
Abundance-weighted phylogenetic diversity measures distinguish 
microbial community states and are robust to sampling depth

In microbial ecology studies, the most commonly used ways of investigating alpha (within-sample) 

diversity are either to apply count-only measures such as Simpson's index to Operational Taxonomic 

Unit (OTU) groupings, or to use classical phylogenetic diversity (PD), which is not 

abundance-weighted. Although alpha diversity measures that use abundance information in a 

phylogenetic framework do exist, but are not widely used within the microbial ecology community. 

The performance of abundance-weighted phylogenetic diversity measures compared to classical 

discrete measures has not been explored, and the behavior of these measures under rarefaction 

(sub-sampling) is not yet clear. In this paper we compare the ability of various alpha diversity 

measures to distinguish between different community states in the human microbiome for three 

different data sets. We also present and compare a novel one-parameter family of alpha diversity 

measures, BWPD θ \operatorname{BWPD}_\theta , that interpolates between classical phylogenetic 

diversity (PD) and an abundance-weighted extension of PD. Additionally, we examine the sensitivity 

of these phylogenetic diversity measures to sampling, via computational experiments and by deriving a 

closed form solution for the expectation of phylogenetic quadratic entropy under re-sampling. In all 

three of the datasets considered, an abundance-weighted measure is the best differentiator between 

community states. OTU-based measures, on the other hand, are less effective in distinguishing 

community types. In addition, abundance-weighted phylogenetic diversity measures are less sensitive 

to differing sampling intensity than their unweighted counterparts. Based on these results we 

encourage the use of abundance-weighted phylogenetic diversity measures, especially for cases such 

as microbial ecology where species delimitation is difficult.
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1. INTRODUCTION8

It is now well accepted that incorporating phylogenetic informa-9

tion into alpha (single-sample) and beta (between-sample) diversity10

measures can be useful in a variety of ecological contexts. Phylo-11

genetic equivalents of all of major alpha diversity measures have12

been developed. Starting with Faith’s original definition of phyloge-13

netic diversity (Faith, 1992), which generalizes species count, there14

are now phylogenetic generalizations of the Simpson index to Rao’s15

quadratic entropy (Rao, 1982; Warwick and Clarke, 1995), the Shan-16

non index to phylogenetic entropy (Allen et al., 2009), and the Hill17

numbers to qD(T) (Chao et al., 2010). Phylogenetic diversity itself18

has been extended to incorporate taxon counts (Barker, 2002) and19

proportional abundance (Vellend et al., 2011). There have also been20

abundance-weighted measures that explicitly measure phylogenetic21

community structure (Fine and Kembel, 2011), or an “effective num-22

ber of species” (Chao et al., 2010). Many diversity measures can be23

tidily expressed in the framework of Leinster and Cobbold (2012),24

although the expression of phylogenetic diversity measures for non-25

ultrametric trees is complex.26

In this paper we use three example human microbiome datasets27

to demonstrate the utility of abundance-weighted phylogenetic di-28

versity measures. We also introduce a one-parameter family inter-29

polating between classical PD and an abundance-weighted gener-30

alization. We call the parameter θ and denote the one-parameter31

family BWPDθ; BWPD0 is classical PD, whereas BWPD1 is balance-32

weighted phylogenetic diversity, effectively PDaw of Vellend et al.33

(2011). Intermediate values of θ allow a partially-abundance-weighted34

compromise. Such a compromise has recently been shown to be35

useful for measuring beta diversity, with the introduction of a one-36

parameter family of “generalized UniFrac” measures (Chen et al.,37

2012). We use the name Balance Weighted Phylogenetic Diversity as38

described below because there are a variety of abundance weighted39

phylogenetic diversity measures. We compare the behavior of PD40

measures, including BWPDθ, under various levels of sampling us-41

ing theory and example data sets.42

2. MATERIALS AND METHODS43

2.1. Datasets. We apply the methods described below to three pre-44

viously described 16S rRNA surveys of the human microbiome. The45
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first two datasets are composed of samples from “normal” and dys-46

biotic microbial communities, where previous studies have associ-47

ated changes in diversity with changes in health. The third dataset48

investigates the changes of the skin microbiome through time.49

2.1.1. Bacterial vaginosis. First, we reanalyze a pyrosequencing dataset50

describing bacterial communities from women being monitored in a51

sexually transmitted disease clinic for bacterial vaginosis (BV). BV52

has previously been shown to be associated with increased commu-53

nity diversity (Fredricks et al., 2005). For this study, swabs were54

taken from 242 women from the Public Health, Seattle and King55

County Sexually Transmitted Diseases Clinic between September 200656

and June 2010 of which 220 samples resulted in enough material to57

analyze (Srinivasan et al., 2012).58

Selection of reference sequences and sequence preprocessing were59

performed using the methods described in (Srinivasan et al., 2012).60

452,358 reads passed quality filtering, with a median of 1,779 reads61

per sample (range: 523–2,366).62

2.1.2. Oral periodontitis. We also utilize sequence data from a study63

of subgingival communities in 29 subjects with periodontitis, along64

with an equal number of healthy controls (Griffen et al., 2011a). The65

publication analyzing this dataset showed increased community di-66

versity in samples from diseased patients compared to healthy con-67

trols. Raw sequences were filtered, retaining only those reads with:68

a mean quality score of at least 25, no ambiguous bases, at least 15069

base pairs in length, and an exact match to the sequencing primer70

and barcode. A total of 759,423 reads passed quality filtering, with a71

median of 8,320 reads per sample (range: 4,096–14,319).72

As the phylogenetic placement method used below to calculate73

our measures requires a reference tree and alignment, we created a74

tree with FastTree 2.1.4 (Price et al., 2010) using the alignment and75

accompanying taxonomic annotation from the curated CORE data-76

base of oral microbiota (Griffen et al., 2011b).77

2.1.3. Skin microbiome through time. Our third data set is a study of78

skin microbial diversity through adolescence Oh et al. (2012). Aligned79

sequences were obtained directly from the authors, although sequence80

data is available under the accession numbers [GQ000001] to [GQ116391]81

and can be accessed through BioProject ID 46333.82

2.2. Balance-weighted phylogenetic diversity. In this section we in-83

troduce BWPDθ, our one-parameter family interpolating between84

classical PD and fully balance-weighted phylogenetic diversity. We85
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will primarily consider so-called unrooted (Pardi and Goldman, 2007)86

phylogenetic diversity, which does not necessarily include the root.87

The case of rooted phylogenetic diversity can be calculated in a sim-88

ilar though simpler way as described below. Although we will pri-89

marily be working in an unrooted sense, it will be useful to use ter-90

minology that corresponds to the rooted case. For this reason, if the91

tree is not already rooted, assume an arbitrary root has been chosen;92

let the proximal side of a given edge be the side that contains the root93

and distal be the other.94

We will describe BWPDθ in terms of a phylogenetic tree T with95

leaves L, and a contingency table describing the number of observa-96

tions of the organisms at the leaves in various samples. The con-97

tingency table has rows labeled with the leaves of T , and columns98

labeled by samples. In microbial ecology this is frequently known as99

an OTU table. The entry corresponding to a given leaf and a given100

sample is the number of times that leaf was observed in that sample.101

The classical (unrooted) phylogenetic diversity of a given sample102

in this context is the total branch length of the tree subtended by the103

leaves in that sample.104

The path to generalizing PD is to note that this can be expressed105

as a sum of branch lengths multiplied by a step function. Let f(x)106

be the function that is one for x > 0 and zero otherwise. Let g(x) =107

min(f(x), f(1−x)) and Ds(i) be the fraction of reads in sample s that108

are in leaves on the distal side of edge i. Phylogenetic diversity can109

be then expressed as110

(1) PDu(s) =
∑
i

`i g(Ds(i))

That is, the sum of edge lengths in T which have reads from s on111

both the distal and proximal side.112

113

Note that the step function g is the limit of a one-parameter family114

of functions (Fig. 1). Indeed, defining115

(2) gθ(x) = min
(
xθ, (1− x)θ

)
,

g is the pointwise limit on the closed unit interval of the gθ as θ goes116

to zero. Thus our one-parameter generalization is117

(3) BWPDθ(s) =
∑
i

`i gθ(Ds(i)).
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FIGURE 1. gθ curves for various θ parameters. As θ
goes to zero, the gθ converge pointwise to g, which is 1
on the interior of the unit interval and 0 on the bound-
aries.

Note that when θ = 0 this is PD and when θ = 1 this is an abundance-118

weighted version of PD equivalent to executing the ∆ nPD recipe of119

Barker (2002) up to a multiplicative factor.120

The rooted equivalent of (3) is121

(4) RBWPDθ(s) =
∑
i

`i (Ds(i))
θ,

which interpolates between rooted PD and an abundance-weighted122

version. Vellend et al. (2011) describe a similar measure, PDaw, which123

is equal to RBWPD1 multiplied by the total number of branches in124

T .125

We call BWPD1 balance-weighted phylogenetic diversity because126

it weights edges according to the balance of read fractions on either127

side of an edge– edges with even amount of mass on either side128

are up-weighted, while edges with an uneven balance of mass are129

down-weighted. Indeed, if |x− (1− x)| is taken to represent the im-130

balance of read fraction on either side of an edge, then 1−|x−(1−x)|131

can be taken to be a measure of balance; note that on the unit inter-132

val, min(x, 1− x) = 1− |x− (1− x)|. Because a small x or an x close133

to 1 gives a small coefficient in the summation, small collections of134
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reads or small perturbations of the read distribution will not change135

the value of BWPD1 appreciably.136

2.3. Calculation of PD measures in example applications. Reads137

from the vaginal and oral studies were placed on a tree created from138

a curated set of taxonomically annotated reference sequences. As139

phylogenetic entropy and qD(T) operate on a rooted phylogeny, ref-140

erence trees were assigned a root taxonomically (Matsen and Gal-141

lagher, 2012). pplacer was run in posterior probability mode (using142

the -p and --informative-prior flags), which defines an infor-143

mative prior for pendant branch lengths with a mean derived from144

the average distances from the edge in question to the leaves of the145

tree. The resulting set of placements were classified at the family146

rank using a hybrid classifier implemented in the guppy tool from147

the pplacer suite. The hybrid classifier assigns taxonomic annota-148

tions to sequences using the combination of a naı̈ve Bayes classifier149

(Wang et al., 2007) with a phylogenetic classifier (Matsen et al., un-150

published results). Any reads that could not be confidently classified151

to the family rank were not used in measures based on classification.152

Full-length 16S sequences were available for the skin data, and so153

a more traditional tree-building approach was used. Representative154

OTUs were chosen for each site by clustering at 97% identity using155

USEARCH (Edgar, 2010), with trees built on OTU centroids using156

FastTree (Price et al., 2010). To conform with methods used in that157

paper, the naı̈ve Bayes classifier (Wang et al., 2007) was used to infer158

genus-level classifications to taxonomically root the tree; in our case159

we used the RDP classifier v2.5. The contingency (OTU) tables gen-160

erated by clustering were made available to our tools via the BIOM161

(McDonald et al., 2012) format.162

PDu (unrooted PD), phylogenetic quadratic entropy (Rao, 1982),163

phylogenetic entropy (Allen et al., 2009), and qD(T) (Chao et al.,164

2010) were implemented for phylogenetic placements in the freely-165

available pplacer suite of tools (Matsen et al., 2010) (http://matsen.166

fhcrc.org/pplacer) in the subcommand guppy fpd. PDu on rar-167

efied phylogenetic placements was calculated using guppy rarefy.168

Discrete measures of alpha diversity and richness were calculated169

on contingency tables obtained from clustering and taxonomic clas-170

sification. Sequences were clustered into Operational Taxonomic Units171

(OTUs) at a 97% identity threshold using USEARCH 5.1 (Edgar, 2010).172

Similar results were observed when clustering at 95% identity (re-173

sults not shown). OTU counts and family-level taxon counts were174

then rarefied to the read count of the specimen in the dataset with175
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the fewest sequences in R 2.15.1 (R Development Core Team, 2012)176

using the vegan package (Oksanen et al., 2012). We obtained values177

for the Simpson (1949) and Shannon (1948) diversity indices, as well178

as the Chao1 (Chao, 1984) and ACE (Chao and Lee, 1992) measures179

of species richness using vegan functions diversity and estimateR.180

2.4. Comparative analysis of alpha diversity measures. To inves-181

tigate the relation between various measures of alpha diversity, we182

calculated Pearson’s r between all pairs of measures using the func-183

tion rcorr from the R package Hmisc (Harrell Jr., 2012). We then184

performed hierarchical clustering with the R function hclust, using185

d = 1− r as the distance between two measures.186

Association of each measure with clinical criteria for the first two187

data sets was evaluated by examining the accuracy of a logistic re-188

gression using the measure as the sole predictor of whether the sam-189

ple came from a “normal” or dysbiotic subject. In the vaginal dataset,190

we assessed each measure’s ability to predict whether a sample was191

from a subject positive for BV by Amsel’s criteria, a clinical diagnos-192

tic method (Amsel et al., 1983). In the oral dataset, we assessed each193

measure’s ability to predict whether a sample was from a healthy194

control, or a subject with periodontitis. Accuracy in predicting sam-195

ple community state was assessed by leave-one-out cross-validation196

using the R package boot (Davison and Hinkley, 1997; Canty and197

Ripley, 2012).198

For the vaginal dataset, we also calculated R2 values using each199

measure individually as a predictor for sample Nugent score in a200

linear regression. The Nugent score provides a diagnostic score for201

BV which ranges from 0 (BV-negative) to 10 (BV-positive) based on202

presence and absence of bacterial morphotypes as viewed under a203

microscope (Nugent et al., 1991).204

We calculated p-values to compare within- and between-stratification205

variability using R’s built-in t.test function for the vaginal data, which206

had a binary stratification, and aov function for the oral and vaginal207

data sets. The vaginal dataset data was stratified by Amsel’s crite-208

rion, the oral dataset by condition and sampling site, and the skin209

microbiome dataset by Tanner scale of physical development (Oh210

et al., 2012).211

Plots were prepared with R base graphics and ggplot2 (Wickham,212

2009).213

2.5. Evaluation of performance under rarefaction. Phylogenetic place-214

ments were rarefied using the rarefy subcommand of the guppy tool215

PeerJ reviewing PDF | (v2013:04:390:0:0:NEW 1 May 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



8

in the pplacer suite. Phylogenetic alpha diversity measures were cal-216

culated on the resulting rarefied placements as described above.217

3. RESULTS218

3.1. Application to the human microbiome.219

3.1.1. Vaginal microbiome. Like Srinivasan et al. (2012) and many oth-220

ers in the field, we observe greater diversity in BV positive speci-221

mens using a variety of diversity and richness measures (Fig. S1). In222

particular, this is true for BWPDθ for a variety of values of θ (Fig. S2).223

In the vaginal data, phylogenetic measures of alpha diversity have224

better cross-validation accuracy for the Amsel classification and bet-225

ter correlation with the Nugent score than discrete OTU-based mea-226

sures (Table 1). All measures were somewhat accurate in identifying227

community state, with even the worst performers classifying at least228

70% of samples correctly. BWPD0.25, rarefied PDu, PDu, and phylo-229

genetic entropy perform equally well predicting BV status. Corre-230

lation with Nugent score varies more widely, from 0.19 using Simp-231

son (OTU) to 0.74 using BWPD0.25 or Simpson applied to family-232

level classifications. OTU-based measures rank in the bottom half233

of the measures tested, and below all phylogenetic measures. Phy-234

logenetic diversity, which can be viewed as a measure of richness,235

outperforms discrete measures of richness, and most measures in-236

corporating abundance.237

In the hierarchical clustering of alpha measures on the vaginal238

data set, phylogenetic methods are separated from OTU-based meth-239

ods (Fig. 2). BWPDθ is similar to different extant phylogenetic alpha240

diversity measures for different θ. The Simpson and Shannon diver-241

sity measures cluster together, as do the ACE and Chao1 richness242

measures.243

Fig. 3 shows values of BWPDθ calculated before (x-axis) and after244

(y-axis) a single rarefaction to 523 sequences per sample. Samples245

for which the BWPDθ value changes little lie close to the blue line,246

which shows the case of no difference between original and rarefied247

samples. Increasing θ, which corresponds to increased use of abun-248

dance information, reduces the change in BWPDθ induced by rar-249

efaction. Phylogenetic quadratic entropy and phylogenetic entropy250

both show behavior similar to BWPD1, with rarefaction introducing251

little effect.252

It might be possible to formalize a statement to this effect by com-253

puting the expectation of these alpha measures under rarefaction.254

However, computing the expectation for BWPDθ under rarefaction255
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Measure Nugent R2 Amsel Accuracy Amsel p-value
BWPD0.25 0.738 0.828 1.49E-35
Simpson (Family) 0.731 0.822 2.07E-33
Rarefied PDu 0.731 0.828 6.81E-35
Shannon (Family) 0.721 0.821 8.85E-33
BWPD0.5 0.703 0.823 2.16E-33
PDu 0.696 0.832 1.26E-32
Phylo. entropy 0.679 0.832 1.56E-31
0.25D(T) 0.677 0.818 8.74E-30
0.5D(T) 0.662 0.814 5.35E-29
Phylo. quad. entropy 0.647 0.811 7.70E-30
BWPD1 0.610 0.796 5.66E-28
Chao1 (Family) 0.610 0.823 9.79E-24
Chao1 (OTU) 0.450 0.758 1.61E-19
ACE (OTU) 0.422 0.763 6.86E-20
Shannon (OTU) 0.380 0.754 6.73E-16
Simpson (OTU) 0.192 0.700 1.36E-07
ACE (Family) 0.088 0.666 1.51E-01

TABLE 1. Correlation and predictive performance of
the various alpha diversity measures, ordered by de-
creasingR2 value. NugentR2: R2 value using the mea-
sure as a predictor, and the Nugent score as response
in a linear model. Amsel accuracy: proportion of spec-
imens with correct BV classification under a leave-one-
out cross-validation. Amsel p-value: p-value from a
two-sample t-test on values stratified by BV classifica-
tion. “OTU” designates the measure applied to 97%
clustering groups, and “Family” designates taxonomic
classification at the family level. Measures described
in main text.

does not appear to be straightforward: the methods of Dremin (1994)256

might be applicable in this setting, however, even the integer mo-257

ments of the hypergeometric distribution are complicated and the258

non-integer moments are bound to be very complex. We have, how-259

ever, shown in the Appendix that the expectation of phylogenetic260

quadratic entropy under rarefaction to k sequences assigned to the261

tips of a phylogenetic tree is262

E[PQEk] =
k − 1

kn(n− 1)

∑
i

`idi(n− di)
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FIGURE 2. Dendrogram relating alpha diversity mea-
sures applied to the vaginal dataset.

where di is the number of sequences falling below edge i and `i is263

the length of edge i. This is almost identical to the unrarefied value264

of phylogenetic quadratic entropy, i.e.265

PQE =
1

n2

∑
i

`idi(n− di).

Thus it is not surprising to see that the expectation of PQE under266

rarefaction is very close to the original value (Fig. S3) for reasonably267

large k and n.268

3.1.2. Oral microbiome. As previously observed by Griffen et al. (2011a),269

we find generally higher diversity in samples from diseased patients270

(Fig. 4). We evaluated the ability of each alpha diversity measure to271

predict whether a sample came from an individual with periodonti-272

tis, regardless of sample collection site, using the above methods.273

In the oral dataset, phylogenetic alpha diversity measures incor-274

porating abundance gave the best predictions of community state275

(Table S1, Fig. 4). In contrast, classical phylogenetic diversity was276

amongst the worst predictors; rarefaction did help, but rarefied PD277

still performed worse than phylogenetic measures taking abundance278

into account.279

OTU-based methods and phylogenetic methods are not as sepa-280

rated in a hierarchical clustering as for the vaginal dataset (Fig. S6).281

However, many of the same pairings are present in both clusterings:282

PeerJ reviewing PDF | (v2013:04:390:0:0:NEW 1 May 2013) 

R
ev
ie
w
in
g
M
an

us
cr
ip
t



11

PD BWPD0.25 BWPD0.5

BWPD1
0.25D(T) 0.5D(T)

Phylo. entropy Phylo. quad. entropy

0

5

10

15

0

2

4

6

8

0
1
2
3
4
5

0

1

2

3

2.5

5.0

7.5

10.0

2

4

6

8

0.0
0.5
1.0
1.5
2.0

0.00
0.25
0.50
0.75
1.00

0 5 10 15 0 2 4 6 8 0 1 2 3 4 5

0 1 2 3 2.5 5.0 7.5 10.0 2.5 5.0 7.5

0.0 0.5 1.0 1.5 2.0 0.0 0.3 0.6 0.9
all sequences

ra
re

fie
d 

to
 5

23
 s

eq
ue

nc
es

/s
am

pl
e

FIGURE 3. Comparison of rarefied and unrarefied val-
ues of various phylogenetic alpha diversity measures
as applied to the vaginal dataset. The value of six al-
pha measures for each specimen using all available se-
quences is plotted on the x-axis. The value of the alpha
measures for each specimen after a single rarefaction
to 523 sequences (the smallest sequence count across
specimens) is plotted on the y-axis. The y = x line is
shown in blue.

BWPD0.5 with PE, BWPD1 with QE, Simpson with Shannon, ACE283

with Chao1, and PDu with rarefied PD. Interestingly, PDu, rarefied284

PDu, and BWPD0.25 all cluster with the discrete richness measures285

ACE and Chao1.286

Like the vaginal dataset, incorporating abundance information de-287

creases the effect of rarefaction on BWPDθ values (Figs. S4, S5).288

289

3.1.3. Skin microbiome. To further assess resolution and robustness290

of abundance weighted phylogenetic diversity measures, we con-291

sidered skin microbiome data from a study by Oh et al. (2012). This292
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FIGURE 4. Comparison of diversity between samples
from healthy controls, healthy sites of diseased pa-
tients, and diseased sites of diseased patients in the
oral dataset, using different measures of alpha diver-
sity. Top row: cluster-based methods. Bottom row:
phylogenetic methods.

study tracked the changes of the skin microbiome through devel-293

opmental stages. Because there are five Tanner stages, and they do294

not have a monotonic relationship with skin microbiome diversity295

(Oh et al., 2012), we focused on ANOVA p-values to see if the diver-296

sity measurements had small within-stage heterogeneity compared297

to between-stage heterogeneity. To compare the ANOVA p-values298

associated with the diversity measurements across the various data299

sets, we ranked the p-value of the diversity measures from lowest300

to highest for each data set individually. We averaged these ranks301

to gain an overall measure of performance. The results again show302

phylogenetic measures generally performing better than OTU-based303

measures (Tab. 5). In this case, a light weighting or no weighting304

of phylogenetic diversity by abundance performed better than full305

abundance-weighting. Note that we are not presenting these un-306

corrected p-values as evidence that there is an interesting relation-307

ship between skin microbiome and developmental stage, but rather308

are using p-values as a way of measuring within-stage heterogeneity309

compared to between-stage heterogeneity for the various measures.310

311
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Ac N Pc Vf mean rank
BWPD0.25 2.90e-02 1.29e-03 4.94e-03 1.71e-04 3.50

PDu 2.72e-02 5.48e-03 8.62e-03 5.06e-04 5.25
0.25D(T) 2.95e-02 1.24e-03 1.53e-02 3.86e-04 5.50
0.5D(T) 3.03e-02 4.95e-04 2.92e-02 3.20e-04 5.75

BWPD0.5 6.53e-02 7.34e-05 1.43e-02 1.42e-03 6.75
0D(T) 3.08e-02 2.37e-03 9.77e-03 8.88e-04 7.00

Chao1 (OTU) 2.97e-02 2.68e-03 9.14e-03 9.97e-03 7.00
Shannon (OTU) 7.09e-02 8.48e-02 1.23e-01 2.70e-05 8.00
Phylo. entropy 1.17e-01 2.31e-05 8.37e-02 1.03e-02 8.25

Phylo. quad. entropy 2.52e-01 6.31e-06 4.77e-01 1.55e-01 9.00
Simpson (OTU) 1.17e-01 3.68e-01 8.75e-01 1.15e-04 9.50

BWPD1 3.11e-01 2.99e-05 6.45e-01 5.33e-01 10.25
TABLE 2. ANOVA p-values for various phylogenetic
diversity statistics applied to the skin microbiome data
of Oh et al. (2012). Rows are ordered by increasing
mean rank across sites. The same site abbreviations are
used as in their paper: Af, antecubital fossa; N, nares;
Pf, popliteal fossa; Vf, volar forearm.

3.1.4. Applications summary. In all three of the data sets investigated,312

abundance-weighted phylogenetic diversity measures showed good313

performance to distinguish between community states: between “nor-314

mal” and dysbiotic samples in the oral and vaginal microbiomes,315

and between developmental stages in the skin microbiome. Notably,316

the best distinguishing measure in each dataset was both phyloge-317

netic and abundance-weighted. BWPDθ, our new family of abundance-318

weighted phylogenetic diversity measures, was highly correlated with319

clinical status although the value of θ most associated with commu-320

nity state varied. On the vaginal and oral data sets intermediate val-321

ues of θ for BWPDθ provide the best correlation with clinical sta-322

tus. These results correspond to analogous results for beta diversity,323

where an intermediate exponent for “generalized UniFrac” was the324

most powerful (Chen et al., 2012).325
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4. DISCUSSION326

Phylogenetic alpha diversity measures were more closely related327

to community state than were discrete measures based on OTU clus-328

tering for the data sets investigated here. This result is especially in-329

teresting given that the Simpson index, the Shannon index, or count-330

ing applied to OTU tables are very common ways of characterizing331

microbial diversity (Fierer et al., 2007; Grice et al., 2009; Hill et al.,332

2003; Dethlefsen and Relman, 2011). As also noted by Aagaard et al.333

(2012), we find that measurements of diversity using taxonomic clas-334

sification can be useful in describing communities, and in fact per-335

form much better than the same measurements of diversity applied336

to OTU counts; however, this approach requires a taxonomically337

well characterized environment. Our results can be viewed as an338

experimental confirmation of the notion that incorporating similar-339

ity between species is important to get sensible measures of diver-340

sity, which has been advocated by many, including most recently by341

Leinster and Cobbold (2012).342

We find that classical phylogenetic diversity is sensitive to sam-343

pling depth, underestimating the true value in small samples. Biases344

have also been described for diversity measures using OTU tables345

(Gihring et al., 2012). In contrast, we observe that some abundance-346

weighted phylogenetic measures are relatively robust to varying lev-347

els of sampling.348

As of the publication of this paper, no abundance-weighted phylo-349

genetic alpha diversity measures are implemented in either mothur350

(Schloss et al., 2009) or QIIME (Caporaso et al., 2010), two of the most351

popular tools for analysis of microbial ecology data. Although the352

fact that abundance-weighted phylogenetic diversity measures per-353

formed best for the three data sets investigated here does not imply354

that they are best in general, we suggest that abundance-weighted355

phylogenetic measures be given greater consideration for microbial356

ecology studies. For this to happen, implementations in commonly357

used microbial ecology software packages will be needed, in addi-358

tion to our implementation and that of the picante R package (Kem-359

bel et al., 2010).360
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