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ABSTRACT
Since the emergence of White-nose Syndrome, a fungal disease in bats, caused by
Pseudogymnoascus destructans, hibernating populations of little brown bats (Myotis
lucifugus) have declined by 70–90% within P. destructans positive hibernacula. To
reduce the impact of White-nose Syndrome to North American little brown bat
populations we evaluated if exposure to volatile organic compounds produced by
induced cells from Rhodococcus rhodochrous strain DAP96253 could improve the
overwinter survival of bats infected by P. destructans. Two simultaneous field treatment
trials were conducted at natural hibernacula located in Rockcastle and Breckinridge
counties, Kentucky, USA. A combined total of 120 little brown bats were randomly
divided into control groups (n = 60) which were not exposed to volatile organic
compounds and treatment groups (n= 60) which were exposed to volatile organic
compounds produced by non-growth, fermented cell paste composed ofR. rhodochrous
strainDAP96253 cells. Cox proportional hazardmodels revealed a significant decreased
survival at the Rockcastle field trial site but not the Breckinridge field site. At the
Breckinridge hibernacula, overwinter survival for both treatment and control groups
were 60%. At the Rockcastle hibernacula, Kaplan-Meier survival curves indicated
significantly increased overwinter survival of bats in the control group (43% survived)
compared to the treatment group (20% survived). Although complete inhibition of P.
destructans by volatile organic compounds produced by induced R. rhodochrous strain
DAP96253 cells was observed in vitro studies, our results suggest that these volatile
organic compounds do not inhibitP. destructans in situ andmay promoteP. destructans
growth.
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INTRODUCTION
Emerging fungal pathogens are inducing disease-driven species extinction events
worldwide, leading to biodiversity loss (Fisher, Gow & Gurr, 2016; Fisher et al., 2012; Smith,
Sax & Lafferty, 2006). One such fungal pathogen, Pseudogymnoascus destructans, was first
documented in Howes Cave near Albany New York in 2006 (Blehert et al., 2009). Due to
the visible white fungal growth on the muzzles, ears, and/or wing membranes on some
hibernating bat species, bats with active P. destructans infection are deemed to have the
disease, White-nose Syndrome (WNS) (Chaturvedi et al., 2010).

Since that initial detection, P. destructans has spread to 43 US states and 10 Canadian
provinces (US Fish and Wildlife Service, 2022a). As of Summer 2022, it 12 bat species are
recognized to have the potential to become ill from WNS (US Fish and Wildlife Service,
2022b),with a range of clinical and behavioral signs observed. The ‘‘white fuzz’’ on the wings
andmuzzle is considered the classical clinical sign (Gargas et al., 2009); however, additional
clinical signs of WNS affected bats may include dehydration and electrolyte imbalances
due to epidermal erosions (Cryan et al., 2010; Verant et al., 2014) and depleted fat reserves
due to shorter torpor duration (Reeder et al., 2012). Observed behavioral changes may
include foraging during daytime hours (Boyles, Dunbar & Whitaker, 2006) or changing
their roosting behaviors by hibernating in the colder portions of hibernacula near the front
entrances (Loeb & Winters, 2022) or clustering species may roost individually (Wilcox et
al., 2014).

In 2022, the US Fish and Wildlife Service (USFWS) proposed to reclassify the northern
long-eared bat (Myotis septentrionalis) from threatened to endangered status due to severe
declines and regional extirpation from hibernacula within three years of WNS detection
(Frick et al., 2015; Reynolds et al., 2016). The population of three additional hibernating
species, little brown bats (Myotis lucifugus), Indiana bats (M. sodalis), and tricolored bats
(Perimyotis subflavus), have been recognized to have suffered the most severe declines with
70–90%mortality observed at infected hibernacula (Frick et al., 2015; Langwig et al., 2017).
This high mortality has led to WNS being classified as an extreme threat to these three
species based upon NatureServe criteria (Cheng et al., 2021).

With such precipitous population declines, a number of in vitro studies have been
conducted to assess potential treatments. Many of these studies have yielded potentially
promising compounds including topical treatments such as cold-pressed, terpeneless
Valencia orange oil (Boire et al., 2016) and extracts of fungal metabolites (Rusman et
al., 2020), probiotics such as Pseudomonas fluorescens aimed to alter the skin microflora
to decrease disease susceptibility (Hoyt et al., 2015a), and exposure to volatile organic
compounds (VOCs) produced by bacteria such as Rhodococcus rhodochrous DAP 96253
(RRDAP) (Cornelison et al., 2014) or by pure chemical compounds such as mushroom
alcohol (1-octen-3-ol) (Padhi et al., 2018). Few of these potential treatments have
undergone in vivo studies or progressed to field treatment trials (Hoyt et al., 2019).

Due to the challenges of treating large populations of hibernating bats with topical
products, we selected to pursue VOC based treatments and conducted two small in vivo
laboratory trials with RRDAP VOCs. The first ex situ study exposed healthy, hibernating
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little brown bats in hibernation chambers to RRDAP VOCs for 72 h (Pierce et al., 2017).
Without any signs of toxicity or behavioral changes after 30 days post-exposure, a small
second ex situ trial was conducted with little brown bats clinically affected with WNS
(Pierce et al., 2017). The RRDAP exposure group was exposed for 24 h to VOCS. After 71
days, 60% of the RRDAPVOC exposure group survived whereas 0% survived in the control
group (Pierce et al., 2017). Based upon these ex situ studies, we hypothesized that exposure
to RRDAP VOCs would increase the overwinter survival of little brown bats in a field
setting (in situ). Therefore, the goal of this study was to determine if overwinter survival of
little brown bats could be increased by exposure RRDAP VOCs at two hibernacula within
the state of Kentucky.

MATERIALS & METHODS
Ethics statement
Capture, handling, and sample collection protocols for the field treatment trial were
conducted under an approved University of Missouri Institutional Animal Care and Use
Committee (IACUC) protocol (#8551). Due to the high energetic costs associated with
endothermic arousal from torpor (Currie, Noy & Geiser, 2015), constant disturbance would
result in the mortality of all bats within the trial; therefore, the IACUC approved visual
assessments of the bats during routine hibernation surveys. Authorized state biologists
employed by the Kentucky Department of Fish and Wildlife were permitted (KDFWR-W-
2014-01) for all described collection, treatment, and sampling procedures.

Field sites
State biologists assisted with the selection of two known little brown bat cave hibernacula
sites with one site located in Rockcastle county and one in Breckinridge county, Kentucky,
USA. The hibernacula in Rockcastle county is a limestone cave approximately 2 miles long.
In the winter months, the cave is used primarily by a large population Indian bats and
smaller populations of little brown bats and tricolored bats. This cave was confirmed
positive for P. destructans and bats were observed with clinical signs of White-nose
Syndrome (i.e., white fungal growth on nose) two years prior to the start of the study (US
Fish and Wildlife Service, 2022b). The hibernacula in Breckinridge county is a limestone
cave approximately 1 mile long and used by Indiana bats, little brown bats, tricolored bats,
and big brown bats(Eptesicus fuscus). This cave was confirmed positive for P. destructans
and bats were observed with clinical signs of White-nose Syndrome three years prior to the
start of the study (US Fish and Wildlife Service, 2022b). Both caves are surveyed annually,
and the dates selected for checking on the bats were selected to coincide the approximate
date of the previous year’s surveys. Therefore, we were unable to survey each site on the
exact same days post-treatment.

Placement of enclosures
We suspended Nylon mesh enclosures (116 cm× 76.2 cm× 40.64 cm; Apogee Reptarium,
Dallas, TX, USA) within a PVC frame constructed with 3.81 cm diameter PVC pipe and
covered with a 12-guage wire mesh (2.54 × 2.54 cm) to protect the nylon enclosure from
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potential predators. Enclosures were bolted to the ceiling of the two field sites within the
rooms where bats were found hibernating (Appendix S1). Enclosures were equipped with
650 mL reservoir reptile water bottles (Zoo Med Repti Rock Reservoir™, San Luis Obispo,
CA, USA) to allow bats to express normal behavior.

Collection and screening of bats for P. destructans
Hibernating bats were collected after approximately one month of hibernation. At each
field site, bats were collected by hand and placed into individual sterile cloth bags. After
collection, each bat had a uniquely numbered, ear sticker (Fastsigns International Inc,
Carrolton, TX, USA) placed on the pinna, and evaluated morphometrically for mass
(Acculab Pocket Pro 150-B; Acculab, Edgewood, NY) and forearm length.Photos of each
bat’s wings were taken with illumination/transillumination of wing membranes with
long-wavelength UV light (360–385 nm) to detect fungal erosion fluorescence indicative
of P. destruction infection following the methods previously described by the authors
(Amelon, Hooper & Womack, 2017). Bats were categorized as having high, medium, or
low infection based upon the estimated percentage of the patagia where fluorescence was
detected (>60%, 40–60%, <40%, respectively) to account for fungal load. Only those with
fluorescence indicative of active infection, fungal hyphae penetrating the epidermis into
the dermis, as previously described by Turner et al. (2014) were enrolled in the trial.

Treatment with R. rhodochrous DAP 96253
At the Breckinridge county hibernacula, 40 bats observed to have the characteristic
fluorescent orange-yellow color fluorescence of P. destructans infection on the patagium
were randomly assigned to the control group (n= 20, 19 males, one female) and the
treatment group (n= 20, 19 males, one female). At the Rockcastle county hibernacula,
80 bats observed to have the characteristic fluorescent orange-yellow color fluorescence
of P. destructans infection on the patagium were randomly assigned to the control group
(n= 40, 26 males, 14 female) and the treatment group (n= 40, 30 males, 10 female).

To prevent exposure of the cave environments to R. rhodochrous DAP 96253 (RRDAP)
volatile organic compounds (VOCs), at each hibernacula bats were exposed to RRDAP
VOCs while contained in nylon mesh enclosures placed within 142 liter coolers (Igloo
Products Corp, Katy, TX, USA). The non-growth cells of induced RRDAP (Cornelison et
al., 2014) were supplied as fermentation cell paste (35 g per cooler) in sealed plastic petri
dishes (150 mm × 15 mm; Thermo Fisher Scientific, Waltham, MA, USA). These sealed
petri dishes of cell paste were opened and placed on the floor of the treatment cooler
without contacting enclosures or bats. An identical opened petri dish was placed in the
control cooler without contacting enclosures or bats. Bats were approximately 40 cm from
the petri dishes as all bats were observed to be roosting at the top of the mesh containers
when placed into the coolers and when the mesh containers were removed. After 48 h of
continuous exposure, the bats were moved to the nylon enclosures housed within the PVC
frame as described in the ‘‘Placement of enclosures’’ section.

Hooper and Amelon (2023), PeerJ, DOI 10.7717/peerj.15782 4/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.15782#supp-1
http://dx.doi.org/10.7717/peerj.15782


Mortality tracking
To avoid arousing bats from torpor repeatedly leading to accelerated fat depletion and
human-induced death, caves were entered only once, on day 76 of the Breckinridge RRDAP
field treatment trial and day 98 of the Rockcastle RRDAP field treatment trial. Caves were
entered for routine winter hibernation surveys by the Kentucky Department Fish and
Wildlife state biologists. While surveying the rooms where the enclosures had been placed
on day 0 of the trials, any bat meeting the criteria for euthanasia (hanging individually
near the bottom of the cage and in poor body condition) was euthanized via isoflurane
overdose. Any deceased bats were removed from the enclosure (only if the surviving bats
could remain undisturbed). The identification number was recorded before placing the
deceased or euthanized bats into a 50 mL conical centrifuge tube containing 10% buffered
formalin (Thermo Fisher Scientific, Waltham, MA, USA).

On day 120 of the Breckinridge RRDAP field treatment trial and day 122 of the Rockcastle
RRDAP field treatment trial, the deceased bats were removed from the enclosure and the
identification number recorded before placing the bat into a 50 mL conical centrifuge tube
containing 10% buffered formalin (Thermo Fisher Scientific, Waltham, MA, USA). Alive
bats were examined, identification numbers recorded, and released into the respective
hibernacula.

Gross pathology of deceased bats
At the end of the field treatment trial, all deceased bats underwent gross necropsy to
determine the cause of death at the University of Missouri or by the Kentucky Wildlife
Veterinarian. We confirmed colonization of the wings by P. destructans using Periodic
acid-Schiff (PAS) stain (Meteyer et al., 2009), however histopathological analysis of the
organs was not pursued due to severe autolysis preventing meaningful histopathological
examination.

Statistical analysis
T-tests were conducted within Excel to ensure there were no significant differences between
mass and the estimated percentage of the wings emitting the characteristic orange-yellow
fluorescence color between control and treatment groups prior to the start of the trial
at each site. This was completed in an effort to reduce potential bias that could result
from differences in WNS disease severity. All other analyses were performed in R version
4.2.1 utilizing RStudio version 2022.7.0.548 (R Core Team, 2022; R Studio Team, 2022).
Normality was assed using the Shapiro Wilk Test and binary, categorical variables were
assessed for tetrachoric correlation using the R-package ‘psych’ (Revelle, 2022). The R-
package ‘survival’ (Therneau, 2022) was used to fit the Cox proportional hazard models
for each treatment site and to assess overall survival as well as to ensure all Cox model
assumptions were met. Interactions between all independent variables were assessed, and
non-significant interactions were removed from the models and the analysis rerun without
the interaction term to avoid incorrect conclusions (Beck & Bliwise, 2014; Engqvist, 2005).
The Cox model tables and survival curves were created using the R-package ‘survminer’
(Kassambara, Kosinski & Biececk, 2021) with multiple records (with consecutive start and
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Table 1 White-nose syndrome treatment trial enrolled, alive bats. The number of P. destructans little brown bats enrolled in the study and ran-
domly assigned to the control and treatment groups are shown under the Day 0 column. Hibernacula counts were conducted on day 76 for Breckin-
ridge hibernacula and day 98 for Rockcastle hibernacula with alive bats reported in the respective columns. The survival at the end of the trial is re-
ported for Breckinridge hibernacula on day 120 and day 122 for Rockcastle hibernacula.

Hibernacula Group Day 0 Day 76 Day 98 Day 120 Day 122

Control 20 19 – 12 –Breckinridge
Treatment 20 19 – 12 –
Control 40 – 34 – 17

Rockcastle
Treatment 40 – 35 – 8

end times) for each individual created with bat mortality expressed as a failure event,
and surviving bats at each interval were expressed as right-censored data. The R-package
‘countcolors’ was used to determine the percent of the patagia covered by the characteristic
fluorescent orange-yellow color indicative ofP. destructans infection as previously described
by the authors (Hooper, Weller & Amelon, 2020).

RESULTS
Initial morphometrics and mortality
On the day treatment was initiated, there were no significant differences in mass
(Breckinridge p= 0.86; Rockcastle p= 0.33, overall p= 0.36),the estimated percentage of
the patagia displaying orange-yellow fluorescent color (Breckinridge p= 0.74; Rockcastle
p= 0.68, overall p= 0.66), or the percent of the patagia displaying orange-yellow
fluorescent color (Breckenridge, p= 0.92, Rockcastle p= 0.92, overall p= 0.97) as
measured by the ‘countcolors’ R-package in the treatment or control groups. On day
0 of the Breckenridge RRDAP VOC field trial, mean fluorescence of the patagia in the
control group was 43.0± 9.5% (range: 26–57%) and 43.3± 11.5% (range: 25–61%) in the
treatment group. On day 0 of the Rockcastle RRDAP VOC field trial, mean fluorescence
of the patagia in the control group was 41.0 ± 11.9% (range: 19–63%) and 40.7 ± 11.8%
(range: 19–75%) in the treatment group. On day 76 and 120 of the Breckinridge RRDAP
VOC field treatment trial, 19 and 12 bats remained alive in the treatment group and 19 and
12 remained alive in the control group, respectively. On day 98 and 122 of the Rockcastle
RRDAP VOC field treatment trial, 35 and 8 bats in the treatment group remained alive
and 34 and 17 bats in the control group remained alive, respectively (Table 1). During the
hibernacula surveys and at the end of the study, none of the alive bats met the criteria for
euthanasia. On gross necropsy, all deceased bats had completely utilized all fat reserves and
the patagiums and uropatagiums had areas with irregular pigmentation and contraction in
addition to the loss of tone and elasticity which are all indicative of wing pathology seen in
WNS disease progression (Cryan et al., 2010). Histological inspection of the wings revealed
P. destructans hyphae invasion of the tissue as described by Meteyer et al. (2009), however
due to severe autolysis of the majority of bats, histopathology was only used to confirm P.
destructans infection. These gross and histopathological findings strongly suggest the cause
of death for all bats was due to WNS.
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Overall survival analysis Cox proportional hazard models
The variables sex and location were strongly correlated (rtet = −0.6), and therefore
only sex or location was included in each model assessing overall treatment effects. The
Cox proportional hazard models assessing the impact of treatment, location, and the
interactions on overall survival failed the proportional hazards assumption when location
was included (x2= 19.09, p= 1.2e−05). Therefore, stratified cox regression models, with
location as a stratified variable, were built to assess the impact of treatment, location, and
the interactions. A negative treatment effect trend was found (z-score = 1.60, p= 0.10)
with no significant interactions (z-score = 0.89, p= 0.38).

When treatment, sex, and the interaction of treatment and sex were assessed, the
interaction did not significantly alter the risk of death fromWNS (z-score= 0.34, p= 0.74).
After dropping the interaction term to avoid incorrect conclusions (Beck & Bliwise, 2014;
Engqvist, 2005), a negative treatment effect trend was found (z-score = 1.81, p= 0.07) and
males were found to be at significantly lower risk of dying from WNS (z-score = −2.13,
p= 0.03).

Breckinridge hibernacula
Similar to the overall models, at the Breckinridge hibernacula, male little brown bats
were found to be at significantly lower risk of dying from WNS compared to females
(p= 0.01, Fig. 1). There were no significant differences found between the control and the
RRDAP VOC treatment group (p= 0.72, Fig. 1), and both females died in both groups
(Fig. 2). Starting mass (z-score −1.07, p= 0.28) nor the initial amount of orange-yellow
fluorescence as determined by the ‘countcolors’ R-package (z-score = −0.49, p= 0.62)
impacted the risk of bats dying from WNS.

Rockcastle hibernacula
Like the overall models, at the Rockcastle hibernacula, male little brown bats were found
to be at significantly lower risk of dying from WNS compared to females (p= 0.015,
Fig. 3). The Cox hazard model revealed bats were at a significantly greater risk of dying
from WNS in the treatment group (p= 0.037, Fig. 3) and Kaplan Meyer survival curves
found significant differences between the control and treatment groups (p= 0.024, Fig.
4). Starting mass (z-score = −0.41, p= 0.69) nor the initial amount of orange-yellow
fluorescence as determined by the ‘countcolors’ R-package (z-score = −0.42, p= 0.68)
impacted the risk of bats dying from WNS.

DISCUSSION
Previous studies assessing VOCs produced by induced RRDAP cells and RRDAP non-
growth fermentation cell paste yielded complete inhibition of P. destructans for more than
80 days in vitro and these VOCs were also documented to completely inhibit P. destructans
from colonizing bat wing explants (Cornelison et al., 2014). With these promising results
further supported by 60% survival of bats exposed to RRDAP VOCs compared to 0%
survival in the control group in a small laboratory trial (Pierce et al., 2017), a two-site in
situ treatment trial was initiated with a slightly longer exposure time of 48 h. Our initial
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Figure 1 Breckinridge hibernacula Cox hazard proportional model.Visualization of the hazard ratio of
all bats enrolled in the Breckinridge treatment trial site. Control bats were the reference population. The
degrees of freedom are shown under each categorical variable. The risk ratio (�) and 95% confidence in-
terval are plotted with p-values shown to the far right of each set of variables assessed. At Breckinridge hi-
bernaculum, there were no significant differences between the treatment or control groups in cox hazard
proportional models (p = 0.724); however, male bats had a significantly lower risk of dying fromWNS
with a hazard ratio of 0.12 (p= 0.01) when female bats were the reference population.

Full-size DOI: 10.7717/peerj.15782/fig-1

ex situ trial documented after 24 h of RRDAP VOC exposure, the survival of P. destructans
infected bats was significantly increased (Pierce et al., 2017). Additionally, it was not feasible
to start our treatment trials on the same day as the sites were approximately 4 h driving
distance apart and it took an entire day to start the trial at one site. Being unable to start
both trials on the same day, we could start them subsequently; and then return to the
first site to remove the RRDAP non-growth fermentation cell paste without extending the
time beyond 72 h, or the maximum amount of time little brown bats had been exposed to
the RRDAP VOCs without observed ill effects. With the selected 48 h exposure time, the
increased mortality associated with RRDAP VOC exposure in situ was unexpected. Also
surprising was the increasedmortality observed in the little brown bats treated with RRDAP
VOCs only occurred at one of the hibernacula sites, the Rockcastle county location.

While the Cox hazard models for both field sites revealed male bats were at a lower risk
of dying, this should be interpreted with caution due to the unequal and low numbers of
females. Only 2 of the 40 bats in the Breckridge trial and 24 of the 80 bats at the Rockcastle
trail were female. Ideally, an equal number of males and females both within and between
treatment and control groups should have been included at both sites. However, since fewer
females than males were captured at both sites, this supports previous reports that males
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Figure 2 Breckinridge Kaplan–Meier survival curve. Kaplan–Meier survival curve showing survival
probably of little brown bats located within the Breckinridge hibernacula treatment trial site based upon
the bat’s sex and treatment status. All female control bats (solid red line, n= 1), and female RRDAP VOC
treatment bats (green dashed line, n = 1) died. Survival was 60% for males in both groups (control, blue
dashed line, n= 12;treatment, purple dashed line, n= 12) at the end of the trial.

Full-size DOI: 10.7717/peerj.15782/fig-2

are more likely to survive WNS (Grieneisen et al., 2015) as well as supports the outcomes
of the hazard models. Our results suggest that future WNS treatment trial studies should
aim to include equal numbers of males and females to assess potential sex-effects of the
treatments as sex may affect survival.

Two hibernacula sites were selected to avoid pseudoreplication, however pseudoreplica-
tion at eachhibernacula sitewas unavoidable as all batswere housed together. Individualized
housing would have prevented the little brown bats from exhibiting normal clustering
behavior which is thought to be essential for surviving hibernation by reducing metabolic
requirements for euthermy after torpor arousal (Boyles & Brack, 2009; Czenze, Park &
Willis, 2013) and reducing evaporative water loss (Thomas & Cloutier, 1992). Therefore,
bats were not forced to roost individually in order to avoid increased physiological and
behavior stress.

Cages for the treatment trial were placed in the exact locationwhere bats were hibernating
before being captured to allow bats to continue hibernating as close to their selected
microenvironment as feasibly possible. This was deliberately pursued to help mitigate the
additional stress associated with a caged experimental in situ field trial design. Additionally,
we employed the identical nylon caging system in situ as was used in the laboratory trials
previously conducted by the authors. Overwinter survivorship was 100% for healthy little
brown bats housed in these cages and no abnormal behaviors were observed (Pierce et al.,
2017) indicating the cage size and material was appropriate for this species.

However, it is important to recognize a caged field study has limitations. For instance,
there may be increased stress from altered behavior (e.g., bats may be disturbed when other
bats arouse from hibernation and they are unable to select or move to different hibernation
roosting locations;Hoyt et al., 2019; Turner et al., 2015). To date, all WNS studies assessing
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Figure 3 Rockcastle hibernacula Cox hazard proportional model.Visualization of the hazard ratio of
all bats enrolled in the Rockcastle treatment trial site. Control bats were the reference population. The de-
grees of freedom are shown under each categorical variable. The risk ratio (�) and 95% confidence in-
terval are plotted with p-values shown to the far right of each set of variables assessed. At Rockcastle hi-
bernaculum, bats in the treatment group were at increased risk of dying fromWNS with a hazard ratio of
1.8 (p = 0.037). Male bats- had a hazard ratio of 0.5 compared to the reference of female bats, indicating
males had a significantly lower risk of dying fromWNS (p= 0.015).

Full-size DOI: 10.7717/peerj.15782/fig-3

potential mitigations strategies in vivo have been solely caged-based (Kilpatrick et al., 2016;
Overton et al., 2016; US Fish and Wildlife Service, 2022a; Vonhof et al., 2018; Vonhof et al.,
2017) or include at least one group within cages (Hoyt et al., 2019). The survival outcome
of each individual can be known in caged treatment trials since bats are unable to leave the
hibernacula or be consumed by predators when cages are designed appropriately. Despite
the limitations of a caged-based experimental design, because the control and treatment
groups were identically housed, any negative impacts, including increased risk of death,
should have equally exerted on both groups thereby mitigating the potential for bias in our
survival analysis. This is supported by our observation of equal mortality in all groups at
the Breckinridge hibernacula (Fig. 2).

The Breckinridge hibernacula survival rates were overall higher at 60% for both the
control and RRDAP VOC exposed bats compared to the 20% survival of the RRDAP VOC
exposed bats and the 43% survival rate of the control bats at the Rockcastle hibernacula.
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Figure 4 Rockcastle Kaplan–Meier survival curv. Kaplan–Meier survival curve showing survival proba-
bly of little brown bats located within the Rockcastle hibernacula treatment trial site based upon the bat’s
sex and treatment status. Survival was 20% for those exposed to RRDAP VOCs, with only one female
bat (dashed green line) and seven male bats (dashed purple line) alive at the end of the trial. The control
group had a survival of 43% with three females (solid red line) and 14 males (dashed blue line) alive at the
end of the trial.

Full-size DOI: 10.7717/peerj.15782/fig-4

The higher mortality observed in both the treatment and control groups at Rockcastle,
could possibly be explained by the temporal disease dynamics of WNS. The mortality rate
for hibernating little brown bats is recognized to be the highest during the second and
third year of infection and by the fourth year begins to level out (Langwig et al., 2012).
Rockcastle hibernacula was in the third year post-WNS detection and suffered from 80%
mortality in the RRDAP VOC exposed bats and 57%mortality in the controls bats whereas
the 40% mortality at Breckinridge hibernacula could be due to this site being in its fourth
year post-WNS detection. This temporal dynamic likely also explains why fewer bats were
able to be enrolled into the treatment trial at Breckinridge as the overall population of
hibernating little brown bats was half the size of the Rockcastle population.

It is unclear if the temporal dynamics could have played a role in the observed mortality
differences between treatment and control groups at Rockcastle. Due to clinical signs of
WNS being found at all hibernacula initially evaluated for inclusion in this study, we were
unable to find healthy bats, unaffected by WNS, to inoculate with a known amount of P.
destructans conidia. As a result, we selected bats with natural, active P. destructans infection.
Unable to perform qPCR in the field the day of the trial to determine fungal load, we opted
to screen bats using long-wave UV light (Turner et al., 2014) in an effort to balance groups
for fungal loads. McGuire et al. documented that UV fluorescence detection is 100%
specific with 73% sensitivity with 0 false positives reported in the study (McGuire et al.,
2016). Furthermore, it has been shown fungal load to be correlated with UV fluorescence
(McGuire et al., 2016) which supports our use of long wave UV light for estimating initial
fungal load and disease severity. Therefore, it is unlikely that disease severity bias at the
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start of our experiment led to the higher mortality observed in the RRDAP VOC treatment
group at the Rockcastle site.

Pseudogymnoascus. destructans fungal load has been shown to alter the bacterial
microflora on little brown bat wings (Lemieux-Labonté et al., 2017). While multiple R.
rhodochrous strains have been identified as normal microflora on the skin of North
American bats (Hamm et al., 2017; Lemieux-Labonté et al., 2017), Rhodococcus species
are found to be more abundant on the skin of WNS positive little brown bats. It is
unclear why Rhodoccocus species are significant indicators of WNS positive hibernacula
(Lemieux-Labonté et al., 2017). Though several of these strains (e.g., R. rhodochrous (AC
241)) have been shown to completely inhibit the growth of P. destructans (Hamm et al.,
2017) similar to the RRDAP VOCs employed in this study. Contrary to this, some species
in the Rhodoccocus genus have been found to actually increase the P. destructans fungal load
based upon quantitative PCR (Grisnik et al., 2020). Due to the limitations on not being
able to handle the bats the day of death to collect wing swabs, we were unable to measure P.
destructans loads on the deceased bats nor monitor the microbiota. Therefore, it is unclear
if the higher mortality at Rockcastle was caused by an increase of P. destructans growth or
if the RRDAP VOCs exposure negatively altered the microflora on the wing membranes,
leading to increased mortality. Additionally, while the 360–385 nm UV wavelengths used
in this study do not significantly impact the survival of P. destrucans (Palmer et al., 2018),
it is unclear if the UV exposure during photographing of the UV transilluminated wings
altered the wing microflora.

RRDAP VOCs were selected over a probiotic application of RRDAP to the wing
membrane of the bats because VOC exposure can occur without any handling of bats—
if VOC distributor systems are installed where bats typically hibernate before winter
hibernation. Additionally, these distributor systems would allow periodic VOC exposure.
The goal of periodic exposure would be to increase the overwinter survival of the most
severely affected species. It is important to recognize this treatment was designed tomitigate
but not cure the disease. The hibernacula environment serves as an abiotic reservoir of
P. destructans (Hoyt et al., 2015b; Lorch et al., 2013), and if fungal loads can be reduced
leading to decreased overwinter mortality, affected hibernating bat species may have
adequate time to develop resistance or tolerance mechanisms against WNS such as been
suggested to have occurred in European bat species (Bandouchova et al., 2015; Puechmaille
et al., 2011). Although it has been suggested that resistance may be developing in some
persisting North American bat populations (Langwig et al., 2017), it is unclear if these
small surviving populations would meet the minimum viable population size required for
the species survival (Rai, 2006; Reed et al., 2003), therefore there is continued interest in
pursuing disease mitigation strategies, including treatments, for WNS.

CONCLUSIONS
When treating little brown bats in situ with RRDAP VOCs, lower survival was observed in
one treatment group while concurrently the second treatment group showed no increase
or decrease in survival rates when compared to the control groups. While RRDAP VOC
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exposure was shown to effectively inhibit P. destructans in vivo, it may increase the risk of
death from WNS in situ; therefore, there is not enough evidence to support conducting
large scale exposure of hibernating bats to RRDAP VOCs as part of WNS disease mitigation
strategies.
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