- 1 The tetrapod fauna of the upper Permian Naobaogou
- 2 Formation of China: 10. Jimusaria monanensis sp.

Eliminado: the

3 nov. (Dicynodontia) with an unique epipterygoid

- 4 Yu-Tai Shi^{1,2}, Jun Liu^{1,2}
- 5 ¹ Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences,
- 6 Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences,
- 7 Beijing, China
- 8 ² College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing,
- 9 China

10

14

15

16

17

18

- 11 Corresponding Author: Jun Liu ¹
- 12 Xizhimenwai Street, Beijing, 100044, China
- 13 Email address: liujun@ivpp.ac.cn

Abstract

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Jimusaria is the first reported Chinese dicynodont, previously only known from Xinjiang. Here we refer two specimens from the Naobaogou Formation, Nei Mongol, China to Jimusaria for the following features: squamosal separated from supraoccipital by tabular, tabular contacting opisthotic, sharp and thin lateral dentary shelf expanding anteriorly into a thick swelling, nasals fused as single element, rod-like medial bar formed by footplate of epipterygoid connecting to the parabasisphenoid and periotic medially. A new species, J. monanensis, is named based on the diagnostic characters on these two specimens such as distinct caniniform buttress lacking posteroventral furrow, naso-frontal suture forming an anterior directed sharp angle, and converging ventral ridges on posterior portion of anterior pterygoid rami. In Jimusaria, the epipterygoid posteromedially contacts the parabasisphenoid and the periotic as a rod-like bar, a unique morphology unknown in any other dicynodonts. This structure probably increases the stability of the palatal complex. A similar structure might also appear in other dicynodonts as a cartilage connection. The new occurrence of Jimusaria increases the diversity of the tetrapod assemblage from the Naobaogou Formation, and further strengthens the connection between the tetrapod faunas from Nei Mongol and Xinjiang. Based on the current record, Jimusaria is a rare tetrapod genus which survived the end-Permian mass extinction.

Eliminado: The

Eliminado: in

Introduction

41 During the Sino-Swedish expedition, Yuan P. L. collected some dicynodont fossils from Xinjiang, China. Dicynodon sinkianensis is the first named species from those specimens, and is 42 43 the first record of Chinese Permian-Triassic tetrapods (Yuan & Young 1934). Later, this species 44 was transferred to a new genus, Jimusaria, resulting in a new combination, J. sinkianensis (Sun, Eliminado: resulted 45 1963). Three incomplete skulls from Turpan, Xinjiang were also referred to this genus as J. taoshuyuanensis (Sun 1973). King (1988) proposed Jimusaria as a junior synonym of Dicynodon, 46 47 resuming the name D. sinkianensis and creating a new combination. D. taoshuyuanensis. Lucas Eliminado: and Eliminado: ed Eliminado: 48 (1998, 2001) and Li et al. (2008) followed this opinion. Kammerer et al. (2011) completed a 49 comprehensive phylogenetic analysis on Dicynodon-related species; they revalidated Jimusaria, Eliminado: the 50 and regarded *J. taoshuyuanensis* as a junior synonym of *J. sinkianensis*. 51 Abundant tetrapod fossils have been collected from the Naobaogou Formation of Nei Mongol, 52 and they are referred to diverse clades such as Chroniosuchia, Captorhinidae, Pareiasauria, 53 Dicynodontia, and Therocephalia (Li & Cheng 1997; Liu 2021; Liu 2023; Liu & Abdala 2020; Liu & Bever 2018; Liu & Chen 2021; Zhu 1989). This assemblage is dominated by the 54 55 dicynodonts including Daqinshanodon limbus and Turfanodon jiufengensis. Turfanodon is the 56 first described dicynodont genus shared by Nei Mongol and Xinjiang and distributed across both 57 tropical and temperate zones (Liu, 2021). As mentioned but not described in Liu (2019), other 58 than Turfanodon, Jimusaria was also produced from the Naobaogou Formation. Here we describe two specimens and <u>propose</u> a new species of *Jimusaria*. Eliminado: will 59 Eliminado: establish 68

69

Materials & Methods

70 incomplete right scapula articulated with an incomplete bone (? coracoid); the skull basal length Eliminado:), 71 is 223mm (Figs. 1 and 2). IVPP V31929, an incomplete skull with complete mandible; the skull Eliminado: 72 basal length is 143mm (Figs. 3, 4A, 4E and 5). 73 Phylogenetic analysis 74 The matrix is based on the recent works of Angielczyk, et al. (2021). Kammerer and Ordoñez Eliminado: (Eliminado: ; (2021) and Liu (2022). The final data set consists 199 characters (23 continuous and 176 75 Eliminado: ; 76 discrete-states) and 120 species (OTUs). Continuous characters were treated as additive, and 77 eight discrete-state characters were treated as ordered (characters 56, 81, 84, 102, 163, 173, 189 78 and 199). The data were analyzed using parsimony in TNT v1.6 (Goloboff and Morales 2023) 79 using New Technology search parameters, starting at level 65 and forced to find the shortest tree 80 at least 50 times checking every five hits. Then using the traditional search method analysis trees produced from New Technology search. Symmetric resampling values were calculated based on 81 10000 replicates. 82 Nomenclatural acts. The electronic version of this article in Portable Document Format (PDF) 83 will represent a published work according to the International Commission on Zoological 84 85 Nomenclature (ICZN), and hence the new names contained in the electronic version are

IVPP V26034, a nearly complete skull with mandible, six cervical vertebrae and an

Eliminado: 6

Eliminado: r

Comentado [LG1]: I think that you should mention that the matrix also includes several non-dicynodont synapsids and include the complete phylogenetic tree obtained in the supplementary information.

Comentado [LG2]: I do not understand this sentence, something appears to be wrong. Please check.

effectively published under that Code from the electronic edition alone. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:zoobank.org:act:87229D2E-90B1-4020-A7F9-C60F5785B55B. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central SCIE and CLOCKSS.

100

101

108

109

110

111

93

94

95

96

97

98

99

Systematic palaeontology

102 Anomodontia Owen, 1860

103 Dicynodontia Owen, 1860

104 Dicynodontoidea Olson, 1944

105 Genus Jimusaria Sun, 1963

Type species. Jimusaria sinkianensis (Yuan and Young, 1934)

107 Revised diagnosis. A medium-sized dicynodontoid with narrow intertemporal bar and squamosal

zygomatic and quadrate rami forming an acute angle. It is also differentiated from other

dicynodontoids by squamosal separated from supraoccipital by tabular and contacting opisthotic;

sharp and thin lateral dentary shelf expanding anteriorly into a thick swelling; distinct medium-

sized caniniform process; nasals fused as single element; rod-like medial bar formed by footplate

Con formato: Español (Argentina)

Código de campo cambiado

Con formato: Español (Argentina)

Eliminado:,

Con formato: Color de fuente: Automático

Eliminado: of squamosal

of epipterygoid, connecting to the parabasisphenoid and periotic medially. 114 115 116 Jimusaria monanensis sp. nov. 117 Etymology. 'Monan,' means "south of the Gobi Desert of Mongolia". 118 Holotype. IVPP V26034, a nearly complete skull with mandible, 6 cervical vertebrae, an 119 incomplete right scapula articulated with an incomplete bone (? coracoid) (Figs. 1 and 2). 120 Type locality and horizon. Tumed Right Banner, Nei Mongol, China; Member I, Naobaogou 121 Formation. 122 Referred material. IVPP V31929 Shiguai, Baotou, Nei Mongol, China. Member I, Naobaogou 123 Formation, an incomplete skull with complete mandible (Figs. 3, 4A, 4E and 5). 124 Diagnosis. Differentiated from type species by distinct caniniform buttress lacking posteroventral furrow, naso-frontal suture forming an anterior directed sharp angle, and 125 126 converging ventral ridges on posterior portion of anterior pterygoid rami. 127 Description 128 Skull IVPP V26034 and V31929 are different in size. IVPP V26034 may represent an adult. Its skull 129 130 is slightly crushed and both postorbital bars are broken; while the left ramus of the mandible is 131 broken. In IVPP V31929, the incomplete skull has a weathered roof, and the right zygomatic arc and left squamosal are missing (Figs. 3, 4A, 4E and 5). The following description is based on 132

Comentado [LG3]: In the tittle, this feature is mentioned as characteristic of J. monanensis whereas here it is said to be diagnostic of the genus. This appears to be incongruent. Shouldn't this be a diagnostic feature of the new species? Otherwise, the tittle should change.

Eliminado: r

134 both specimens if not specified. 135 The short snout has a smoothly curved dorsal surface, and its anterior surface formed by the 136 premaxilla is low and relatively flat. Its ventral margin has a shallow middle notch (Fig. 3B). The Eliminado: invagination 137 snout region around the external nares is well-sculptured in IVPP V26034, but is only slight 138 rugose in IVPP V31929 (Figs. 1A, 2A, 3B and 5). 139 The premaxilla forms most of the secondary palate. On the palatal surface, there are a pair of Eliminado: single Eliminado: part 140 parallel anterior ridges and a posterior ridge. The anterior ridges extend to the anterior 141 premaxillary margin. The narrow posterior ridge extends anteriorly to the level of the tusk, and 142 posteriorly to the vomer, which has nearly the same width (Figs. 1B and 3A). Eliminado: with 143 The septomaxilla lies within the anterodorsal concavity of the maxilla and forms the posterior 144 margin of the naris. It contacts the premaxilla anteriorly and the nasal dorsally (Figs. 2A, 5A and 145 5B). In IVPP V31929, a septomaxillary foramen lies on the right side of the septomaxilla-146 maxilla junction (Fig. 5A). The postnarial region does not bear an excavation. 147 In lateral view, the maxilla contacts the septomaxilla and the premaxilla anteriorly, the nasal 148 and the lacrimal dorsally, the jugal posterodorsally, and the squamosal posteriorly (Figs. 2A, 5A 149 and B). It forms a regular-sized caniniform process as in most Permian dicynodonts. The Eliminado: normal 150 caniniform process expands laterally as a distinct buttress, which bears a flat posterior surface 151 without a lateral furrow as in J. sinkianensis (Kammerer et al. 2011). The anteroventral edge of 152 the caniniform process lies at the level of posterior margin of the naris. The round tusk is curved

The nasals are well-fused without a median suture, same as in J. sinkianensis (Yuan & Young 1934) (Figs. 1A and 4A). The nasal boss is developed as a median swelling, forming the posterodorsal margin of the naris. The nasal contacts the prefrontal posterolaterally and the frontal posteriorly, the naso-frontal suture has two straight segments which form a sharp angle (Figs. 1A, 4A and 4C). The round orbit faces more laterally than anteriorly (Fig. 3B). The orbit is formed by the flat prefrontal anterodorsally, the lacrimal anteriorly, the jugal ventrally, the postorbital posteriorly, the frontal dorsally, and the postfrontal posterodorsally (Figs. 1A, 2A and 5A). The lacrimal foramen lies close to the suture with the prefrontal. The jugal extends posteriorly behind the postorbital bar and contributes to the zygomatic arch, but it has a little contribution to the postorbital bar (Figs. 1B and 3A). The frontals have distinct anteromedial processes (Figs. 1A and 4A). The left postfrontal can be identified in IVPP V31929, its surface is flat, without the groove as in IVPP RV341407 (Figs. 4A and 4C). The oval preparietal is flush with the skull roof, and forms the anterior margin of pineal foramen (Figs. 1A, 4A). The Jeft postorbital bar of IVPP V31929 is the only complete one. Jt is almost exclusively

formed by the postorbital (Figs. 2A, 5A, B). The ventral portion of the postorbital bar is

extremely anteroposteriorly expanded and mediolaterally flattened. The postorbital ascends

posteriorly, and the base is directed anteroventrally while the tip is directed posteroventrally.

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

Eliminado: Within all postorbital bars, t

Eliminado: only complete one is the

Eliminado: The postorbital bar

dorsally and medially to join the skull roof, then extends posteriorly and forms the entire intertemporal bar with the parietal. The slender parietal also contributes to the narrow intertemporal bar, and it has a narrow dorsal exposure within the midline groove. The poor preservation prevents the judge on the presence of the sagittal crest (Fig. 1A). The postparietal contributes to the intertemporal bar but is covered by the postorbital dorsally.

The right squamosal of IVPP V26034 is relatively complete unlike the others (Fig. 2A). The squamosal has a long zygomatic ramus, which has a flattened posterior portion, a long sutured area with the jugal, and bears a pointed anterior tip inserting the maxilla below the orbit. The lateral fossa formed by the zygomatic ramus and quadrate ramus of the squamosal can be observed in posterior view. The quadrate ramus of the squamosal descends ventrally with lateral expansion. The dorsal portion of the quadrate ramus is curved posteriorly. The quadrate ramus receives the fused quadratojugal and quadrate on its anteroventral surface (Figs. 2A, 5A). The quadrate foramen, between the quadrate and quadratojugal, faces anteromedially. The quadrate, articulating to the articular of the mandible, has a typical W-shape facet.

The narrow vomer forms the septum and posterior margin of choana (Figs. 1B and 3A). The interpterygoid vacuity is formed by the vomer and the pterygoid. Its posterior margin is flush with the median pterygoid plate. The vomer raises dorsally above the choana as a vertical sheet which laterally clasps the parasphenoid (Figs. 5A and 5B).

The palatine widens anteriorly to form a rugose palatine pad, which contacts the premaxilla

Eliminado: Except the postorbital, t

Eliminado: All the squamosals are incomplete, but t

Eliminado: one

and the maxilla. Posteriorly, the palatine forms the lateral wall of the choana with the pterygoid. Laterally, the labial fossa is surrounded by the jugal laterally, the palatine medially, and the maxilla anteroventrally. The ectopterygoid also contributes to the labial fossa margin. The ectopterygoid contacts the maxilla anteriorly and the pterygoid posteriorly, extending posteriorly without exceeding the posterior margin of palatine pad in ventral view (Fig. 3A).

The pterygoid shows the typical X-shape of dicynodonts (Figs. 1B and 3A). The anterior ramus of the pterygoid touches the maxilla anteriorly, and the anterior pterygoid ridge extends on most portion of that; the posterior portion of that ridge converges posterior with the interpterygoid vacuity, differing from *J. sinkianensis* (Yuan & Young 1934) (Fig. 6). The median pterygoid plate has a distinct and thin crista oesophagea, which extends anteriorly to the posterior margin of interpterygoid vacuity and bifurcates into two low rami posteriorly.

The parabasisphenoid bears paired internal carotid canals, whose ventral openings locate near the suture with the pterygoid (Fig. 3A). The parabasisphenoid contributes to the anterodorsal margin of the basal tuber as a ridge in a very steep angle. The posterior portion of the basal tuber is formed by the basioccipital (Figs. 1B, 3A and 4E). The basal tuber is elongated anteroposterior and laterally directed with relatively narrow edges. The intertuberal ridge connects the paired basal tubera (Figs. 1B and 3A). The parabasisphenoid is well exposed in lateral view in IVPP V31929 (Figs. 5A and 5B). It contacts the periotic posteriorly, and extends anterodorsally. Its anterior portion supports the presphenoid dorsally, they are fused as a plate here. The

Eliminado: within the

Eliminado:

Comentado [LG4]: Do you mean that the anterior pterigoid ridge extends over most of the maxilla? Please check and rephrase.

Eliminado: its

Eliminado: to

Comentado [LG5]: The parabasisphenoid and presphenoid? Please clarify.

225	orbitosphenoid is partly preserved, it separates into two wings which contact frontal dorsally.		
226	The incomplete left stapes is preserved between the quadrate and the basal tuber in IVPP		
227	V31929 (Fig. 3A). The dorsal process is present, It has an "extra facet", similar to Kingoria (Cox		Eliminado: ,
			Eliminado: it
228	1959) and Daptocephalus (Ewer 1961).		Eliminado: also Eliminado: "extra facet" like
229	The epipterygoids are not so well preserved, a dorsal end is observed on the right side of IVPP		
230	V26034 (Fig. 2A) and a left footplate rests on the quadrate ramus in IVPP V31929. Posteriorly,		
231	the footplate extends medially forming a rod-like medial bar, contacting the parabasisphenoid		Eliminado: the
232	and the periotic suture (Figs. 3A and 7A). Examining the holotype of J. sinkianensis, the		
233	epipterygoid also contacts the braincase <u>laterally at the</u> parabasisphenoid-periotic suture (Fig.		Eliminado: lateral
 234	7B). This character is not reported in any other dicynodonts.		Eliminado: in
i			
235	In IVPP V31929, the periotic is composed of the prootic and the <u>opisthotic</u> (Figs. 4E and 5A),	<	Eliminado:
200			Eliminado: ophithsotic
236	while the occipital elements are separated. In the holotype, it is unknown if the occipital	<	Eliminado: still Eliminado: unsure
 237	elements are fused to the periotic due to the poor preservation (Fig. 2B). In IVPP V26034, the		Emiliado. unsure
238	rod-like pila antotica rises anterodorsally from the periotic and forms a deep V-shaped notch for		
239	the trigeminal nerve (Fig. 2A); the notch for the vena capitis dorsalis is partly preserved on the		
240	periotic anterior edge. Laterally, the supraoccipital separates the periotic from the parietal (Fig.		
241	2A).		

No bone suture can be identified on the occipital plate of the holotype, but some sutures are

traceable on IVPP V31929 (Fig. 4E). The postparietal is exposed on the occipital plate. It is

242

243

supported by the supraoccipital ventrally, and contacts the tabular laterally. The supraoccipital is a large element forming the dorsal half margin of the foramen magnum. The tabular separates the supraoccipital from the squamosal, it extends ventrolaterally to the margin of the post-temporal fenestra, contacting the periotic ventromedially. The post-temporal fenestra is almost completely formed by the periotic medially and the squamosal laterally. The paired exoccipitals meet on the midline and forms the ventral half of the foramen magnum, they join the basioccipital to form the tri-radiate occipital condyle. The facet for the proatlas is developed on the dorsal margin of the exoccipital, the jugular foramen lies near the occipital condyle in exoccipital.

Mandible

The mandible is <u>articulated</u> with the skull, and there is one relatively complete ramus in each specimen (Figs. 2A, 5B and 5C). The dentary symphysis forms an upturned beak, with <u>a</u> smooth anterior surface (Figs. 2A, 3B and 5C). The anterior surface has <u>a</u> clear border with the lateral surface. The dorsal surface of <u>the</u> dentary symphysis comprises a medial groove and two lateral tables, on which the medial edge is higher than the lateral <u>one</u>. The posterior dentary sulcus is narrow. Laterally, a distinct, thin lateral dentary shelf locates on the dorsal edge of mandibular fenestra. It extends for almost the entire length of that the fenestra and its anterodorsal portion is swelling (Fig. 5C). The dentary posteroventral process extends on the lateral surface of the angular, ventral to the mandibular fenestra. The angular joins the symphysis with its anterior tip.

Eliminado: articulating

Comentado [LG6]: plates?

Eliminado: edge

Eliminado: , i

Eliminado: to

It also contributes to the ventral margin of the mandibular fenestra (Figs. 1B, 2A, 3A and 5C). The reflected lamina is small, more elongated than rounded, without <u>ornamentation</u> on the surface; its posterior margin is widely separated from the articular. A ridge runs dorsoposteriorly from the base of the reflected lamina to the surangular (Figs. 2A and 5C). The surangular lies dorsal to the angular and contacts the dentary anteriorly (Figs. 2A and 5C). The articular provides an <u>articular facet</u> with the quadrate, which allows the parasagittal movement.

The splenial forms the posteroventral portion of the symphysis. It can be observed in medial or ventral view. The prearticular extends anteriorly from the articular, forming the ventral portion of the mandible ramus on the medial surface, it contacts the surangular dorsally, the dentary anterodorsally, and splenial anteriorly (Figs. 1B and 3A).

289 Postcranial bones

278

279

280

281

282

283

284

285

286

287

288

290

291

292

293

294

295

296

The holotype preserved seven articulated cervical vertebrae, beginning with the atlas, an incomplete right scapula, and possibly part of the coracoid (Fig. 2C). The exact number of the cervicals in *Jimusaria monanensis* cannot be determined with certainty. However, given that the cervical number is no more than seven in anomodonts (Fröbisch & Reisz 2011; Liu 2021), the preserved vertebrae in the holotype of *Jimusaria monanensis* are considered to represent all cervicals.

The atlas consists of two separate neural arches, the transverse process has a high dorsoventral

Eliminado: ornamented

Eliminado: articulate

Comentado [LG7]: Some of the postcranial structures described are difficult to recognize in the photograph. It would be much appreciated if a line drawing were included and structures labeled.

Eliminado: 7

Eliminado: articulating

Eliminado: from

Eliminado: possible

Eliminado: 7

Eliminado: these

Eliminado: include

Eliminado: , although the exact number of the cervicals is unsure.

expansion. The axis has an anteroposteriorly expanding neural spine, the articular facet of its postzygapophysis faces more laterally than ventrally. The odontoid partly exposes in dorsal view, it fuses with the axis centrum. The 3rd vertebra has a nearly vertical neural spine, which narrows in anteroposterior width dorsally. Its postzygapophysis has a more or less horizontal articular facet. In the 5-6th vertebrae, the neural spines expand in width and incline slightly posteriorly. All centra are amphicoelous.

The bowed scapula is incomplete, with broken anterior and dorsal margins. Posteriorly, a rugose portion can be observed on base of scapula, which represents the origination of the scapular head of M. triceps.

Discussion

In previous study, IVPP V26034 was proposed to be closely related to *Jimusaria sinkianensis* (Liu 2019). IVPP V26034 and V31929 can be referred to *Jimusaria* by the distinct medium-sized caniniform process, the sharp and thin lateral dentary shelf expanding anteriorly into a thick swelling, and <u>fused</u> nasals, <u>However</u>, these specimens, show the following features which differentiate, them from *J. sinkianensis*: anteriorly directed naso-frontal suture (Figs. 1A, 4A and 4B), caniniform process without posterolateral furrow, and keel of anterior rami of pterygoid converging posteriorly (Figs. 3A and 6). Hence, based on these diagnostic characters, a new species, *J. monanensis*, is proposed to include them.

Jimusaria taoshuyuanensis was considered as a junior synonym of J. sinkianensis by

Eliminado: fusing together

Eliminado: They

Eliminado: d

Eliminado: the

Eliminado: the

Eliminado: converge

Eliminado: on posterior portion

Eliminado: based on these diagnostic characters

Eliminado:, so

Eliminado: established for

338	Kammerer et al. (2011). The referred specimens (IVPP V3240) bear the diagnostic features of <i>J</i> .	
339	sinkianensis, but are clearly different from the new species proposed here, supporting their	
340	conclusion. All specimens have a distinct caniniform process with a posterior furrow (Fig. 6),	
341	V3240.1 and V3240.2 expose a relative straight naso-frontal suture (Figs. 4C and 4D), V3240.2	
342	and V3240.3 show paired, parallel ventral ridges on the posterior portion of the anterior	Eliminado: a
343	pterygoid rami (Fig. 6).	Eliminado: of
344	The holotype of Jimusaria sinkianensis shows that the tabular contacts the periotic, and	Eliminado: In t
345	separates the squamosal from the supraoccipital; the footplate of the epiptergoid elongates	
346	medially and contacts both the parabasisphenoid and the periotic as in <i>J. monanensis</i> (Figs. 4F,	
347	7B), so those characters are autapomorphies of <i>Jimusaria</i> . In <i>J. sinkianensis</i> , the parietal is	
348	narrowly exposed within the shallow groove of the intertemporal bar, and whether the	
349	postparietal contributes to the intertemporal bar is unknown in holotype (Fig. 4C), and the	Eliminado: unsure
350	diagnosis of this species should be revised from Kammerer et al. (2011).	
351		
352	Phylogenetic analysis	
353	The phylogenetic position of <i>Jimusaria</i> is highly unstable within Dicynodontoidea in previous	
354	studies. It was recovered outside the clade of Lystrosauridae plus Kannemeyeriiforme	Eliminado: to
355	(Angielczyk et al. 2017; Angielczyk et al. 2021; Cox & Angielczyk 2015; Kammerer et al. 2011;	
356	Kammerer et al. 2013; Kammerer & Smith 2017), as the sister group of Gordonia, and forming a	Eliminado:
		Eliminado:

364	clade with Sintocephalus plus Euptychognathus (Angielczyk & Kammerer 2017; Kammerer
365	2018), or being part of the monophyletic group (Jimusaria + Gordonia) as the sister group of
] 366	Kannemeyeriiformes (Kammerer 2019a; Kammerer 2019b; Kammerer et al. 2019; Liu 2021). It
367	also was recovered closely related to Dicynodon than Lystrosaurus (Olivier et al. 2019). Recent
368	analyses recovered it in a relatively basal position within Dicynodontoidea (Kammerer & Eliminado: for
369	Ordoñez 2021; Liu 2022).
370	Jimusaria monanensis was scored based on IVPP V26034 and V31929 for the recent character Eliminado: coded
371	list (Angielczyk et al. 2021; Kammerer & Ordoñez 2021; Liu 2022), some scorings of J. Eliminado: codings
372	sinkianensis were revised (Supplemental Data 1). Finally, one most parsimonious tree of length
373	1273.225 was recovered (Fig. 8).
374	The topology is basically the same as in Liu (2022) and Kammerer & Ordoñez (2021), but Eliminado: with
375	different with that obtained by Angielczyk et al. (2021) (Fig. 8). Kunpania was recovered as one
376	of the basal members of Bidentalia. Jimusaria was recovered at the same position that in Liu Eliminado: with
377	(2022) and Kammerer & Ordoñez (2021), there is no monophyletic <i>Jimusaria</i> + <i>Gordonia</i> .
378	
379	The epipterygoid morphology of <i>Jimusaria</i>
380	The posterior portion of footplate send the rod-like medial bar to the parabasisphenoid and Eliminado:
381	periotic medially in IVPP V31919 (Fig. 7A). Ventrally, this rod seems like a connection between
382	the quadrate ramus of the pterygoid and the lateral braincase wall in the pterygo-paroccipital

390 foramen (Fig. 3A). 391 The contact between the footplate of the epipterygoid and the parabasisphenoid is a common Eliminado: contacts 392 character in dicynodonts, but that suture connection occurs between the anterior ramus of the 393 footplate and the basipterygoid process, as observed in basal dicynodonts, such as *Eodicynodon*, 394 Diictodon, and Pristerodon (Barry 1968; Barry 1974; Sullivan & Reisz 2005), and bidentalians 395 (Cluver 1971; Keyser 1973). This type of connection is quite different from that of *Jimusaria*. 396 A contact between the epipterygoid and the prootic is a relatively "derived" feature in 397 therapsids. Some therocephalians possess a dumb-bell-shaped epipterygoid, and that dorsal expanding portion of the ascend ramus of the epiptergoid contacts the prootic (Barry 1965; 398 399 Durand 1991; Huttenlocker et al. 2011; Liu & Abdala 2022). Some therocephalians and some 400 cynodonts have plate-like epipterygoid which sutures with the prootic posteriorly and forms part Eliminado: ian of the lateral wall of the braincase (Barry 1965; Kemp 1972; Olson 1944). Some dinocephalians 401 402 have an expanding epipterygoid which meets the periotic posteriorly, too (Olson 1944). However, 403 none of those junction are rod-like or originate from the footplate of epipterygoid (Barry 1965; Eliminado: originations 404 Olson 1944). 405 Some therocephalians show a similar structure in a comparable region as in *Jimusaria*, but the Eliminado: portion 406 sheet-like structure just anterior to the post-temporal fenestra is formed by the otic process of the 407 squamosal, the anteroventral process of the squamosal, or both. Although the epipterygoid also 408 sends a ramus to that process (Durand 1991; Kemp 1972; Liu & Abdala 2019; van den Heever

1994). van den Heever (1994) deduced the function of the sheet-like process as protecting the neurovascular elements which pass through the post-temporal fenestra.

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

The location and shape of the rod-like medial bar of the epipterygoid in Jimusaria, are quite different, and quite unlikely had the same function. One possible function of the rod-like medial bar of the epipterygoid might be an additional auditory conduction medium, as some authors presumed that fossorial dicynodonts used the skull roof sense the quake from the ground when they lived in underground burrows (Cox 1972; Laaß 2015). Under this situation the sound conducts through the skull roof to the inner ear, and the slender epipterygoid with the medial connection to the periotic could act an efficient transmit route. However, the shape of nasofrontal suture and the horizon orientation of stapes do not support a fossorial habit for Jimusaria (Kammerer 2021; Laaß 2015). Another possible function of the rod-like medial bar of the epipterygoid is increasing the stability of the palatal complex. In dicynodonts, the ventrolateral ridge of the parabasisphenoid is presumed to provide the attachment for M. protractor pterygoidei, which connects the parabasisphenoid and the quadrate ramus of the pterygoid, and keeps the palatal complex in proper position (Surkov & Benton 2004). In Jimusaria, the ventrolateral ridges of the parabasisphenoid are present, indicating M. protractor pterygoidei is developed, suggesting the demand of stabilizing the palatal complex in proper position. The epipterygoid in tetrapods generally has the function of stabilizing the palatal complex and connecting it to the skull roof (Romer 1956). It could be hypothesized that the rod-like medial

Eliminado: For t

Eliminado:, its location and shape

Eliminado: it is Eliminado: with

Eliminado: , it's resemble to presume

437	bar can synergize with M. protractor pterygoidei to enhance the stability of palatal complex in		
438	<u>Jimusaria</u> .		
 439	The epipterygoid ossified from palatoquadrate cartilage, representing an element of		
440	splanchnocranium, in early tetrapods it connects to the quadrate frequently (Barry 1965). In		
441	dicynodonts, the unossified palatoquadrate cartilage should be present dorsal to the pterygoid,		
1 442	from the plate of the pterygoid to the quadrate ramus of the pterygoid; as cartilage still links the		
443	epipterygoid and the quadrate in some living lizards (Jollie 1960). This hypothesis can explain		
444	the variable position of the footplate of the epipterygoid in dicynodonts (Barry 1974; Ewer 1961;		
445	Maisch 2002; Surkov & Benton 2004). Therefore, there are two possible scenarios for the		Eliminado: of
446	osteogenesis <u>of</u> the rod-like medial connection of the epipterygoid to the lateral wall of braincase:		Eliminado: for
447	(1) the palatoquadrate has a unique medial projection and that portion ossify as part of the	<	Eliminado: have
448	epipterygoid in <i>Jimusaria</i> ; or (2) <u>a</u> cartilaginous connection <u>persists</u> between the quadrate ramus		Eliminado: presences
449	of the pterygoid and the lateral wall of braincase in most, if not all dicynodonts, but ossification		
450	occurred in <i>Jimusaria</i> . The second scenario seems more <u>advantageous</u> considering the <u>inferred</u>		Eliminado: possible
451	function of the epipterygoid. The cartilaginous connection would provide a weaker but similar		Eliminado: can
1 452	function.		
453			
454	The ontogenetic variation of <i>Jimusaria</i>		
455	IVPP V26034 differs from V31929 in size, and they are inferred to represent different		Eliminado: should

464	ontogenetic stages. The smaller specimen (IVPP V31929) has a smoother snout region with only	
465	some pits and <u>rugosities</u> (Fig. 3B), while the larger specimen (IVPP V26034) has a distinctly	Eliminado: rugosity
466	rough snout (Figs. 1A and 2A). A similar pattern also occurrs in Jimusaria sinkianensis (Figs.	Eliminado: Similar
467	4B-4D). The changing from pits to sculpture might indicate that the keratinous beak became	Eliminado: occurred
468	heavier, as appeared in <i>Turfanodon bogdaensis</i> (Liu 2021).	Eliminado: during the growth
469	Comparing the two specimens (IVPP V26034 and V31929), the interorbital region becomes	
470	relatively wider, and the intertemporal bar becomes narrower (although it might <u>be</u> cause <u>ed</u> by	
471	deformation); the pterygoid medial plate is relatively longer while the interpterygoid vacuity is	Eliminado: pter
l 472	relatively smaller. The smaller specimen (IVPP V31929) already has a distinct caniniform	
473	buttress, indicating that feature developed at a relatively young age in Jimusaria monanensis.	Eliminado: in
474	In J. sinkianensis, the three small specimens (IVPP V3240) show distinct caniniform	Eliminado: of
475	buttresses and the indistinct posteroventral furrow continues dorsoposteriorly to the depressions	
 476	in the maxilla; the larger specimen (IVPP RV341407) possesses fatter caniniform processes with	
477	distinct posteroventral furrows and stronger depressions (Fig. 6). The tusks are directed vertically	
478	in the larger specimen rather than anteroventrally as in the small specimens. So, the growth	
479	pattern of the caniniform process is different between these two species.	Eliminado: in
 480		
481	Paleobiogeographic and biostratigraphic implications	

The tetrapod assemblage of the Naobaogou Formation is the most diversity tetrapod

482

491	assemblage of Lopingian in China. The previous report of Turfanodon jiufengensis imply the		Eliminado: ,
492	Naobaogou Formation shares at least one common taxon with the Guodikeng Formation (Liu		
493	2021). Several dicynodonts <u>have</u> been reported from the Guodikeng Formation of Xinjiang,		Eliminado: has
 494	including Jimusaria sinkianensis, T. bogdaensis, Diictodon feliceps, and some Lystrosaurus		
495	species (Li et al. 2008). The finding of <i>J. monanensis</i> enhances the connection between the		
496	faunas of Nei Mongol and Xinjiang. Same as Turfanodon, Jimusaria is the second reported		Eliminado: becomes
497	dicynodont genus <u>distributed</u> across temperate and tropical zones.		Eliminado: which distribution
 498	Recent stratigraphic work placed the Permo-Triassic boundary at the base of Guodikeng		Eliminado: the
499	Formation in Xinjiang (Yang et al. 2021). Based on the field observations, the horizon of the		Eliminado: notes
500	holotype of <i>J. sinkianensis</i> is the upper portion of the Guodikeng Formation, early Triassic in age		
501	(Angielczyk et al. 2022) while other specimens of this species also could be Triassic in age.		
502	Meanwhile, two specimens of J. monanensis were collected from Member I of the Naobaogou		
503	Formation, which possibly correlates with the Wuchiapingian (Shen et al. 2022; Shen et al.		
504	2021). So, <i>Jimusaria</i> is a rare tetrapod record which survived the end-Permian mass extinction.		Eliminado: in
505			
506	Conclusions		
507	A new dicynodont species, <i>Jimusaria monanensis</i> , was discovered in the Naobaogou		Eliminado: s Eliminado: from
508	Formation, This record further increases the diversity of the Lopingian Daqingshan fauna and the		Eliminado: , Eliminado: this
509	connection between the North China and Xinjiang during the Lopingian, Permian. The peculiar	_	Eliminado: in Lopingian Eliminado: in Eliminado: special
1			

524 rod-like medial bar of the epipterygoid in Jimusaria is inferred to have stabilized the palatal 525 complex, and a similar structure may appear in many other dicynodonts as part of palatoquadrate 526 cartilage remains. Jimusaria spanned from Wuchiapingian to Early Triassic in age. 527 528 Institutional abbreviations IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of 529 530 Sciences, Beijing, China. 531 Acknowledgements 532 We gratefully thank the field crew of Daqingshan (Jia Zhen-Yan, Chang Shao-Ning, Wang Yu, 533 Zhang Shao-Guang, and Liu Yu-Dong), especially Chang Shao-Ning and Liu Yu-Dong who 534 discovered that two specimens. Specimens were prepared by Wu Yong and Fu Hua-Lin and the 535 536 photos were taken by Gao Wei; Kenneth Angielczyk helped for interpreted the measure criterion 537 of continuous character. 538 References 539 540 Angielczyk KD, Hancox PJ, and Nabavizadeh A. 2017. A redescription of the Triassic 541 kannemeyeriiform dicynodont Sangusaurus (Therapsida, Anomodontia), with an analysis

Eliminado: perform stabilizing

Eliminado: function with the highest probability

544	of its feeding system. Journal of Vertebrate Paleontology 37:189-227.
545	10.1080/02724634.2017.1395885
546	Angielczyk KD, and Kammerer CF. 2017. The cranial morphology, phylogenetic position and
547	biogeography of the upper Permian dicynodont Compsodon helmoedi van Hoepen
548	(Therapsida, Anomodontia). Papers in Palaeontology 3:513-545. doi:10.1002/spp2.1087
549	Angielczyk KD, Liu J, Sidor CA, and Yang W. 2022. The stratigraphic and geographic
550	occurrences of Permo-Triassic tetrapods in the Bogda Mountains, NW China —
551	Implications of a new cyclostratigraphic framework and Bayesian age model. Journal of
552	African Earth Sciences 195. 10.1016/j.jafrearsci.2022.104655
553	Angielczyk KD, Liu J, and Yang W. 2021. A redescription of Kunpania scopulusa, a bidentalian
554	dicynodont (Therapsida, Anomodontia) from the ?Guadalupian of northwestern China.
555	Journal of Vertebrate Paleontology 41. 10.1080/02724634.2021.1922428
556	Barry TH. 1965. On the epipterygoid-alisphenoid transition in Therapsida. Annals of the South
557	African Museum 48:399-426.
558	Barry TH. 1968. The cranial morphology of the Permo-Triassic Anomodont Pristerodon
559	buffalonensis with special reference to the neural endocranium and visceral arch skeleton.
560	Annals of the South African Museum 50:131-161.
561	Barry TH. 1974. A new dicynodont ancestor from the upper Ecca (Lower Middle Permian) of
562	South Africa. Annals of the South African Museum 64:117-136.

563 Cluver MA. 1971. The cranial morphology of the dicynodont genus Lystrosaurus. Annals of the South African Museum 56:155-274. 564 Cox CB. 1959. On the anatomy of a new dicynodont genus with evidence of the position of the 565 566 tympanum. Proceedings of the Zoological Society of London 132:321-367. Cox CB. 1972. A new digging dicynodont from the Upper Permian of Tanzania. In: Joysey KA, 567 and Kemp TS, eds. Studies in vertebrate evolution. New York: Winchester Press, 173-189. 568 Cox CB, and Angielczyk KD. 2015. A new endothiodont dicynodont (Therapsida, Anomodontia) 569 570 from the Permian Ruhuhu Formation (Songea Group) of Tanzania and its feeding system. Journal of Vertebrate Paleontology 35:e935388. 10.1080/02724634.2014.935388 571 Durand JF. 1991. A revised description of the skull of Moschorhinus (Therapsida, Therocephala). 572 Annals of the South African Museum 99:381-413. 573 574 Ewer RF. 1961. The anatomy of the anomodont Daptocephalus leoniceps (Owen). Proceedings of the Zoological Society of London 136:375-402. 10.1111/j.1469-7998.1961.tb05881.x 575 Fröbisch J, and Reisz RR. 2011. The postcranial anatomy of Suminia getmanovi (Synapsida: 576 Anomodontia), the earliest known arboreal tetrapod. Zoological Journal of the Linnean 577 Society 162:661-698. 10.1111/j.1096-3642.2010.00685.x 578 Huttenlocker AK, Sidor CA, and Smith RMH. 2011. A new specimen of Promoschorhynchus 579 (Therapsida: Therocephalia: Akidnognathidae) from the Lower Triassic of South Africa 580 and its implications for theriodont survivorship across the Permo-Triassic boundary. 581

582	Journal of Vertebrate Paleontology 31:405-421. 10.1080/02724634.2011.546720
583	Jollie MT. 1960. The head skeleton of the Lizard. Acta Zoologica 41:1-64. 10.1111/j.1463-
584	6395.1960.tb00474.x
585	Kammerer CF. 2018. The first skeletal evidence of a dicynodont from the lower Elliot Formation
586	of South Africa. Palaeontologia Africana 52:102-128.
587	Kammerer CF. 2019a. A new dicynodont (Anomodontia: Emydopoidea) from the terminal
588	Permian of KwaZulu-Natal, South Africa. Palaeontologia Africana 53:179-191.
589	Kammerer CF. 2019b. Revision of the Tanzanian dicynodont <i>Dicynodon huenei</i> (Therapsida:
590	Anomodontia) from the Permian Usili Formation. <i>PeerJ</i> 7:e7420. 10.7717/peerj.7420
591	Kammerer CF. 2021. Elevated Cranial Sutural Complexity in Burrowing Dicynodonts. Frontiers
592	in Ecology and Evolution 9. 10.3389/fevo.2021.674151
593	Kammerer CF, Angielczyk KD, and Fröbisch J. 2011. A comprehensive taxonomic revision of
594	Dicynodon (Therapsida, Anomodontia) and its implications for dicynodont phylogeny,
595	biogeography, and biostratigraphy. Journal of Vertebrate Paleontology 31:1-158.
596	10.1080/02724634.2011.627074
597	Kammerer CF, Fröbisch J, and Angielczyk KD. 2013. On the validity and phylogenetic position
598	of Eubrachiosaurus browni, a kannemeyeriiform dicynodont (Anomodontia) from
599	Triassic North America. PLoS ONE 8:e64203. 10.1371/journal.pone.0064203
600	Kammerer CF, and Ordoñez MdlA. 2021. Dicynodonts (Therapsida: Anomodontia) of South

601 America. Journal of South American Earth Sciences 108. 10.1016/j.jsames.2021.103171 Kammerer CF, and Smith RM. 2017. An early geikiid dicynodont from the Tropidostoma 602 Assemblage Zone (late Permian) of South Africa. PeerJ 5:e2913. 10.7717/peerj.2913 603 Kammerer CF, Viglietti PA, Hancox PJ, Butler RJ, and Choiniere JN. 2019. A new 604 605 kannemeyeriiform dicynodont (Ufudocyclops mukanelai, gen. et sp. nov.) from Subzone 606 C of the Cynognathus Assemblage Zone, Triassic of South Africa, with implications for 607 biostratigraphic correlation with other African Triassic Faunas. Journal of Vertebrate Paleontology:e1596921. 10.1080/02724634.2019.1596921 608 Kemp TS. 1972. Whaitsiid Therocephalia and the origin of cynodonts. Philosophical 609 610 Transactions of the Royal Society of London Series B-Biological Sciences 264:1-54. Keyser AW. 1973. A re-evaluation of the genus Tropidostoma Seeley. Palaeontologia Africana 611 612 16:25-35. King GM. 1988. Anomodontia. Stuttgart: Gustav Fischer Verlag. 613 Laaß M. 2015. Bone-conduction hearing and seismic sensitivity of the Late Permian anomodont 614 615 Kawingasaurus fossilis. J Morphol 276:121-143. 10.1002/jmor.20325 Li J-L, and Cheng Z-W. 1997. A captorhinid from the Upper Permian of Nei Mongol, China. In: 616 Tong Y-S, Zhang Y-Y, Wu W-Y, Li J-L, and Shi L-Q, eds. Evidence for Evolution--Essays 617 in Hornor of Prof Chungchien Young on the Hundredth Anniversary of His Birth. Beijing: 618 619 China Ocean Press, 119-124.

639	Liu J, and Abdala F. 2022. The emblematic South African therocephalian <i>Euchambersia</i> in China:
640	a new link in the dispersal of late Permian vertebrates across Pangea. Biology Letters 18.
641	10.1098/rsbl.2022.0222
642	Liu J, and Bever Gabriel S. 2018. The tetrapod fauna of the upper Permian Naobaogou
643	Formation of China: a new species of Elginia (Pareiasauria). Papers in Palaeontology
644	4:197-209. 10.1002/spp2.1105
645	Liu J, and Chen J. 2021. The tetrapod fauna of the upper Permian Naobaogou Formation of
646	China: 7. Laosuchus hun sp. nov. (Chroniosuchia) and interrelationships of
647	chroniosuchians. Journal of Systematic Palaeontology 18:2043-2058.
648	10.1080/14772019.2021.1873435
649	Lucas SG. 1998. Toward a tetrapod biochronology of the Permian. Bulletin New Mexico Museum
650	of Natural History and Science 12:71-91.
651	Lucas SG. 2001. Chinese Fossil Vertebrates. New York: Columbia University Press.
652	Maisch MW. 2002. Observations on Karoo and Gondwana vertebrates. Part 4: The taxonomic
653	status of the Late Permian rhachiocephalid Platycyclops crassus Broom, 1948
654	(Therapsida: Dicynodontia from the South African Karoo. Neues Jahrbuch für Geologie
655	und Paläontologie, Monatshefte:362-372.
656	Olivier C, Battail B, Bourquin S, Rossignol C, Steyer JS, and Jalil N-E. 2019. New dicynodonts
657	(Therapsida, Anomodontia) from near the Permo-Triassic boundary of Laos: implications

658	for dicynodont survivorship across the Permo-Triassic mass extinction and the					
659	paleobiogeography of Southeast Asian blocks. Journal of Vertebrate					
660	Paleontology:e1584745. 10.1080/02724634.2019.1584745					
661	Olson EC. 1944. Origin of mammals based upon cranial morphology of the therapsid suborders					
662	Special papers (Geological Society of America) 55:1-136.					
663	Owen R. 1860. On the orders of fossil and recent Reptilia, and their distribution in time. Report					
664	of the Twenty-Ninth Meeting of the British Association for the Advancement of Science					
665	1859:153-166.					
666	Romer AS. 1956. Osteology of the Reptiles. Chicago: University of Chicago Press.					
667	Shen B, Shen S, Wu Q, Zhang S, Zhang B, Wang X, Hou Z, Yuan D, Zhang Y, Liu F, Liu J,					
668	Zhang H, Shi Y, Wang J, and Feng Z. 2022. Carboniferous and Permian integrative					
669	stratigraphy and timescale of North China Block. Science China Earth Sciences 65:983-					
670	1011. 10.1007/s11430-021-9909-9					
671	Shen BH, Shen SZ, Hou ZS, Wu Q, Zhang SC, Zhang B, Zhang YC, and Yuan DX. 2021.					
672	Lithostratigraphic subdivision and correlation of the Permian in China. Journal of					
673	Stratigraphy 45:319-339. 10.19839/j.cnki.dcxzz.2021.0027					
674	Sullivan C, and Reisz RR. 2005. Cranial anatomy and taxonomy of the Late Permian dicynodont					
675	Diictodon. Annals of Carnegie Museum 74:45-75.					
676	Sun A-L. 1973. Permo-Triassic dicynodonts from Turfan, Sinkiang. Mem Inst Vert Paleont					

677	Paleoanthrop, Acad Sin 10:53-68.
678	Surkov MV, and Benton MJ. 2004. The basicranium of dicynodons (Synapsida) and its use in
679	phylogenetic analysis. Palaeontology 47:619-638.
680	van den Heever JA. 1994. The cranial anatomy of the early Therocephalia (Amniota: Therapsida)
681	Annale Universiteit van Stellenbosch 1994:1-59.
682	Yang W, Wan M, Crowley JL, Wang J, Luo X, Tabor N, Angielczyk KD, Gastaldo R, Geissman J
683	Liu F, Roopnarine P, and Sidor CA. 2021. Paleoenvironmental and paleoclimatic
684	evolution and cyclo- and chrono-stratigraphy of upper Permian-Lower Triassic fluvial-
685	lacustrine deposits in Bogda Mountains, NW China — Implications for diachronous plant
686	evolution across the Permian-Triassic boundary. Earth-Science Reviews 222.
687	10.1016/j.earscirev.2021.103741
688	Yuan PL, and Young CC. 1934. On the discovery of a new Dicynodon in Sinkiang. Bulletin of the
689	Geological Survey of China 13:563-573.
690	Zhu Y-l. 1989. The discovery of dicynodonts in Daqingshan Montain, Nei Mongol (Inner
691	Mongolia). Vertebrata Palasiatica 27:9-27.

693 Fig. 1. Jimusaria monanensis sp. nov. from the Naobaogou Formation, holotype, IVPP V26034. (A) dorsal; (B) ventral views. Abbreviations: AN, angular; AR, articular; bt, basal tuber; BO, 694 695 basioccipital; co, crista oesophagea; D, dentary; F, frontal; ipv, interpterygoid vacuity; J, jugal; L, lacrimal; la, lacrimal fossa; M, maxilla; N, nasal; P, parietal; PBS, parabasisphenoid; PE, periotic; 696 697 PF, prefrontal; pif, pineal foramen; PL, palatine; PM, premaxilla; PO, postorbital; PP, preparietal; 698 PRE, prearticular; PT, pterygoid; ptf, post-temporal fenestra; Q, quadrate; SP, splenial; SQ, 699 squamosal; t, tusk; V, vomer. Scale bar represents 5 cm. 700 Fig. 2. Jimusaria monanensis sp. nov. from the Naobaogou Formation, holotype, IVPP V26034. 701 702 (A) right lateral; (B) posterior views; (C) photo of vertebrae and scapula. Abbreviations: AN, 703 angular; AR, articular; COR, coracoid; D, dentary; EPI, epipterygoid; F, frontal; fm, foramen 704 magnum; J, jugal; L, lacrimal; la, lacrimal foramen; M, maxilla; mf, mandibular fenestra; N, nasal; ntn, notch for the trigeminal nerve; oc, occipital condyle; P, parietal; PBS, 705 706 parabasisphenoid; PE, periotic; PF, prefrontal; PL, palatine; pla, pila antotica; PM, premaxilla; 707 PT, pterygoid; ptf, post-temporal fenestra; PO, postorbital; pop, paroccipital process; Q, quadrate; QJ, quadratojugal; SA, surangular; SC, scapula; SM, septomaxilla; SO, supraoccipital; SQ, 708 709 squamosal; t, tusk; V, vomer. Scale bars represent 5 cm. 710

711 Fig. 3. Jimusaria monanensis sp. nov. from the Naobaogou Formation, IVPP V31929. (A)

712 ventral; (B) anterior views. Abbreviations: AN, angular; AR, articular; BO, basioccipital; co, 713 crista oesophagea; D, dentary; EC, ectopterygoid; EPI, epipterygoid; J, jugal; ic, internal carotid 714 canal; ipv, interpterygoid vacuity; M, maxilla; PBS, parabasisphenoid; PE, periotic; PL, palatine; 715 PM, premaxilla; PT, pterygoid; pr, posterior ridge of premaxilla; PRE, prearticular; Q, quadrate; 716 ST, stapes; SP, splenial; SQ, squamosal; t, tusk; V, vomer. Scale bar represents 5 cm. 717 718 Fig. 4. Jimusaria monanensis sp. nov. from the Naobaogou Formation, (A) and (E) IVPP V31929. J. sinkianensis from the Guodikeng Formation, (B) V3240.1; (C) and (F) IVPP 719 720 RV341407; (D) V3240.2. (A)-(D) in dorsal views; (E) and (F) in occipital views. Abbreviations: 721 BO, basioccipital; EPI, epipterygoid; EO, exoccipital; F, frontal; jf, jugular foramen; N, nasal; P, 722 parietal; PE, periotic; PF, prefrontal; POF, postfrontal; pop, paroccipital process; PP, postparietal; 723 ptf, post-temporal fenestra; SO, supraoccipital; SQ, squamosal; TA, tabular. Scale bars represent 724 5 cm. 725 726 Fig. 5. Jimusaria monanensis sp. nov. from the Naobaogou Formation, IVPP V31929. (A) right 727 lateral; (B) left lateral views; (C) drawing of mandible in left lateral view. Abbreviations: AN, angular; AR, articular; D, dentary; EC, ectopterygoid; F, frontal; J, jugal; L, lacrimal; lds, lateral 728 dentary shelf; M, maxilla; mf, mandibular fenestra; N, nasal; OS, orbitosphenoid; PBS, 729 730 parabasisphenoid; PE, periotic; PF, prefrontal; pif, pineal foramen; PL, palatine; PM, premaxilla;

732	septomaxilla; smf, septomaxilla foramen; SQ, squamosal; t, tusk; V, vomer. B, C share same	
733	scale bar. All scale bars represent 5 cm.	
734		
735	Fig. 6. Photos of all specimens of <i>Jimusaria sinkianensis</i> (A) IVPP RV341407; (B) V3240.1; (C)	
736	V3240.2; (D) V3240.3 in ventral views; the arrows indicate the autapomorphies of <i>J. sinkianensis</i>	
737	which are the caniniform process with posterior furrow and the parallel ventral ridge on posterior	
738	portion of anterior pterygoid rami. (B)-(D) share same scale bar. Scale bars represent 5 cm.	
739		
740	Fig. 7. Photos of (A) Jimusaria monanensis (IVPP V31929) and (B) Jsinkianensis (RV341407)	
741	in anterolateral views; the arrow indicates the connection between the epipterygoid and the	
742	lateral braincase wall. Abbreviations: EPI, epipterygoid; PE, periotic; PBS, parabasisphenoid.	Comentado [LG8]: Please, al to this connection in figure 7A
743	Scale bars represent 2 cm.	

PRS, presphenoid; PT, pterygoid; Q, quadrate; QJ, quadratojugal; SA, surangular; SM,

Fig. 8. Phylogeny of Bidentalia. Jimusaria monanensis in bold. Labeled clades: C, Cryptodontia;

D, Dicynodontoidea. Numbers at nodes represent symmetric resampling values >45.

731

744

745

746

also add an arrow pointing 'A.

Comentado [LG9]: I recommend you label the node Bidentalia.