Degradation of zearalenone by microorganisms and enzymes (#82694)

First revision

Guidance from your Editor

Please submit by 14 May 2023 for the benefit of the authors (and your token reward).

Literature Review article

This is a Literature Review article, so the review criteria are slightly different. Please write your review using the criteria outlined on the 'Structure and Criteria' page.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 2 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. STUDY DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Is the review of broad and cross-disciplinary interest and within the scope of the journal?
- Has the field been reviewed recently? If so, is there a good reason for this review (different point of view, accessible to a different audience, etc.)?
- Does the Introduction adequately introduce the subject and make it clear who the audience is/what the motivation is?

STUDY DESIGN

- Article content is within the <u>Aims and Scope</u> of the journal.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.
- Is the Survey Methodology consistent with a comprehensive, unbiased coverage of the subject? If not, what is missing?
- Are sources adequately cited? Quoted or paraphrased as appropriate?
- Is the review organized logically into coherent paragraphs/subsections?

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Conclusions are well stated, linked to original research question & limited to
- Is there a well developed and supported argument that meets the goals set out in the Introduction?
- Does the Conclusion identify unresolved questions / gaps / future directions?

Standout reviewing tips

The best reviewers use these techniques

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be

improved upon before Acceptance.

Degradation of zearalenone by microorganisms and enzymes

Jiregna Gari Corresp. 1

 $^{f 1}$ Department of Veterinary Laboratory Technology, Ambo University, Ambo, Oromia, Ethiopia

Corresponding Author: Jiregna Gari Email address: jiregnagari2023@ambou.edu.et

🚾 cotoxins are toxic metabolites produced by fungi that may cause serious health problems in humans and animals. One concern with the use of microbial strains and their enzyme derivatives for zearalenone degradation is the potential variability in the effectiveness of the degradation process. The efficiency of degradation may depend on various factors such as the type and concentration of zearalenone, the properties of the microbial strains and enzymes, and the environmental conditions. Therefore, it is important to carefully evaluate the efficacy of these methods under different conditions and ensure their reproducibility. Another important consideration is the safety and potential side effects of using microbial strains and enzymes for zearalenone degradation. It is necessary to evaluate the potential risks associated with the use of genetically modified microorganisms or recombinant enzymes, including their potential impact on the environment and non-target organisms. Additionally, it is important to ensure that the degradation products are indeed harmless and do not pose any health risks to humans or animals. Furthermore, while the use of microbial strains and enzymes may offer an environmentally friendly and cost-effective solution for zearalenone degradation, it is important to explore other methods such as physical or chemical treatments as well. These methods may offer complementary approaches for zearalenone detoxification, and their combination with microbial or enzyme-based methods may improve overall efficacy. Overall, the research on the biodegradation of zearalenone using microorganisms and enzyme derivatives is promising, but there are important considerations that need to be addressed to ensure the safety and effectiveness of these methods. Development of recombinant enzymes improves enzymatic detoxification of zearalenone to a non-toxic product without damaging the nutritional content. This review summarizes biodegradation of zearalenone using microorganisms and enzyme derivatives to nontoxic products. Further research is needed to fully evaluate the potential of these methods for mitigating the impact of mycotoxins in food and feed.

Keywords: degradation, enzyme, microorganisms, mycotoxins, zearalenone (ZEN)

1 Degradation of zearalenone by microorganisms and enzymes

3 Jiregna Gari¹,

4

2

5 Department of Veterinary Laboratory Technology, Ambo University, Ambo, Oromia, Ethiopia

6

- 7 Corresponding Author:
- 8 Jiregna Gari¹,
- 9 Guder, Ambo, Oromia, Ethiopia
- 10 Email address: jiregnagari2023@ambou.edu.et

11

12

13

14

1516

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

3435

Abstract

Mycotoxins are toxic metabolites produced by fungi that may cause serious health problems in humans and animals. concern with the use of microbial strains and their enzyme derivatives for zearalenone degradation is the potential variability in the effectiveness of the degradation process. The efficiency of degradation may depend on various factors such as the type and concentration of zearalenone, the properties of the microbial strains and enzymes, and the environmental conditions. Therefore, it is important to carefully evaluate the efficacy of these methods under different conditions and ensure their reproducibility. Another important consideration is the safety and potential side effects of using microbial strains and enzymes for zearalenone degradation. It is necessary to evaluate the potential risks associated with the use of genetically modified microorganisms or recombinant enzymes, including their potential impact on the environment and non-target organisms. Additionally, it is important to ensure that the degradation products are indeed harmless and do not pose any health risks to humans or animals. Furthermore, while the use of microbial strains and enzymes may offer an environmentally friendly and cost-effective solution for zearalenone degradation, it is important to explore other methods such as physical or chemical treatments as well. These methods may offer complementary approaches for zearalenone detoxification, and their combination with microbial or enzyme-based methods may improve overall efficacy. Overall, the research on the biodegradation of zearalenone using microorganisms and enzyme derivatives is promising, but there are important considerations that need to be addressed to ensure the safety and effectiveness of these methods. Development of recombinant enzymes improves enzymatic detoxification of zearalenone to a non-toxic product without damaging the nutritional content. This review summarizes biodegradation of zearalenone using microorganisms and enzyme derivatives to nontoxic products. Further research is needed to fully evaluate the potential of these methods for mitigating the impact of mycotoxins in food and feed.

37

38

Keywords: degradation, enzyme, microorganisms, mycotoxins, zearalenone (ZEN)

39

40

Introduction

- 41 Mycotoxins are naturally occurring toxic secondary metabolites of some microscopic filamentous
- 42 fungi (Lie et al., 2022). Mycotoxins produced mainly by some fungal species belonging to
- 43 Alternaria, Aspergillus, Fusarium, and Penicillium genera pose health threats to humans and
- animals (Greeff-Laubscher et al., 2020). Mycotoxins contamination of foods and feeds is a current
- 45 global issue and causes huge economic losses to animal husbandry (Navale and Vamkudoth 2022).
- 46 Zearalenone is an estrogenic mycotoxin produced by Fusarium species that leads to huge
- 47 economic losses in the food industry and livestock husbandry. About 25-50% of the world's food
- 48 crops are affected by mycotoxins (FAO, 2006). The most economically important mycotoxins are
- 49 aflatoxins, deoxynivalenol and zearalenone. Contamination of food and feed with zearalenone has
- 50 reproductive problems, carcinogenicity, immunotoxicity, and other cytotoxic effects (Ropejko and
- 51 Twaruek, 2021; Yli-Mattila *et al.*, 2022).

52

- More than 400 different types of mycotoxins have been identified so far, with different levels of
- 54 toxicity (Arroyo-Manzanares et al., 2021). Among mycotoxins, Aflatoxins B1, Zearalenone,
- 55 Ochratoxin A, Patulin, and Trichothecenes have received particular attention due to their severe
- health outcomes on both humans and animals, which can range from acute to severe and chronic
- 57 intoxications in both humans and animals (Ahn et al., 2022; Nahle et al., 2022).

58

- 59 Bouajila et al. 2022 reported that zearalenone contaminate feeds like corn, wheat, barley, sorghum,
- 60 rice have a variety of toxic effects on humans and animals (Jia et al., 2022). Zearalenone (ZEN) is
- a potent non-steroidal oestrogen mycotoxin which is biosynthesized via the polyketide pathway
- and could bind to estrogen receptors, which subsequently activate estrogen response elements in
- 63 animals (Singh and Kumari, 2022; Yli-Mattila et al., 2022).

64

- 65 Zearalenone (ZEN) consumption causes hypoestrogenism in animals and interferes in the
- expression of estrogen and organ function (Gajcka et al., 2021). It could reduce the nutritional
- of value of feed, damage the growth and health of livestock and poultry, and cause huge economic
- 68 losses to livestock production. However, some animals, like chickens, show strong resistance to
- 69 the toxicity of ZEN. ZEN can also cause abortion, infertility, stillbirth, and other reproductive
- 70 effects on animals (Yadav et al., 2021; Jia et al., 2022).

- 72 In humans, ZEN has a chronic toxicity effect and stimulates the growth of mammary gland cells
- that might be involved in breast cancer (Ropejko and Twaruek, 2021). There is a report that shows

74 ZEN has immunotoxin, hepatotoxic, hematotoxic, and reproductive toxic effects like reducing 75 fertility, vaginal prolapse, and causing vulvar swelling. The two primary metabolites of 76 zearalenone are α -zearalenol (α -ZEL), which is a synthetic version of zearalenone, and β -77 zearalenol (β-ZEL), which is produced by reducing ZEN. Zearalenone is metabolized in the intestinal cells. Zearalenone also comes in the forms of α -zearalanol (α -ZAL) and β -zearalanol (β -78 79 ZAL). It is capable of being conjugated with glucuronic acid in its metabolized state (Ropejko, 80 2021). The degradation of zearalenone toxicity is commonly done by the use of physical, chemical, and biological approaches. Zearalenone is heat-stable and shows great resistance to conventional 81 degradation methods (Kabak et al., 2006; Wu et al., 2021)). However, physical and chemical 82 degradation destroys nutritional structure, decreases palatability of the feed and causes pollution 83 to the environment (Guan et al., 2021). Biological degradation has great specificity and degrades 84 zearalenone completely without producing harmless products (Xu et al., 2022). 85

At present, microorganisms and enzymes derived from microbial strains have been widely used 86 for the degradation of zearalenone in food and fee searchers have developed biodegradation 87 of zearalenone by the use of microbial and their enzyme derivatives, which offers harmless 88 89 products and is environmentally friendly. Recently, numerous studies have focused on degradation through biological approaches by using microorganisms including bacteria, yeast, and fungi, and 90 microorganisms' enzymes to remove zearalenone from food sources (Luo et al., 2020; Nahle et 91 al., 2022). Development of genetic engineering technology in the advancement of recombinant 92 proteins improves enzymatic degradation of zearalenone (Guan et al., 2021). This review aims to 93 94 discuss the biological degradation of ZEN through microorganisms and enzymes developed in 95 recent years.

96

97

99

100

101 102

105

106

107

Survey Methodology

98 The varieties of mycotoxin-degrading microorganisms and enzymes, the development of heterologously generated degrading enzymes through genetic engineering, and related studies on enhancing the efficacy of degrading enzymes were all summarized in this review. The published articles were gathered using the databases Science Direct, Scopus, PubMed Web of Science, and a Gray literature resource like Google Scholar. The following keywords were used to search for 103 the review: [Zearalenone Degradation OR Microorganisms OR Enzyme] and [zearalenone]. After passing the abstract screening, the full text of the found publications was downloaded. Any 104 manuscript that wasn't available in this regard was discarded. For data extraction and analysis, only the articles with accessible full texts underwent further screening.

Degradation of zearalenone by microorganisms

108

109 Microbial degradation occurs when microorganisms (bacterial and yeast) secrete their metabolites or enzymes during their growth and development process. Microorganisms can directly adsorb 110 targeted toxins or reduce toxins of our interest to impede the production of mycotoxins (Feng et 111 112 al., 2020; Xu et al., 2022). Many studies have reported on the biodegradation of ZEN using

- 113 microorganisms (Table 1). They show high specificity and eco-friendliness in decreasing the
- possibility of ZEN toxicity from food and feed (Song et al., 2021).
- 115 A variety of non-pathogenic microbes like probiotics, *Bacillus*, *Saccharomyces*, and *Lactobacillus*
- species have a high capability to detoxify feeds contaminated with zearalenone because they
- follow standards like safe to be used and possess detoxifying ability without forming bad odor or
- taste in the feeds (Wang et al., 2019; Zhu et al., 2021). Several studies reveal detoxification of
- zearalenone using probiotics, including by yeast, *Bacillus*, and lactic acid bacteria (Table 1), as
- they are involved in adsorption of ZEN and preventing its absorption by animals (Hathout and
- 121 Aly, 2014).

122

- 123 Various bacteria, yeasts, and fungi can convert structure of ZEN to alpha and beta zearalenol
- through hydrolysis, conjugation of sulfate and glucosyl group reduction (Cho et al., 2010). Among
- Bacillus strains, B. licheniformis, B. subtilis, B. natto, and B. cerues were those found to have the
- highest detoxification effect on zearalenon in food and feed (Wang et al., 2019). Bacillus pumlius
- 127 ANSB01G is also reported to degrade ZEN in the feed of animals (Xu et al., 2022). According to
- 128 Xu et al. (2016), B. amyloliquefaciens ZDS-1 has ZEN degrading ability in screened colonies.
- Probiotics is a great choice for biodegradation of ZEN in the food industry because it shows health
- benefits for humans and animals. Most lactic acid bacteria (LABs) are considered safe probiotics
- in the food industry. It is reported that *Lactobacillus* strains have a potential role in degrading ZEN
- from fermented food products (Średnicka et al., 2021). Lact. paracasei, and Lc. lacti have the
- ability to remove ZEN in aqueous food solutions (Wu et al., 2021). There is a report that shows
- 234 zearalenone can be degraded from PBS buffer solution by Lact. Acidophilus CIP 76.13T by a
- bioremediation range of 57% (Ragoubi et al., 2021).

136

- There is a report that shows B. licheniformis CK1 has good probiotic properties and can degrade
- 138 ZEN by more than 90% after 36 hours of incubation in the contaminated corn meal medium by
- 139 ZEN (Hsu et al., 2018). Other strains of bacteria called Saccharomyces cerevisiae also have high
- ZEN degradation abilities. There is a report that shows S. cerevisiae isolate from grape can degrade
- 141 ZEN (Rogowaska et al., 2019). Saccharomyces cerevisiae isolated from silage has biodegradation
- properties and can degrade up to 90% of ZEN in two days (Keller *et al.*, 2015). According to Harkai
- 143 et al. (2016), the bacteria Streptomyces rimosus (K145, K189) can degrade ZEN in liquid media.
- Wang et al. (2018) also investigated a Lysinibacillus strain isolated from chicken's large intestine
- digesta is capable of degrading zearalenone.

146

147

Degradation of zearalenone by enzymes

- Recent advancements in genetic engineering technology have attracted researchers' attention
- towards recombinant enzymes to degrade mycotoxins in food and feed with high efficiency. The

PeerJ

151 152 153 154 155	attainment and cloning of recombinant enzyme genes leads to the safe expression of genes in microbes, which has become a novel progress in molecular modification for ZEN degradation (Azam <i>et al.</i> , 2019; Xu <i>et al.</i> , 2022). Enzymatic degradation has wide advantages over microbial degradation because it can perform biodegradation with high efficiency, lower cost, reproducibility, and homogenous performance (Loi <i>et al.</i> , 2017; Liu <i>et al.</i> , 2022).
156	
157 158 159 160 161 162	A bacterial strain of <i>E. coli</i> , <i>S. cerevisiae</i> , and <i>Pichia pastoris</i> has been reported to remove ZEN from culture medium (Wang and Xie, 2020). Gao <i>et al.</i> 2022 identify and describe the activity of the ZEN degrading enzyme from <i>Exophiala spinifera</i> , ZHD_LD. Recently, microbial strains that are able to degrade ZEN have been isolated, and subsequently genes like ZHD101, ZLHY-6, and ZEN-jjm, as well as ZHD518 have been cloned (Cheng <i>et al.</i> , 2010). ZHD101 is one of the recombinant enzymes derived from <i>Clonostachys rosea</i> that degrades ZEN (Yang <i>et al.</i> , 2017).
163 164 165 166 167 168 169 170	Wang <i>et al.</i> (2018) reported that the lactonohydrolase Zhd518 enzyme in <i>E. coli</i> has high biodegrading ability against ZEN in food and feed industries. There is a study that shows RmZHD, a ZEN hydrolyzing enzyme from <i>Rhinocladiella mackenziei</i> , has the ability to degrade ZEN (Zhou <i>et al.</i> 2020). Recombinant Prx (peroxiredoxin), a cloned gene from <i>Acinetobacter</i> sp. SM04 expressed in <i>E. coli</i> , has the ability to degrade ZEN in the presence of hydrogen peroxide (Yu <i>et al.</i> , 20n12). It has been reported that laccase enzymes that are found on bacterial and yeast cells have the ability to degrade mycotoxins (Guo <i>et al.</i> , 2020). Song <i>et al.</i> 2021 show the laccase gene obtained from the fungus <i>P. pulmonarius</i> has an enzymatic property to degrade zearalenone when it was expressed in the <i>Pichia pastoris</i> X33 yeast strain by producing recombinant protein.
172	
173 174 175 176 177 178 179	Studies have shown that laccase enzymes are considered to be an effective zealenone toxicity antidote. Furthermore, <i>Pleurotus eryngii</i> laccase enzyme can degrade aflatoxin B1, ochratoxin A, zearalenon, and other mycotoxins (Wu <i>et al.</i> , 2021). A gene ZENC, zearalenone lactonase gene from <i>Neurospora crassa</i> , is expressed in <i>P. pastoris</i> . It had a maximal enzyme activity when fermented using high density fermatation at pH 8 and a temperature of 45 °C. Furthermore, ZENC was also found to be effective in ZEN containing feed materials with a high degradation rate (Bi <i>et al.</i> , 2018).
180	
181 182 183 184 185	Garcia <i>et al.</i> (2018) also reported that the peroxidase enzyme has the ability to degrade zearalenone concentrations. According to the study, fusion of multifunctional recombinant enzymes ZHDCP with genes of ZEN hydrolases and carboxypeptidases has the ability to detoxify zearalenone in 2 hours at pH and temperature of 35 °C (Azam <i>et al.</i> 2019). Many studies shows that enzymes can able to degrade zearalenone as expressed table 2 (Table 2).
186	
187	
188	

_			
(0.01)	nclu	SIO	ทร

The severe impact of zealarenone on animals and humans' health, present in contaminated food and feed, has received global attention. Many approaches have been established for the removal of ZEN. Biodegradation is considered the safest approach because it degrades toxins without residual toxic substances. Recent research shows the development of recombinant microorganisms and recombinant enzymes to detoxify ZEN in foods and feeds. However, the health impacts of recombinant enzymes are not clearly described. Currently, biodegradation of zealarenone is laboratory-based. The commercial scale of biodegradation needs further studies. Further interdisciplinary studies concerning gene cloning, genetic modification of microorganisms, and the development of recombinant enzymes are promising approaches for safe zealarenone degradation. Future study should pay particular attention to the effects of toxin levels close to those experienced by humans, the choice of animal models, and the application of pathogenic mechanisms that differ greatly from humans. The emergence of microbial and enzyme preparations is quickly approaching the point at which it can be industrialized. The promise of these techniques for lessening the effects of mycotoxins in food and feed still need more study.

References

- Adunphatcharaphon S, Petchkongkaew A, Visessanguan W. 2021. *In vitro* mechanism assessment of zearalenone removal by plant-derived *Lactobacillus plantarum* BCC 47723. *Toxins* 13: 286 <u>DOI 10.3390/toxins13040286</u>.
- Ahn JY, Kim J, Cheong DH, Hong H, Jeong JY, Kim BG. 2022. An In Vitro Study on the Efficacy of Mycotoxin Sequestering Agents for Aflatoxin B1, Deoxynivalenol, and Zearalenone. *Animals* 12(3):333 DOI 10.3390/ani12030333.
- Arroyo-Manzanares N, Campillo N, López-García I, Hernández-Córdoba M, Viñas P. 2021. High-Resolution mass spectrometry for the determination of mycotoxins in biological samples. A review. *Microchemical Journal* 166:106197 <u>DOI</u> 10.1016/j.microc.2021.106197.
- Azam MS, Yu D, Liu, N. and Wu, A. 2019. Degrading ochratoxin A and zearalenone mycotoxins using a multifunctional recombinant enzyme. *Toxins* 11(5):301 <u>DOI</u> 10.3390/toxins11050301

224	Bi K, Zhang W, Xiao Z, Zhang D, 2018. Characterization, expression and application of
225	a zearalenone degrading enzyme from Neurospora crassa. AMB Express 8:194
226	DOI 10.1186/s13568-018-0723-z
227	Bin YS, Zheng HC, Xu JY, Zhao XY, Shu WJ, Li XM, Song H, Ma YH. 2021. New
228	biotransformation mode of zearalenone identifed in <i>Bacillus subtilis</i> Y816
229	revealing a novel ZEN conjugate. Journal of Agricultural and Food Chemistry
230	69:7409–7419 <u>DOI 10.1021/acs.jafc.1c01817</u> .
231	Bouajila A, Lamine M, Hamdi Z, Ghorbel A, Gangashetty P. 2022. A Nutritional
232	Survey of Local Barley Populations Based on the Mineral Bioavailability, Fatty
233	Acid Profile, and Geographic Distribution of <i>Fusarium</i> Species and the Mycotoxin
234	Zearalenone (ZEN). Agronomy 12(4):916 DOI 10.3390/agronomy12040916
235	Chang X, Liu H, Sun J, Wang J, Zhao C, Zhang W, Zhang J, Sun C. 2020.
236	Zearalenone removal from corn oil by an enzymatic strategy. Toxins (basel) 12:1-
237	14 DOI 10.3390/toxins12020117.
238	Chen S, Pan L, Liu S, Pan L, Li X, Wang B. 2021. Recombinant expression and surface
239	display of a zearalenone lactonohydrolase from Trichoderma aggressivum in
240	Escherichia coli. Protein Expression and Purification 187:105933 DOI
241	10.1016/j.pep.2021.105933.
242	Chen SW, Hsu JT, Chou YA, Wang HT. 2018. The application of digestive tract lactic
243	acid bacteria with high esterase activity for zearalenone detoxification. Journal of
244	the Science of Food and Agriculture 98(10):3870-3879 DOI 10.1002/jsfa.8904.
245	Cheng B, Shi W, Luo J, Peng F, Wan C, Wei H. 2010. Cloning of zearalenone-degraded
246	enzyme gene (ZEN-jjm) and its expression and activity analysis. Journal of
247	Agricultural Biotechnology 18(2):225-230 DOI 10.3969/j.issn.1674-
248	<u>7968.2010.02.004</u>
249	Cho KJ, Kang JS, Cho WT, Lee CH, Ha JK, Song KB. 2010. In vitro degradation of
250	zearalenone by <i>Bacillus subtilis</i> . <i>Biotechnology Letters</i> 32(12):1921-1924 <u>DOI</u>
251	<u>10.1007/s10529-010-0373-y</u>
252	Deng T, Yuan QS, Zhou T, Guo LP, Jiang WK, Zhou SH, Yang CG, Kang CZ. 2021.
253	Screening of zearalenone-degrading bacteria and analysis of degradation conditions.
254	Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese
255	Materia Medica.1;46(20):5240-6. <u>DOI 10.19540/j.cnki.cjcmm.20210716.101</u>
256	Feng Y, Huang Y, Zhan H, Bhatt P, Chen S. 2020. An overview of strobilurin fungicide
257	degradation: current status and future perspective. Frontiers in Microbiology
258	11:389 DOI 10.3389/fmicb.2020.00389

259	Fu G, Ma J, Wang L, Yang X, Liu J, Zhao X. 2016. Effect of degradation of
260	zearalenone-contaminated feed by Bacillus licheniformis CK1 on postweaning
261	female piglets. Toxins 8(10):300 DOI 10.3390/toxins8100300
262	Gajęcka M, Majewski MS, Zielonka Ł, Grzegorzewski W, Onyszek E, Lisieska-
263	Żołnierczyk. 2021. Concentration of Zearalenone, Alpha-Zearalenol and Beta-
264	Zearalenol in the Myocardium and the Results of Isometric Analyses of the
265	Coronary Artery in Prepubertal Gilts. <i>Toxins</i> 13(6):396 <u>DOI</u>
266	10.3390/toxins13060396
267	Gao D, Cao X, Ren H, Wu L, Yan Y, Hua R, Xing W, Lei M, Liu J. 2022.
268	Immunotoxicity and uterine transcriptome analysis of the effect of zearalenone
269	(ZEA) in sows during the embryo attachment period. Toxicology Letters. 1;357:33-
270	42. <u>DOI 10.1016/j.toxlet.2021.12.017</u>
271	Garcia SO, Feltrin AP, Garda-Buffon J. 2018. Zearalenone reduction by commercial
272	peroxidase enzyme and peroxidases from soybean bran and rice bran. Food
273	Additives & Contaminants 35(9):1819-1831 DOI 10.1080/19440049.2018.1486044
274	Greeff-Laubscher MR, Beukes I, Marais GJ, Jacobs K. 2020. Mycotoxin production by
275	three different toxigenic fungi genera on formulated abalone feed and the effect of
276	an aquatic environment on fumonisins. Mycology 11(2):105-117 DOI
277	10.1080/21501203.2019.1604575
278	Guan Y, Chen J, Nepovimova E, Long M, Wu W, Kuca K. 2021. Aflatoxin
279	detoxification using microorganisms and enzymes. Toxins 13(1):46 DOI
280	10.3390/toxins13010046
281	Guo Y, Qin X, Tang Y, Ma Q, Zhang J, Zhao L. 2020. CotA laccase, a novel aflatoxin
282	oxidase from Bacillus licheniformis, transforms aflatoxin B1 to aflatoxin Q1 and
283	epi-aflatoxin Q1. Food Chemistry 325:126877 DOI
284	10.1016/j.foodchem.2020.126877
285	Harčárová M, Čonková E, Nad' P, Proškovcová M. 2022. Zearalenone Biodegradation
286	by the Spp. and Spp. Folia Veterinaria 66(1):70-74 DOI 10.2478/fv-2022-0008
287	Harkai P, Szabó I, Cserháti M, Krifaton C, Risa A, Radó J, Balázs A, Berta K, Kriszt
288	B. 2016. Biodegradation of aflatoxin-B1 and zearalenone by Streptomyces sp.
289	collection. International Biodeterioration & Biodegradation. 1;108:48-56. DOI
290	10.1016/j.ibiod.2015.12.007
291	Hathout AS, Aly SE. 2014. Biological detoxification of mycotoxins: A review. Annal
292	Microbiology 64(3):905-919 DOI 10.1007/s13213-014-0899-7

293	Hsu TC, Yi PJ, Lee TY, Liu JR. 2018. Probiotic characteristics and zearalenone-removal
294	ability of a <i>Bacillus licheniformis</i> strain. <i>PloS one</i> 13(4):0194866 <u>DOI</u>
295	<u>10.1371/journal.pone.0194866</u>
296	Hui R, Hu X, Liu W, Zheng Y, Chen Y, Guo RT, Jin J, Chen CC. 2017. Characterization
297	and crystal structure of a novel zearalenone hydrolase from Cladophialophora
298	bantiana. Acta Crystallographica Section F: Structural Biology Communications.
299	1;73(9):515-9. <u>DOI 10.1107/S2053230X17011840</u> .
300	Jia S, Ren C, Yang P, Qi D. 2022. Effects of Intestinal Microorganisms on Metabolism
301	and Toxicity Mitigation of Zearalenone in Broilers. <i>Animals</i> 12(15):1962 DOI
302	10.3390/ani12151962
303	Ju J, Tinyiro SE, Yao W, Yu H, Guo Y, Qian H, Xie Y. 2019. The ability of Bacillus
304	subtilis and Bacillus natto to degrade zearalenone and its application in food.
305	Journal of Food Processing and Preservation. 43(10):e14122. DOI
306	10.1111/jfpp.14122
307	Juodeikiene G, Bartkiene E, Cernauskas D, Cizeikiene D, Zadeike D, Lele V,
308	Bartkevics V. 2018. Antifungal activity of lactic acid bacteria and their application
309	for Fusarium mycotoxin reduction in malting wheat grains. Lwt. 1;89:307-14. DOI
310	10.1016/j.lwt.2017.10.061
311	Kabak B, Dobson AD, Var IL. 2006. Strategies to prevent mycotoxin contamination of
312	food and animal feed: a review. Critical Review Food Science and Nutrition
313	46(8):593-619 <u>DOI 10.1080/10408390500436185</u>
314	Keller L, Abrunhosa L, Keller K, Rosa CA, Cavaglieri L, Venâncio A. 2015.
315	Zearalenone and its derivatives α -zearalenol and β -zearalenol decontamination by
316	Saccharomyces cerevisiae strains isolated from bovine forage. Toxins 7(8):3297-
317	3308 DOI 10.3390/toxins7083297
318	Liu C, Chang J, Wang P, Yin Q, Huang W, Dang X, Lu F, Gao T. 2019. Zearalenone
319	biodegradation by the combination of probiotics with cell-free extracts of
320	Aspergillus oryzae and its mycotoxin-alleviating effect on pig production
321	performance. Toxins. 11(10):552. DOI 10.3390/toxins11100552
322	Liu L, Xie M, Wei D. 2022. Biological Detoxification of Mycotoxins: Current Status and
323	Future Advances. International Journal of Molecular Sciences 23(3):1064 DOI
324	10.3390/ijms23031064.
325	Loi M, Fanelli F, Liuzzi VC, Logrieco AF, Mulè G. 2017. Mycotoxin biotransformation
326	by native and commercial enzymes: Present and future perspectives. Toxins
327	9(4):111 <u>DOI 10.3390/toxins9040111</u>

328	Luo Y, Liu X, Yuan L, Li J. 2020. Complicated interactions between bio-adsorbents and
329	mycotoxins during mycotoxin adsorption: Current research and future prospects.
330	Trends Food Science and Technology 96:127-134 DOI 10.1016/j.tifs.2019.12.012
331	Møller CO, Freire L, Rosim RE, Margalho LP, Balthazar CF, Franco LT, Sant'Ana
332	AD, Corassin CH, Rattray FP, Oliveira CA. 2021. Effect of lactic acid bacteria
333	strains on the growth and aflatoxin production potential of Aspergillus parasiticus,
334	and their ability to bind aflatoxin B1, ochratoxin A, and zearalenone in vitro.
335	Frontiers in Microbiology. 22;12: 655386. DOI 10.3389/fmicb.2021.655386
336	Nahle S, El Khoury A, Savvaidis I, Chokr A, Louka N, Atoui, A. 2022. Detoxification
337	approaches of mycotoxins: by microorganisms, biofilms and enzymes.
338	International Journal of Food Contamination 9(1):1-14 DOI 10.1186/s40550-022-
339	<u>00089-2</u>
340	Navale VD, Vamkudoth K. 2022. Toxicity and preventive approaches of Fusarium
341	derived mycotoxins using lactic acid bacteria: state of the art. Biotechnology Letters
342	1-16 <u>DOI 10.1007/s10529-022-03293-4</u>
343	Pan Y, Liu C, Yang J, Tang Y. 2022. Conversion of zearalenone to β-zearalenol and
344	zearalenone-14, 16-diglucoside by Candida parapsilosis ATCC 7330. Food
345	Control 131:108429 DOI 10.1016/j.foodcont.2021.108429
346	Qin X, Xin Y, Su X, Wang X, Wang Y, Zhang J, Tu T, Yao B, Luo H, Huang H. 2021.
347	Efficient degradation of zearalenone by dye-decolorizing peroxidase from
348	Streptomyces thermocarboxydus combining catalytic properties of manganese
349	peroxidase and laccase. <i>Toxins</i> . 13(9):602. <u>DOI 10.3390/toxins13090602</u> .
350	Ragoubi C, Quintieri L, Greco D, Mehrez A, Maatouk I, D'Ascanio V, 2021.
351	Mycotoxin removal by Lactobacillus spp. and their application in animal liquid
352	feed. Toxins 13(3):185 DOI 10.3390/toxins13030185
353	Rogowska A, Pomastowski P, Sagandykova G, Buszewski B. 2019. Zearalenone and its
354	metabolites: Effect on human health, metabolism and neutralisation methods.
355	Toxicon 162:46-56 DOI 10.1016/j.toxicon.2019.03.004
356	Ropejko K, Twarużek M. 2021. Zearalenone and its metabolites-general overview,
357	occurrence, and toxicity. <i>Toxins</i> 13(1):35 <u>DOI 10.3390/toxins13010035</u>
358	Singh K, Kumari A. 2022. Traditional Mycotoxins and Their Health Implications.
359	<i>Mycotoxins and Mycotoxicoses</i> 27-64 <u>DOI 10.1007/978-981-19-2370-8_3</u>
360	Song Y, Wang Y, Guo Y, Qiao Y, Ma Q, Ji C, et al. 2021. Degradation of zearalenone
361	and aflatoxin B1 by Lac2 from Pleurotus pulmonarius in the presence of mediators.
362	Toxicon 201:1-8 DOI 10.1016/j.toxicon.2021.08.003

363 364 365 366	Probiotics as a biological detoxification tool of food chemical contamination: A review. Food and Chemical Toxicology 153:112306 DOI 10.1016/j.fct.2021.112306
367 368 369	Tang Y, Liu C, Yang J, Peng X. 2022. A novel enzyme synthesized by <i>Acinetobacter</i> sp. SM04 is responsible for zearalenone biodegradation. <i>Bioscience, Biotechnology, and Biochemistry</i> 86:209–216 DOI 10.1093/bbb/zbab204.
370 371 372 373	Tang Y, Xiao J, Chen Y, Yu Y, Xiao X, Yu Y. 2013. Secretory expression and characterization of a novel peroxiredoxin for zearalenone detoxification in <i>Saccharomyces cerevisiae</i> . <i>Microbiology Research</i> 168:6–11 <u>DOI</u> 10.1016/j.micres.2012.08.002
374 375 376	Vega MF, Dieguez SN, Riccio B, Aranguren S, Giordano A, Denzoin L. 2017. Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs. <i>Brazilian Journal of Microbiology</i> 48:715-723 DOI 10.1016/j.bjm.2017.05.001
377 378 379	Wang G, Yu M, Dong F, Shi J, Xu J. 2017. Esterase activity inspired selection and characterization of zearalenone degrading bacteria <i>Bacillus pumilus</i> ES-21. <i>Food Control</i> 77:57-64 DOI 10.1016/j.foodcont.2017.01.021
380 381	Wang J, Xie Y. 2020. Review on microbial degradation of zearalenone and aflatoxins. GOST 3(3):117-125 <u>DOI 10.1016/j.gaost.2020.05.002</u>
382 383 384	Wang JQ, Yang F, Yang PL, Liu J, Lv ZH. 2018. Microbial reduction of zearalenone by a new isolated <i>Lysinibacillus</i> sp. ZJ-2016-1. <i>World Mycotoxin Journal</i> 11(4):571-578 DOI 10.3920/WMJ2017.2264
385 386 387	Wang N, Wu W, Pan J, Long M. 2019. Detoxification strategies for zearalenone using microorganisms: A review. <i>Microorganisms</i> 7(7):208 <u>DOI</u> 10.3390/microorganisms7070208
388 389 390	Wu N, Ou W, Zhang Z, Wang Y, Xu Q, Huang H. 2021. Recent advances in detoxification strategies for zearalenone contamination in food and feed. <i>Chinese Journal of Chemical Engineering</i> 30:168-177 DOI 10.1016/j.cjche.2020.11.011
391 392 393	Xia Y, Wu Z, He R, Gao Y, Qiu Y, Cheng Q. 2021. Simultaneous degradation of two mycotoxins enabled by a fusion enzyme in food-grade recombinant <i>Kluyveromyces lactis</i> . <i>Bioresources Bioprocess</i> 8:1–11 <u>DOI 10.1186/s40643-021-00395-1</u> .
394 395 396	Xiang L, Wang Q, Zhou Y, Yin L, Zhang G, Ma Y. 2016. High-level expression of a ZEN-detoxifying gene by codon optimization and biobrick in <i>Pichia pastoris</i> . <i>Microbiology Research</i> 193:48–56 <u>DOI 10.1016/j.micres.2016.09.004</u>

397	Xu H, Wang L, Sun J, Wang L, Guo H, Ye Y. 2022. Microbial detoxification of
398	mycotoxins in food and feed. Critical Review Food Science and Nutrition
399	62(18):4951-4969 DOI 10.1080/10408398.2021.1879730
400	Xu J, Wang H, Zhu Z, Ji F, Yin X, Hong Q. 2016. Isolation and characterization of
401	Bacillus amyloliquefaciens ZDS-1: Exploring the degradation of Zearalenone by
402	Bacillus spp. Food Control 68:244-250 DOI 10.1016/j.foodcont.2016.03.030
403	Yadav R, Yadav P, Singh G, Kumar S, Dutt R, Pandey AK. 2021. Non-infectious
404	Causes of Abortion in Livestock Animals-A. <i>International Journal of Livestock</i>
405	Research 11(2):1-13 DOI 10.5455/ijlr.20201031015650
406	Yang WC, Hsu TC, Cheng KC, Liu JR. 2017. Expression of the Clonostachys rosea
407	lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-
408	removing ability. Microbial Cell Factories 16(1):1-11 DOI 10.1186/s12934-017-
409	<u>0687-8</u>
410	Yli-Mattila T, Yörü E, Abbas A, Teker T. 2022. Overview on Major Mycotoxins
411	Accumulated on Food and Feed. In Fungal Biotechnology Prospects and Avenues
412	310-343. CRC Press <u>DOI 10.1201/9781003248316-16</u>
413	Yu Y, Wu H, Tang Y, Qiu L. 2012. Cloning, expression of a peroxiredoxin gene from
414	Acinetobacter sp. SM04 and characterization of its recombinant protein for
415	zearalenone detoxification. Microbiology Research 167(3):121-126 DOI
416	10.1016/j.micres.2011.07.004
417	Zhou J, Zhu L, Chen J, Wang W, Zhang R, Li Y, Zhang Q, Wang W. 2020.
418	Degradation mechanism for Zearalenone ring-cleavage by Zearalenone hydrolase
419	RmZHD: A QM/MM study. Science of The Total Environment. 709:135897. DOI
420	10.1016/J.SCITOTENV.2019.135897
421	Zhu Y, Drouin P, Lepp D, Li XZ, Zhu H, Castex M, Zhou T. 2021. A novel microbial
422	zearalenone transformation through phosphorylation. Toxins. 13(5):294. DOI
423	10.3390/toxins13050294
424	

Table 1(on next page)

Recent research that shows microorganisms used for the degradation of zearalenone (ZEN

1 Table 1: Recent research that shows microorganisms used for the degradation of

2 zearalenone (ZEN)

Food source or media	Strain	ZEN	Degradation	References
used		concentration	range	
Liquid LB medium	Streptomyces rimosus (K145, K189)	1 μg mL-1	100%	Harkai <i>et al</i> . (2016)
Feed	Bacillus licheniformis CK1	1.20 ± 0.11 , 0.47 ± 0.22 mg/kg	Can degrade ZEN	Fu et al., (2016)
Liquid chromatography-tandem mass spectrometry and Thin layer chromatography	Candida parapsilosis	20 μg/mL	Decreased by 97%	Pan et al., (2022)
Potassium phosphate buffer	Lact. plantarum 3QB361	$2 \mu g/mL$	82%	Møller <i>et al</i> . (2021)
Aqueous solution	Lact. plantarum BCC 47723	$0.2~\mu g/mL$	0.5%-23%	Adunphatcharaph on et al. (2021)
Culture medium/liquid food /solid-state fermentation	Bacillus subtilis Bacillus natto	20ug/mL; 1 mg/kg; 20 μg/mL	100% and 87% 65, 73%/75%, 70%	Ju et al., (2019)
Nutrient broth	Bacillus subtilis, Candida utilis, Aspergillus oryzae	1 μg/mL	92.27% <i>A. oryzae</i> . combined form can degrade 95.15%	Liu et al., (2019)
Malting wheat grains with bacterial suspension	P. acidilactici	19.5–873.7 μg/L	38.0%	Juodeikiene <i>et al.</i> , (2018)
LB medium and simulated gastric fluid (GSF)	Bacillus cereus BC7	10 mg/L	100% and 89.31%	Wang et al., (2018)
Corn meal medium	B. licheniformis CK1	5 μg/mL	73%	Hsu et al., (2018)
Culture medium	Bacillus pumilus ES 21	17.9 mg/ml	95.7%	Wang <i>et al.</i> , (2017)
MRS broth	Lactobacillus rhamnosus	$200~\mu g/mL$	Showed the highest adsorption (68.2%)	Vega et al., (2017)
MRS broth	Lactobacillus plantarum ZJ316	5 mg/L	highest ZEA degradation ability	Chen et al.(2018)
The LB medium	Acinetobacter calcoaceticus	5 μg/mL	85.77%	(Deng <i>et al</i> . (2021)
HPLC-TOF-MS and NMR	B. subtilis Y816	40 mg/L	Transform of ZEN within 7 hour	Bin et al. (2021)
Cell suspensions on MRS agar	Lb.fermentum 213, Lb.reuteri L26, Lb.plantarum L81, Lb.reuteri, Lb.plantarum CCM 1904,	0.01 ppm	(57.9—100)%	Harčárová <i>et al</i> (2022)
Cell suspensions on MRS agar	Bacillus subtilis CCM 2794	0.01 ppm	11.7 %	Harčárová <i>et al</i> (2022)

Table 2(on next page)

Enzymatic degradation of zearalenone (ZEN

1 Table 2: Enzymatic degradation of zearalenone (ZEN)

2

Enzymes name	Source	Expression	Degrading properties	References
		System		
Peroxiredoxin	Acinetobacter sp. SM04	S. cerevisiae	Optimal activity at pH 9.0, 80 °C and H ₂ O ₂ concentration of 20 mmol/L Thermal stable, alkali resistance	(Tang et al., 2013)
Lactone hydrolase ZHD	Gliocladium roseum	P. pastoris	Enzyme activity in flask fermentation was 22.5 U/mL and specific activity of 4976.5 U/mg· Maximum enzyme activity of the supernatant was 150.1 U/ml in 5-L fermenter	(Xiang et al., 2016)
Cb ZHD	C. rosea	Cladophialoph ora bantiana	Optimal enzyme activity at temperature 35 °C and pH 8	(Hui et al., 2017)
Lactonohydrolase	Clonostachys rosea	Lactobacillus reuteri Pg4	Not affect cell growth, acid and bile salt tolerance	(Yang et al., 2017)
Lactonohydrolase Zhd518	Clonostachys rosea	E. coli	Activity of 207.0 U/mg with optimal temperature 40 °C and pH 8.	(Wang et al., 2018)
Lactonase	Neurospora crassa	P. pastoris	Optimal activity at pH 8.0 and 45°C, stable at pH 6.0–8.0 for 1 h at 37 °C, Maximal enzyme activity at 290.6 U/mL in 30-L fermenter	(Bi et al., 2018)
Lactonehydrolase ZENC	Neurospora crassa	P. pastoris	99.75% of ZEN (20 μ g/ml) was degraded at pH 8.0, 45 °C for 15 min	(Bi et al., 2018)
Fusion ZHDCP enzyme	C. rosea B.amyloliquefaci ens ASAG	E. coli	100% degradation rate at pH 7 and 30 °C	(Azam et al., 2019)
ZLHY-6	Pichia pastoris	P. pastoris GSZ	low nutrient loss safe removal of ZEN	(Chang et al., 2020)
lac2	Pleurotus pulmonarius	P. pastoris X33	Lac2-ABTS and Lac2-AS degrade ZEN at optimum pH 3.5 and temperature 55 °C of recombinant <i>Lac2</i>	(Song et al., 2021
Lactonohydrolase	Trichoderma aggressivum	E. coli BL21	With superior pH stability, the surface exhibit ZHD-P retained 80% activity	(Chen et al., 2021)
ZPF1	C. rosea fused with Phanerochaete chysosporium	Kluyveromyces lactis GG799	ZEN degraded up to 46.21% ±3.17%	(Xia et al., 2021)
DyP	Streptomyces thermocarboxydu s 41291	E. coli BL21	ZEN was degraded slightly by StDyP	(Qin et al., 2021)
Ase	Acinetobacter Sp	E. coli BL21	Degraded 88.4% of ZEN (20 μg/mL)	(Tang et al., 2022)

3

4