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Abundance-weighted phylogenetic diversity measures
distinguish microbial community states and are robust to
sampling depth

In microbial ecology studies, the most commonly used ways of investigating alpha (within-
sample) diversity are either to apply non-phylogenetic measures such as Simpson's index to
Operational Taxonomic Unit (OTU) groupings, or to use classical phylogenetic diversity (PD),
which is not abundance-weighted. Although alpha diversity measures that use abundance
information in a phylogenetic framework do exist, but are not widely used within the microbial
ecology community. The performance of abundance-weighted phylogenetic diversity
measures compared to classical discrete measures has not been explored, and the behavior
of these measures under rarefaction (sub-sampling) is not yet clear. In this paper we
compare the ability of various alpha diversity measures to distinguish between different
community states in the human microbiome for three different data sets. We also present and
compare a novel one-parameter family of alpha diversity measures, \
(\operatorname{BWPD} \theta)), that interpolates between classical phylogenetic diversity
(PD) and an abundance-weighted extension of PD. Additionally, we examine the sensitivity of
these phylogenetic diversity measures to sampling, via computational experiments and by
deriving a closed form solution for the expectation of phylogenetic quadratic entropy under
re-sampling. In all three of the datasets considered, an abundance-weighted measure is the
best differentiator between community states. OTU-based measures, on the other hand, are
less effective in distinguishing community types. In addition, abundance-weighted
phylogenetic diversity measures are less sensitive to differing sampling intensity than their
unweighted counterparts. Based on these results we encourage the use of abundance-
weighted phylogenetic diversity measures, especially for cases such as microbial ecology

where species delimitation is difficult.
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1. INTRODUCTION

It is now well accepted that incorporating phylogenetic informa-
tion into alpha (single-sample) and beta (between-sample) diversity
measures can be useful in a variety of ecological contexts. Phyloge-
netic equivalents of all of major alpha diversity measures have been
developed (Table 1). Starting with Faith’s original definition of phy-
logenetic diversity (Faith, 1992), which generalizes species count,
there are now phylogenetic generalizations of the Simpson index to
Rao’s quadratic entropy (Rao, 1982; Warwick and Clarke, 1995), the
Shannon index to phylogenetic entropy (Allen et al., 2009), and the
Hill numbers to ‘D(T) (Chao et al., 2010). Phylogenetic diversity
itself has been extended to incorporate taxon counts (Barker, 2002)
and proportional abundance (Vellend et al., 2011). There have also
been abundance-weighted measures that explicitly measure phylo-
genetic community structure (Fine and Kembel, 2011), or an “effec-
tive number of species” (Chao et al., 2010). Many diversity measures
can be tidily expressed in the framework of Leinster and Cobbold
(2012), although the expression of phylogenetic diversity measures
for non-ultrametric trees is complex.

In this paper we use three example human microbiome datasets
to demonstrate the utility of abundance-weighted phylogenetic di-
versity measures. We also introduce a one-parameter family inter-
polating between classical PD and an abundance-weighted gener-
alization. We call the parameter 6 and denote the one-parameter
tamily BWPDy; BWPD is classical PD, whereas BWPD; is balance-
weighted phylogenetic diversity, effectively PD,,, of Vellend et al.
(2011). Intermediate values of § allow a partially-abundance-weighted
compromise. Such a compromise has recently been shown to be
useful for measuring beta diversity, with the introduction of a one-
parameter family of “generalized UniFrac” measures (Chen et al.,
2012). We use the name Balance Weighted Phylogenetic Diversity as
described below because there are a variety of abundance weighted
phylogenetic diversity measures. We compare the behavior of PD
measures, including BWPDy, under various levels of sampling us-
ing theory and example data sets.

2. MATERIALS AND METHODS

2.1. Datasets. We apply the methods described below to three pre-
viously described 16S rRNA surveys of the human microbiome. The
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tirst two datasets are composed of samples from “normal” and dys-
biotic microbial communities, where previous studies have associ-
ated changes in diversity with changes in health. The third dataset
investigates the changes of the skin microbiome through time.

2.1.1. Bacterial vaginosis. First, we reanalyze a pyrosequencing dataset
describing bacterial communities from women being monitored in a
sexually transmitted disease clinic for bacterial vaginosis (BV). BV
has previously been shown to be associated with increased commu-
nity diversity (Fredricks et al., 2005). For this study, swabs were
taken from 242 women from the Public Health, Seattle and King
County Sexually Transmitted Diseases Clinic between September 2006
and June 2010 of which 220 samples resulted in enough material to
analyze (Srinivasan et al., 2012).

Selection of reference sequences and sequence preprocessing were
performed using the methods described in (Srinivasan et al., 2012).
452,358 reads passed quality filtering, with a median of 1,779 reads
per sample (range: 523-2,366).

2.1.2. Oral periodontitis. We also utilize sequence data from a study
of subgingival communities in 29 subjects with periodontitis, along
with an equal number of healthy controls (Griffen et al., 2011a). The
publication analyzing this dataset showed increased community di-
versity in samples from dysbiotic patients compared to healthy con-
trols. Raw sequences were filtered, retaining only those reads with:
a mean quality score of at least 25, no ambiguous bases, at least 150
base pairs in length, and an exact match to the sequencing primer
and barcode. A total of 759,423 reads passed quality filtering, with a
median of 8,320 reads per sample (range: 4,096-14,319).

As the phylogenetic placement method used below to calculate
our measures requires a reference tree and alignment, we created a
tree with FastTree 2.1.4 (Price et al., 2010) using the alignment and
accompanying taxonomic annotation from the curated CORE data-
base of oral microbiota (Griffen et al., 2011b).

2.1.3. Skin microbiome through time. Our third data set is a study of
skin microbial diversity through adolescence (Oh et al., 2012). Aligned
sequences were obtained courtesy of the authors, although sequence
data is available under the accession numbers [GQ000001] to [GQ116391]
and can be accessed through BioProject ID 46333. A total of 90,142
Sanger sequences were available, with a median of 693 sequences
per sample (range: 317-2884).
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2.2. Balance-weighted phylogenetic diversity. In this section we in-
troduce BWPDy, our one-parameter family interpolating between
classical PD and fully balance-weighted phylogenetic diversity. We
will primarily consider so-called unrooted (Pardi and Goldman, 2007)
phylogenetic diversity, which does not necessarily include the root.
The case of rooted phylogenetic diversity can be calculated in a sim-
ilar though simpler way as described below. Although we will pri-
marily be working in an unrooted sense, it will be useful to use ter-
minology that corresponds to the rooted case. For this reason, if the
tree is not already rooted, assume an arbitrary root has been chosen;
let the proximal side of a given edge be the side that contains the root
and distal be the other.

We will describe BWPDy in terms of a phylogenetic tree 7" with
leaves L, and a contingency table describing the number of observa-
tions of the organisms at the leaves in various samples. The con-
tingency table has rows labeled with the leaves of 7', and columns
labeled by samples. In microbial ecology this is frequently known as
an OTU table. The entry corresponding to a given leaf and a given
sample is the number of times that leaf was observed in that sample.

The classical (unrooted) phylogenetic diversity of a given sample
in this context is the total branch length of the tree subtended by the
leaves in that sample.

The path to generalizing PD is to note that this can be expressed
as a sum of branch lengths multiplied by a step function. Let f(z)
be the function that is one for > 0 and zero otherwise. Let g(z) =
min(f(x), f(1—z)) and Ds(7) be the fraction of reads in sample s that
are in leaves on the distal side of edge i. Phylogenetic diversity can
be then expressed as

(1) PD,(s) = Z 0; 9(Dy(3))

That is, the sum of edge lengths in 7" which have reads from s on
both the distal and proximal side.

Note that the step function g is the limit of a one-parameter family
of functions (Fig. 1). Indeed, defining

) go(z) = [2min(z, 1 — 2)]’,

g is the pointwise limit of the gy on the closed unit interval as 6 goes
to zero. Thus our one-parameter generalization is

(3) BWPDy(s) = > _ i go(Ds(i)).
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Note that when 6 = 0 this is PD and when ¢ = 1 this is an abundance-
weighted version of PD equivalent to executing the AnPD recipe of
Barker (2002) up to a multiplicative factor.

The rooted equivalent of (3) is

(4) RBWPDy(s) = > 4 (D())’,

which interpolates between rooted PD and an abundance-weighted
version. Vellend et al. (2011) describe a measure, PD,,,, which is
equal to RBWPD; multiplied by the total number of branches in T'.

We call BWPD, balance-weighted phylogenetic diversity because
it weights edges according to the balance of read fractions on either
side of an edge- edges with even amount of mass on either side
are up-weighted, while edges with an uneven balance of mass are
down-weighted. Indeed, if |z — (1 — z)| is thought of as the imbal-
ance of read fraction on either side of an edge, then 1 — |z — (1 — )| is
a measure of balance; note that on the unit interval, 2 min(z,1 — z) =
1 — |z — (1 —x)|. Because a small x or an z close to 1 gives a small co-
efficient in the summation, small collections of reads or small pertur-
bations of the read distribution will not change the value of BWPD,
appreciably.

2.3. Calculation of PD measures in example applications. Reads
from the vaginal and oral studies were placed on a tree created from
a curated set of taxonomically annotated reference sequences. As
phylogenetic entropy and ?D(T) operate on a rooted phylogeny, ref-
erence trees were assigned a root taxonomically (Matsen and Gal-
lagher, 2012) meaning that a root was found that best separated high-
level taxonomic groupings. pplacer was run in posterior probability
mode (using the -p and --informative-prior flags), which de-
fines an informative prior for pendant branch lengths with a mean
derived from the average distances from the edge in question to the
leaves of the tree. The resulting set of placements were classified at
the family rank using a hybrid classifier implemented in the guppy
tool from the pplacer suite. The hybrid classifier assigns taxonomic
annotations to sequences using the combination of a naive Bayes
classifier (Wang et al., 2007) with a phylogenetic classifier (Matsen
et al., unpublished results). Any reads that could not be confidently
classified to the family rank were not used in measures based on
classification.

Full-length 165 sequences were available for the skin data, and so
a more traditional tree-building approach was used. Representative
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OTUs were chosen for each site by clustering at 97% identity using
USEARCH 5.1 (Edgar, 2010), with trees built on OTU centroids using
FastTree (Price et al., 2010). To conform with methods used in Oh
et al. (2012), the naive Bayes classifier (Wang et al., 2007) was used
to infer genus-level classifications to taxonomically root the tree; in
our case we used the RDP classifier v2.5. The contingency (OTU)
tables generated by clustering were made available to our tools via
the BIOM (McDonald et al., 2012) format.

PD, (unrooted PD), phylogenetic quadratic entropy (Rao, 1982),
phylogenetic entropy (Allen et al., 2009), and ?D(T) (Chao et al.,
2010) were implemented for phylogenetic placements in the freely-
available pplacer suite of tools (Matsen et al., 2010) (http://matsen.
fhere.org/pplacer) in the subcommand guppy fpd. Prior to di-
versity estimation, either phylogenetic placements were rarefied to
the read count of the specimen in the dataset with the fewest se-
quences using guppy rarefy, or the corresponding rarefaction on full-
length sequences was performed with the QIIME (Caporaso et al.,
2010) rarefaction tool single_rarefaction.py. The mean value of each
statistic over 100 such rarefactions was used for analysis.

Discrete measures of alpha diversity and richness were calculated
on contingency tables obtained from clustering and taxonomic clas-
sification. Sequences were clustered into Operational Taxonomic Units
(OTUs) at a 97% identity threshold using USEARCH 5.1 (Edgar, 2010).
Similar results were observed when clustering at 95% identity (re-
sults not shown). OTU counts and family-level taxon counts were
then rarefied as above in R 3.0.1 (R Development Core Team, 2012)
using the vegan package (Oksanen et al., 2012). We obtained values
for the Simpson (1949) and Shannon (1948) diversity indices, as well
as the Chaol (Chao, 1984) and ACE (Chao and Lee, 1992) measures
of species richness using vegan functions diversity and estimateR.

2.4. Comparative analysis of alpha diversity measures. To inves-
tigate the relation between various measures of alpha diversity, we
calculated Pearson’s r between all pairs of measures using the func-
tion rcorr from the R package Hmisc (Harrell Jr., 2012). We then
performed hierarchical clustering with the R function hclust, using
d = 1 — r as the distance between two measures.

Association of each measure with clinical criteria for the first two
data sets was evaluated by examining the accuracy of a logistic re-
gression using the measure as the sole predictor of whether the sam-
ple came from a “normal” or dysbiotic subject. In the vaginal dataset,
we assessed each measure’s ability to predict whether a sample was
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from a subject positive for BV by Amsel’s criteria, a clinical diagnos-
tic method (Amsel et al., 1983). In the oral dataset, we assessed each
measure’s ability to predict whether a sample was from a healthy
control, or a subject with periodontitis. Accuracy in predicting sam-
ple community state was assessed by leave-one-out cross-validation
using the R package boot (Davison and Hinkley, 1997; Canty and
Ripley, 2012).

For the vaginal dataset, we also calculated R? values using each
measure individually as a predictor for sample Nugent score in a
linear regression. The Nugent score provides a diagnostic score for
BV which ranges from 0 (BV-negative) to 10 (BV-positive) based on
presence and absence of bacterial morphotypes as viewed under a
microscope (Nugent et al., 1991).

We calculated p-values to compare within- and between-stratification
variability using R’s built-in t.test function for the vaginal data, which
had a binary stratification, and the aov function for the oral and skin
data sets. The vaginal dataset data was stratified by Amsel’s crite-
rion, the oral dataset by condition and sampling site, and the skin
microbiome dataset by Tanner scale of physical development (Oh
et al., 2012). Note that we are not presenting these uncorrected p-
values as evidence that there is an interesting relationship between
the microbiome and a given stratification, but rather are using p-
values as a way of measuring within-stratum heterogeneity com-
pared to between-stratum heterogeneity for the various measures.

3. RESULTS

3.1. Application to the human microbiome.

3.1.1. Vaginal microbiome. Like Srinivasan etal. (2012) and many oth-
ers in the field, we observe greater diversity in BV positive speci-
mens using a variety of diversity and richness measures (Fig. S1). In
particular, this is true for BWPDj, for a variety of values of § (Fig. S2).

In the vaginal data, phylogenetic measures of alpha diversity have
better cross-validation accuracy for the Amsel classification and bet-
ter correlation with the Nugent score than discrete OTU-based mea-
sures (Table 2). All measures were somewhat accurate in identifying
community state, with even the worst performers classifying almost
70% of samples correctly. BWPD; 95, BWPD 5, PD,, and phyloge-
netic entropy perform well predicting BV status. Correlation with
Nugent score varies from 0.19 using Simpson (OTU) to 0.74 using
PD,. OTU-based measures rank in the bottom half of the measures
tested, and below all phylogenetic measures.
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In the hierarchical clustering of alpha measures on the vaginal
data set, phylogenetic methods are separated from OTU-based meth-
ods (Fig. 2). BWPDy is similar to different extant phylogenetic alpha
diversity measures for different . The Simpson and Shannon diver-
sity measures cluster together, as do the ACE and Chaol richness
measures.

Fig. 3 shows values of BWPDy calculated before (z-axis) and after
(y-axis) a single rarefaction to 523 sequences per sample. Samples
for which the BWPDy value changes little lie close to the blue line,
which shows the case of no difference between original and rarefied
samples. Increasing ), which corresponds to increased use of abun-
dance information, reduces the change in BWPD, induced by rar-
efaction. Phylogenetic quadratic entropy and phylogenetic entropy
both show behavior similar to BWPD;, with rarefaction introducing
little effect.

It might be possible to formalize a statement to this effect by com-
puting the expectation of these alpha measures under rarefaction.
However, computing the expectation for BWPDy under rarefaction
does not appear to be straightforward: the methods of Dremin (1994)
might be applicable in this setting, however, even the integer mo-
ments of the hypergeometric distribution are complicated and the
non-integer moments are bound to be very complex. We have, how-
ever, shown in the Appendix that the expectation of phylogenetic
quadratic entropy under rarefaction to k£ sequences assigned to the
tips of a phylogenetic tree is

E[PQE,] = % Z lidi(n — d;)

where d; is the number of sequences falling below edge ¢ and ¢; is
the length of edge i. This is almost identical to the unrarefied value
of phylogenetic quadratic entropy, i.e.

1
PQE = — Z&»di(n —d;).

Thus it is not surprising to see that the expectation of PQE under
rarefaction is very close to the original value (Fig. S3) for reasonably
large k£ and n.

3.1.2. Oral microbiome. As previously observed by Griffen et al. (2011a),

we find generally higher diversity in samples from dysbiotic patients
(Fig. 4). We evaluated the ability of each alpha diversity measure to
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predict whether a sample came from an individual with periodonti-
tis, regardless of sample collection site, using the above methods.

In the oral dataset, phylogenetic alpha diversity measures incor-
porating abundance gave the best predictions of community state
(Table 3, Fig. 4). In contrast, classical phylogenetic diversity per-
formed less well. These results were almost identical in terms of
rank order after applying additional quality filtering steps to correct
sequencing errors and remove potentially chimeric sequences (Ta-
ble S1).

OTU-based methods and phylogenetic methods are not as sepa-
rated in a hierarchical clustering as for the vaginal dataset (Fig. S6).
However, many of the same pairings are present in both cluster-
ings: BWPD 5 with phylogenetic entropy, BWPD; with quadratic
entropy, Simpson with Shannon, and ACE with Chaol. Interestingly,
PD,, BWPDy 15, and the YD(T) measures all cluster with the discrete
richness measures ACE and Chaol.

Like the vaginal dataset, incorporating abundance information de-
creases the effect of rarefaction on BWPDy values (Figs. 54, S5).

3.1.3. Skin microbiome. To further assess resolution and robustness
of phylogenetic diversity measures, we considered skin microbiome
data from a study by Oh et al. (2012). This study tracked the changes
of the skin microbiome through “Tanner” developmental stages of
adolescence(Tanner and Whitehouse, 1976). Because there are five
Tanner stages, and they do not have a monotonic relationship with
skin microbiome diversity (Oh et al., 2012), we focused on ANOVA
p-values to see if the diversity measurements had small within-stage
heterogeneity compared to between-stage heterogeneity. To com-
pare the ANOVA p-values associated with the diversity measure-
ments across the various data sets, we ranked the p-value of the di-
versity measures from lowest to highest for each data set individ-
ually. We averaged these ranks to gain an overall measure of per-
formance. The results again show phylogenetic measures generally
performing better than OTU-based measures (Table 4). This finding
holds true even after removing potential chimeras (Table S1). In this
case, a light weighting or no weighting of phylogenetic diversity by
abundance performed better than full abundance-weighting.

3.1.4. Applications summary. In all three of the data sets investigated,
abundance-weighted phylogenetic diversity measures showed good
performance to distinguish between community states: between “nor-
mal” and dysbiotic samples in the oral and vaginal microbiomes,
and between developmental stages in the skin microbiome. Notably,
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the best distinguishing measure in each dataset was phylogenetic; in
addition BWPDy »; and BWPD, ; were the only measures that were
in the top four for all data sets. The result that partial abundance
weighting performs well corresponds to analogous results for beta
diversity, where an intermediate exponent for “generalized UniFrac”
was the most powerful (Chen et al., 2012).

4. DISCUSSION

Phylogenetic alpha diversity measures were more closely related
to community state than were discrete measures based on OTU clus-
tering for the data sets investigated here. This result is especially in-
teresting given that the Simpson index, the Shannon index, or count-
ing applied to OTU tables are very common ways of characterizing
microbial diversity (Fierer et al., 2007; Grice et al., 2009; Hill et al.,
2003; Dethlefsen and Relman, 2011). As also noted by Aagaard et al.
(2012), we find that measurements of diversity using taxonomic clas-
sification can be useful in describing communities, and in fact per-
form much better than the same measurements of diversity applied
to OTU counts; however, this approach requires a taxonomically
well characterized environment. Our results can be viewed as an
experimental confirmation of the notion that incorporating similar-
ity between species is important to get sensible measures of diver-
sity, which has been advocated by many, including most recently by
Leinster and Cobbold (2012).

We find that classical phylogenetic diversity is sensitive to sam-
pling depth, underestimating the true value in small samples. Biases
have also been described for diversity measures using OTU tables
(Gihring et al., 2012). In contrast, we observe that some abundance-
weighted phylogenetic measures are relatively robust to varying lev-
els of sampling.

These results did not appear to be the result of of sequencing is-
sues. In principle, OTU methods could have performed badly be-
cause of error-prone and chimeric sequences inflating the number of
OTUs. Although this is a real danger for OTU quantification, in this
study its impact appears to be limited— similar results were obtained
with the oral data after de-noising and chimera removal and the skin
data (which used Sanger sequencing) after chimera removal.

We note that on our data, non-phylogenetic measures applied to
family level taxonomic groupings are generally more discriminat-
ing than the corresponding measures applied to OTUs. This may be
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because our sequences are from the human microbiome, and taxo-
nomic classification is especially well-developed in that setting; in
particular the taxonomic names may already be defined in a way
that corresponds to dysbiosis. Thus this particular difference may
not continue to be true in a taxonomically less-well-characterized en-
vironment.

As of the publication of this paper, no abundance-weighted phylo-
genetic alpha diversity measures are implemented in either mothur
(Schloss et al., 2009) or QIIME (Caporaso et al., 2010), two of the
most popular tools for analysis of microbial ecology data. Although
the fact that abundance-weighted phylogenetic diversity measures
performed very well for the three data sets investigated here does
not imply that they are best in general, we suggest that abundance-
weighted phylogenetic measures be given greater consideration for
microbial ecology studies. For this to happen, implementations in
commonly used microbial ecology software packages will be needed,
in addition to our implementation and that of the picante R package
(Kembel et al., 2010).
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Figure 1

\(g_\theta\) curves for various \(\theta\) parameters.

As \(\theta\) goes to zero, the \(g_\theta\) converge pointwise to \(g\), which is 1 on the

interior of the unit interval and 0 on the boundaries.
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Figure 2

Dendrogram relating alpha diversity measures applied to the vaginal dataset.
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Figure 3

Comparison of rarefied and unrarefied values of various phylogenetic alpha diversity
measures as applied to the vaginal dataset.

The value of six alpha measures for each specimen using all available sequences is plotted
on the \(x\)-axis. The value of the alpha measures for each specimen after a single
rarefaction to 523 sequences (the smallest sequence count across specimens) is plotted on

the \(y\)-axis. The \(y=x\) line is shown in blue.

BWPDg 25 BWPDy 5

@

o

E T 1 I I I
ﬁ 1 %5 3 4 5
B D(T)

1))

o

o)

z

w
o 17
ol
o
E D-.1 T T 1 1 1 1 T T T T
E 0 1 2 3 25 50 7.5 100 25 50 75
= Phylo. entropy Phylo. quad. entropy

i3]

©2.0- 0.9-

1.5+ 0.64

1.0-

0.5- 0.3+

D'D-I ] T 1 T I:}'D_1 1 T T

00051015 20 00 03 06 09

all sequences

PeerJ reviewing PDF | (v2013:04:390:1:1:NEW 19 Aug 2013)



PeerJ Reviewing Manuscript

Figure 4

Comparison of diversity between samples from healthy controls, healthy sites of
dysbiotic patients, and dysbiotic sites of dysbiotic patients on the oral dataset, using
various measures of diversity.

"Shallow" means a shallow pocket between tooth and gum tissue, while "deep" means a

sample from a deep pocket between gum tissue that has separated from its tooth. Top row:

cluster-based methods. Bottom rows: phylogenetic methods.
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Table L(on next page)

Overview of phylogenetic diversity measures used in the text.
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phylogenetic diversity (Faith, 1992)
phylogenetic generalization of species count

phylo. quadratic entropy (Rao, 1982; Warwick and Clarke, 1995)
phylogenetic generalization of the Simpson index

phylogenetic entropy (Allen et al., 2009)
phylogenetic generalization of the Shannon index

9D(T) (Chao et al., 2010)
phylogenetic generalization of Hill numbers

BWPD; (Barker, 2002; Vellend et al., 2011)
abundance-weighted version of phylogenetic diversity
BWPDj (this paper)
one-parameter family interpolating between PD and BWPD,

TABLE 1. Overview of phylogenetic diversity mea-
sures used in the text.
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Table 2(on next page)

Correlation and predictive performance of the various alpha diversity measures applied
to the vaginal data set.

Rows are ordered by increasing mean rank across performance measurements. Nugent \
(R"2\): \(R"2\) value using the measure as a predictor, and the Nugent score as response in
a linear model. Amsel accuracy: proportion of specimens with correct BV classification under
a leave-one-out cross-validation. Amsel p-value: p-value from a two-sample \(t\)-test on
values stratified by BV classification. "OTU" designates the measure applied to 97\%
clustering groups, and ~"Family" designates taxonomic classification at the family level.

Measures described in main text.
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Measure Amsel Accuracy Nugent R Amsel p-value mean rank

PD, 0.834 0.737
BWPDy o5 0.836 0.735
Simpson (Family) 0.817 0.735
BWPDg 5 0.827 0.700
Shannon (Family) 0.813 0.724
Phylo. entropy 0.831 0.679
Chaol (Family) 0.813 0.704
0-5D(T) 0.818 0.658
0-25D(T) 0.809 0.682
Phylo. quad. entropy 0.813 0.648
BWPD, 0.795 0.611
Chaol (OTU) 0.766 0.488
ACE (Family) 0.766 0.491
ACE (OTU) 0.764 0.469
Shannon (OTU) 0.758 0.380
Simpson (OTU) 0.697 0.191

1.84E-35
1.98E-35
4.11E-33
3.33E-33
2.28E-32
1.81E-31
6.27E-31
7.47E-29
2.25E-30
7.89E-30
5.38E-28
1.64E-23
2.82E-11
6.82E-22
5.27E-16
1.42E-07

1.3
2.0
4.0
4.3
53
5.7
7.0
8.0
8.3
9.0
11.0
12.7
13.0
13.7
14.7
16.0

TABLE 2. Correlation and predictive performance of
the various alpha diversity measures applied to the
vaginal data set. Rows are ordered by increasing mean
rank across performance measurements. Nugent R*:
R? value using the measure as a predictor, and the Nu-
gent score as response in a linear model. Amsel accu-
racy: proportion of specimens with correct BV classi-
tication under a leave-one-out cross-validation. Amsel
p-value: p-value from a two-sample ¢-test on values
stratified by BV classification. “OTU” designates the
measure applied to 97% clustering groups, and “Fam-
ily” designates taxonomic classification at the family
level. Measures described in main text.
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Table 3(on next page)

Predictive accuracy of each measure in the oral dataset and p-value from an ANOVA
stratified by disease status and sampling site.
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Measure Diseased status accuracy ANOVA p-value mean rank

Phylo. entropy 0.791 4.97E-09 1.0
BWPDg 5 0.782 6.50E-09 2.0
BWPDy 5 0.755 7.16E-08 4.0
Phylo. quad. entropy 0.770 2.47E-07 4.0
Simpson (Family) 0.776 1.45E-06 4.0
0-5D(T) 0.734 4.74E-06 6.5
0-2D(T) 0.735 4.33E-05 7.0
PD, 0.691 6.37E-06 8.5
Shannon (Family) 0.734 5.32E-05 8.5
BWPD, 0.698 3.57E-04 9.5
Chaol (OTU) 0.685 9.94E-04 11.0
ACE (OTU) 0.682 1.30E-03 12.0
Simpson (OTU) 0.676 2.39E-02 13.5
Shannon (OTU) 0.672 1.31E-03 14.0
Chaol (Family) 0.674 2.64E-01 15.0
ACE (Family) 0.663 1.82E-01 15.5

TABLE 3. Predictive accuracy of each measure in the
oral dataset and p-value from an ANOVA stratified by
disease status and sampling site
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Table 4 (on next page)

ANOVA p-values for various diversity statistics applied to the skin microbiome data of
Oh et al. (2013).

Rows are ordered by increasing mean rank across sites. The same site abbreviations are

used as in their paper: Ac, antecubital fossa; N, nares; Pc, popliteal fossa; Vf, volar forearm.
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Ac N Pc Vf mean rank

PD, 3.34e-02 4.94e-03 3.03e-03 2.28e-04 4.50

BWPDg 5 4.22e-02 1.32e-03 6.37e-03 5.86e-04 5.25
BWPDy5 8.54e-02 9.85e-05 3.65e-02 5.85e-03 6.00
Shannon (OTU) 6.61e-02 9.48e-02 9.65e-02 1.05e-05 6.50
Chaol (OTU) 8.00e-02 6.46e-03 3.98e-03 3.18e-03 6.75
Phylo. quad. entropy 2.52e-01 1.12e-05 4.99e-01 1.67e-01 7.50
Phylo. entropy 1.37e-01 1.15e-03 1.55e-01 2.09e-02 7.75
0°D(T) 8.91e-01 5.63e-04 3.84e-03 9.09e-01 8.25

0-5D(T) 7.00e-01 2.27e-03 2.35e-03 9.41e-01 8.50
BWPD; 3.09e-01 5.95e-05 6.65e-01 5.41e-01 8.50

OD(T) 4.42e-01 1.05e-02 1.38e-03 9.38e-01 8.75

Simpson (OTU) 9.38e-02 4.01e-01 8.49e-01 1.01e-04 8.75

TABLE 4. ANOVA p-values for various diversity sta-
tistics applied to the skin microbiome data of Oh et al.
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(2012). Rows are ordered by increasing mean rank
across sites. The same site abbreviations are used as
in their paper: Ac, antecubital fossa; N, nares; Pc,
popliteal fossa; Vf, volar forearm.



