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230 having a path coefficient of 0.30. Meanwhile, litter accumulation is positively associated with litter 
231 thickness, with the path coefficient being 0.81. Regeneration is negatively associated with litter 
232 accumulation, total N, and aspect, the path coefficients of which are -0.08, -0.17, and -0.18, 
233 respectively. Total N and litter accumulation are negatively correlated, with the path coefficient of 
234 -0.47. The aspect is negatively associated with litter thickness and soil water content, the path 
235 coefficient of which are -0.40 and -0.53, respectively.
236
237 Discussion
238 According to a series of analyses, litter thickness, altitude, aspect, canopy density, adult tree DBH 
239 and total N are selected factors that affected the L. principis-rupprechtii natural regeneration.
240 Effect of topography on regeneration
241 Soil serves as the essential part affecting the growth and distribution of vegetation. Soil and 
242 vegetation are affected by topography (Liu et al., 2012; Parker, 2013). Topographic factors can 
243 adjust seeds, water, and nutrient redistribution. For instance, aspect has a significant effect on plant 
244 community structure and extents of natural regeneration (Fu et al., 2004; Ma et al., 2010; Wang 
245 et al., 2016). The ordination results indicated that the aspect and altitude were the major 
246 topographic factors affecting regeneration. However, SEM analysis indicated altitude did not 
247 influence regeneration. In this study, the difference between high and low elevations in sampling 
248 plots was 88 m. Many studies indicated a little effect on the development of vegetation and 
249 regeneration when the elevation change was < 300 m (Liu et al., 2012; Wang et al., 2006), which 
250 may not be enough to cause variations in water conditions. Therefore, the elevation variable was 
251 not chosen as the element affecting regeneration. The aspect was positively related to the activity 
252 of aboveground organisms and the distribution of herbs and negatively correlated with 
253 regeneration (Scowcroft et al., 2010; Vitousek et al., 1994). There were two kinds of aspects 
254 (Northwest and West) recorded in our study site, which determined the amount of solar radiation 
255 accepted (Sariyildiz et al., 2005). The seedlings of L. principis-rupprechtii need enough light to 
256 grow at early-stage from seeds to seedlings then saplings. The Northwest aspect could receive 
257 more solar radiation than the West aspect. A great regeneration density was recorded in the 
258 Northwest aspect in this study. Soil temperature and soil water availability are controlled by aspect, 
259 which in turn affect seedlingsí establishment and growth (Mcnab, 1992; Xue et al., 2012). 
260 Topography can affect the soil depth and profile development and the accumulation of soil 
261 nutrients, indirectly influencing the distribution of plants and species composition (Dessalegn et 
262 al., 2014; Liang & Wei, 2020; Sariyildiz et al., 2005). In this study, regeneration was negatively 
263 correlated with aspect (-0.18), suggesting that it is easier for seeds to accumulate and grow in the 
264 aspect of the Northwest with more solar radiation.
265 Effect of stand structure on regeneration
266 Stand structure factors greatly influence the level of regenerated seedlings and plants restoration, 
267 which can affect seedlingsí richness and density (Liu et al., 2020). This study conducted the effect 
268 of stand structure on natural regeneration. The change of different factors depended on the life 
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269 stages of regenerated seedlings. As one of the structure factors, canopy density affects stand 
270 structural composition, litter cover, species richness, and composition (Chen & Cao, 2014; 
271 Takahashi & Mikami, 2008). Regenerated seedlings need light to grow, which is important for 
272 regeneration to increase light capture. So, seedlings need to reduce self-shading to accept more 
273 efficient light in the forest understory (Takahashi & Mikami, 2008). The SEM analysis suggested 
274 that adult treeís DBH positively correlated with natural regeneration. Mother trees with greater 
275 DBH typically obtained more soil water, light, and other resources to support seedlingsí growth, 
276 occupying a dominant position in the forest (Li et al., 2005). Many seeds produced by strong 
277 mother trees were higher in quantity and quality, which might explain the high regeneration density 
278 in the study area. There was a positive correlation between canopy density and regeneration, 
279 consistent with that of A et al. (2019) and Mou et al. (2012). Meanwhile, the strength of this 
280 correlation was higher than that of adult trees DBH. The regenerated period of light requirements 
281 for growth increased with the increasing canopy density. The shortage of light supplements could 
282 cause poor growth and even death (Gaudio et al., 2011; Wang et al., 2017). Some studies have 
283 also indicated the light is one of the most important environmental factors influencing the 
284 development of natural regeneration; direct light transmission is more conducive to seed 
285 germination and seedlingsí growth, conducting to its natural regeneration (Canham et al., 1990; 
286 Kneeshaw et al., 2006). In general, the relationship between canopy density, and adult tree DBH 
287 effect on L. principis-rupprechtii regeneration in this study was highly consistent with the findings 
288 of other studies (A et al., 2019; Ares et al., 2010; Koorem & Moora, 2010; Liang & Wei, 2020).
289 Effect of litter on regeneration
290 Understory shrubs, herbs, and litter play an important role in maintaining the biodiversity in local 
291 forest ecosystems and affecting natural forest regeneration (Li et al., 2018). Because with the 
292 increasing of shrubs height and herb coverage, more light is intercepted, and more litter is 
293 accumulated. In turn, the growth space availability decreases (Caccia & Ballaré, 1998; Facelli & 
294 Pickett, 1991; OíBrien et al., 2007). Shrubs were minor and less distributed in sampling plots, 
295 indicating no effect on regeneration. In addition, L. principis-rupprechtii is shade tolerance 
296 species, so the herb lacks a clear effect on regenerated seedlings (Kolo et al., 2017b; Lombaerde 
297 et al., 2019; Vayreda et al., 2013). However, some studies have suggested that limitation on the 
298 understory vegetation can promote natural regeneration since the herb can provide a shady 
299 environment to support the growth of seedlings. In turn, seedlings restrain the growth of herbs, 
300 explaining the existence of a few understoriesí vegetation (Bose et al., 2012; Émilie et al., 2015; 
301 Simon et al., 2017; Skay et al., 2021). 
302 RDA analysis suggested that litter thickness could explain 60.4% for regeneration. SEM 
303 analysis showed that it had a path coefficient of 0.87 for regeneration. So, the litter thickness was 
304 closely correlated with regeneration. Generally speaking, the seeds of L. principis-rupprechtii 
305 majorly scatter in soil layers for their length above 2 mm (Liang & Wei, 2020). With the thickness 
306 of litter layers increasing, the water holding capacity was increased. Stable temperature and better 
307 water holding capacity provide suitable growth conditions for germination while limiting soil 
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308 water evaporation (Boydak, 2004; Petrou & Milios, 2020; Spanos et al., 2000). Instead, some 
309 studies have indicated that the seeds do not grow and even die in litter layers since the radicles fail 
310 to reach the soil layers to attain adequate nutrients. Additionally, the litter has an auto-toxic effect 
311 on seedsí germination and seedlingsí growth (Pardos et al., 2007; Willis et al., 2021). 
312 Nevertheless, litter thickness has positive correlations with regeneration in this study (Fig. 5) since 
313 the adequate litter thickness and stable decomposition rate of litter can reduce a mechanical and 
314 physiological battier to promote natural regeneration, helping seeds find favorable conditions to 
315 germinate (Baker & Murray, 2010; Eckstein & Donath, 2005). So, the thickness of litter was in an 
316 ideal state in this area, which can be adjusted in further management to achieve the optimal 
317 regeneration density.
318 Effect of soil properties on regeneration
319 Soil nutrient circulation is an important factor affecting natural forest regeneration (Chen & Cao, 
320 2014). Seeds germination and seedlingsí growth need soil resources, such as soil organic content, 
321 soil water content, total nitrogen, and total phosphatase (Will et al., 2005). SEM analysis showed 
322 that total nitrogen greatly contributed to explaining natural regeneration compared with other soil 
323 properties. Since numerous litters were accumulated and decomposed in the surface soil layer at 
324 extensive management forest, increasing total nitrogen content. Total nitrogen was positively 
325 correlated with canopy density and negatively correlated with regeneration, while litter thickness 
326 was positively correlated with total nitrogen. Hence, species were deduced to increase total 
327 nitrogen, which was in agreement with that of Baker & Murray (2010) and Li et al. (2015). In 
328 addition, total N is one of the most important variables impacting species richness and plant 
329 distribution (Zuo et al., 2012). Meanwhile, more nutrients were released from inputted litter with 
330 forest regeneration (Deng et al., 2013). Nevertheless, as the total nitrogen content decreased, the 
331 number of species increased (Liu et al., 2011; Rhoades et al., 2009). Through observation, the 
332 richness (number) and quantity (height and diameter at breast height) of species varied in the RDA, 
333 indicating insufficient regeneration quality in the study site. Though high total nitrogen volume 
334 can restrict natural regeneration, a great proportion of total N consumption is needed for 
335 regenerated seedlings (Xu et al., 2018). So, artificial restoration is a necessary for in the later stage. 
336 Management implications
337 Environmental factors (aspect, canopy density, adult tree DBH, litter thickness, and total nitrogen) 
338 and regeneration of L. principis-rupprechtii were mutually related and restricted. Therefore, to 
339 improve the regeneration and soil quality, the coevolution of regeneration and soil quality should 
340 be considered. Effective implications should be considered, like appropriate removal of litter to 
341 decrease thickness to promote seeds germination. Scattered seedlings and dead trees should be 
342 removed to enlarge the distance between seedlings and adult trees and allow more light available 
343 to L. principis-rupprechtii. 
344 Conclusions
345 Great understandings of the environmental factors affecting seedlingsí growth were needed to 
346 achieve L. principis-rupprechtii regeneration. Based on RDA and SEM analysis, litter thickness 
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�w�a�t�e�r� �c�o�n�t�e�n�t�;� �S�t�a�D�,� �s�t�a�n�d� �d�e�n�s�i�t�y�;� �C�a�n�D�,� �c�a�n�o�p�y� �d�e�n�s�i�t�y�;� �L�i�t�T�,� �l�i�t�t�e�r� �t�h�i�c�k�n�e�s�s�;� �L�i�t�A�,� �l�i�t�t�e�r

�a�c�c�u�m�u�l�a�t�i�o�n�;� �A�d�t�-�D�B�H�,� �a�d�u�l�t� �t�r�e�e� �d�i�a�m�e�t�e�r� �a�t� �b�r�e�a�s�t� �h�e�i�g�h�t�;� �A�d�t�-�H�e�i�g�h�t�,� �a�d�u�l�t� �t�r�e�e� �h�e�i�g�h�t�.
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�F�i�g�u�r�e� �5

�C�o�r�r�e�c�t�e�d� �s�t�r�u�c�t�u�r�a�l� �e�q�u�a�t�i�o�n� �m�o�d�e�l� �w�i�t�h� �s�t�a�n�d�a�r�d�i�z�e�d� �p�a�t�h� �c�o�eû��c�i�e�n�t�s� �b�e�t�w�e�e�n

�i�nû��u�e�n�c�e� �f�a�c�t�o�r�s� �a�n�d� �r�e�g�e�n�e�r�a�t�i�o�n�.� �F�i�g�u�r�e�s� �o�n� �t�h�e� �a�r�r�o�w�s� �i�n�d�i�c�a�t�e� �s�t�a�n�d�a�r�d�i�z�e�d� �p�a�t�h

�c�o�eû��c�i�e�n�t�s�.

�R�e�d� �a�r�r�o�w�s� �i�n�d�i�c�a�t�e� �n�e�g�a�t�i�v�e� �aû��e�c�t�,� �w�h�i�l�e� �b�l�u�e� �a�r�r�o�w�s� �i�n�d�i�c�a�t�e� �p�o�s�i�t�i�v�e� �a�s�s�o�c�i�a�t�i�o�n�.
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�T�a�b�l�e� �1�(�o�n� �n�e�x�t� �p�a�g�e�)

�S�u�m�m�a�r�y� �o�f� �t�h�e� �s�t�a�n�d� �c�h�a�r�a�c�t�e�r�i�s�t�i�c�s� �i�n� �s�a�m�p�l�e� �p�l�o�t�s
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1 Table 1

Plot Basal area (m2·ha–1) Altitude (m) Longitude Latitude
Stand density 

(Tree·ha–1)
Aspect Slope (º) DBH (cm) Height (m) Age (a)

1 3.89 2063 ���������"���(�"���) �"�*���+���(�����) 175 N-W 19.4 44.5 21.13 56

2 2.50 2066 ���������"���(�"�"�) �"�*���+���(�����) 125 N-W 13 35.7 23.9 59

3 1.95 2060 ���������"���(���$�) �"�*���+���(���%�) 250 N-W 23 31.49 17.81 50

4 2.39 2070 ���������"���(�"���) �"�*���+���(���&�) 225 N-W 15.7 34.87 20.87 64

5 1.94 2078 ���������"���(���'�) �"�*���+���(���*�) 75 N-W 17 31.47 21.73 64

6 1.14 2029 ���������"���(���+�) �"�*���+���(���*�) 175 N-W 25 24.14 19.84 62

7 2.07 2018 ���������"���(���/�) �"�*���+���(���+�) 125 N-W 22 32.48 16.54 64

8 1.75 2002 ���������"���(���%�) �"�*���+���(���/�) 75 N-W 24 29.87 21.8 55

9 3.51 2007 ���������"���(���$�) �"�*���+���(���+�) 100 W 22 42.3 21.1 82

10 1.64 1990 ���������"���(���%�) �"�*���+���(���+�) 100 W 32 28.88 21 70

11 0.75 2022 ���������"���(���+�) �"�*���+���(���&�) 50 W 15 19.6 12.3 19

12 2.36 2025 ���������"���(���'�) �"�*���+���(���&�) 50 W 18 34.7 14.5 65

13 2.83 2023 ���������"���(���/�) �"�*���+���(���&�) 50 W 21 37.95 24 19

14 4.67 2000 ���������"���(���"�) �"�*���+���(�����) 75 W 8 48.77 22.7 59

2 Note: N-W is the northwest aspect of each plot, and W is the west aspect of each plot.
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�T�a�b�l�e� �2�(�o�n� �n�e�x�t� �p�a�g�e�)

�T�o�t�a�l� �L�.� �p�r�i�n�c�i�p�i�s�-�r�u�p�p�r�e�c�h�t�i�i� �r�e�g�e�n�e�r�a�t�i�o�n� �d�e�n�s�i�t�y� �i�n� �s�t�u�d�y� �p�l�o�t�s
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1 Table 2
Study site

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Density 

(Tree·ha–1)
4025 6000 8175 15500 6075 10725 11225 3100 2200 3800 2775 9325 5500 1125

2
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�T�a�b�l�e� �3�(�o�n� �n�e�x�t� �p�a�g�e�)

�P�e�r�c�e�n�t� �v�a�r�i�a�n�c�e� �o�f� �e�n�v�i�r�o�n�m�e�n�t�a�l� �f�a�c�t�o�r�s� �aû��e�c�t�i�n�g� �t�h�e� �r�e�g�e�n�e�r�a�t�i�o�n

�A�b�b�r�e�v�i�a�t�i�o�n�s� �o�f� �s�t�a�n�d� �s�t�r�u�c�t�u�r�e�,� �s�o�i�l� �p�r�o�p�e�r�t�i�e�s�,� �a�n�d� �l�i�t�t�e�r� �v�a�r�i�a�b�l�e�s� �i�n� û��g�u�r�e�s� �a�r�e� �a�s� �f�o�l�l�o�w�:

�L�i�t�T�,� �l�i�t�t�e�r� �t�h�i�c�k�n�e�s�s�;� �C�a�n�D�,� �c�a�n�o�p�y� �d�e�n�s�i�t�y�;� �A�P�,� �a�v�a�i�l�a�b�l�e� �p�h�o�s�p�h�o�r�u�s�;� �S�W�C�,� �s�o�i�l� �w�a�t�e�r

�c�o�n�t�e�n�t�;� �T�N�,� �t�o�t�a�l� �n�i�t�r�o�g�e�n�;� �A�d�t�-�D�B�H�,� �a�d�u�l�t� �t�r�e�e� �a�v�e�r�a�g�e� �d�i�a�m�e�t�e�r� �a�t� �b�r�e�a�s�t� �h�e�i�g�h�t�;� �A�d�t�-

�H�e�i�g�h�t�,� �a�d�u�l�t� �t�r�e�e� �h�e�i�g�h�t�;� �S�t�a�D�,� �s�t�a�n�d� �d�e�n�s�i�t�y�;� �T�P�,� �t�o�t�a�l� �p�h�o�s�p�h�o�r�u�s�;� �L�i�t�A�,� �l�i�t�t�e�r� �a�c�c�u�m�u�l�a�t�i�o�n�;

�A�N�,� �a�m�m�o�n�i�a� �n�i�t�r�o�g�e�n�.
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1 Table 3
F� � �� � E� � �� � 	
  ((� Pseudo-F P

LitT 60.4 18.3 0.004

C� 	 � 20.5 11.9 0.004

Altitude 3.7 2.4 0.12

AP 2.5 1.7 0.182

Aspect 1.3 0.9 0.402

SWC 2.8 2.3 0.14

TN 2.7 2.7 0.126

Adt-DBH 1.2 1.2 0.324

Adt-Height 2.1 2.1 0.138

StaD 1.2 2.1 0.164

TP 0.9 2.8 0.17

LitA 0.6 5 0.122

AN 0.1 <  0.1 1

2
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�T�a�b�l�e� �4�(�o�n� �n�e�x�t� �p�a�g�e�)

�C�o�eû��c�i�e�n�t�s� �f�o�r� �e�n�v�i�r�o�n�m�e�n�t�a�l� �f�a�c�t�o�r�s� �f�o�r� �R�D�A�1� �a�n�d� �R�D�A�2
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1 Table 4
�� ��� ��� � �� �  f� � �� � R� �� R� ��

Total P 0.120 –0.278

A� � �� � A� �  N –0.134 0.055

A� � �� � A� �  P –0.382 –0.292

Total N –0.394 –0.226

Soil w� �� �  content 0.401 –0.592

Altitude 0.496 –0.692

Aspect –0.561 0.522

Stand density 0.616 –0.114

Canopy density 0.547 –0.108

Litter thict �� �� 0.696 –0.203

Litter accumulation 0.416 –0.008

A� ��� ��  adult tree diameter at A��� � �  height –0.215 –0.144

A�� �� ��  adult tree height –0.150 –0.096

2
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