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ABSTRACT
Lower limb robotic exoskeletons are often studied in the context of steady state treadmill
walking in a laboratory environment. However, the end goal for exoskeletons is to
be used in real world, complex environments. To reach the point that exoskeletons
are openly adopted into our everyday lives, we need to understand how the human
and robot interact outside of a laboratory. Metabolic cost is often viewed as a gold
standard metric for measuring exoskeleton performance but is rarely used to evaluate
performance at non steady state walking outside of a laboratory. In this study, we tested
the effects of robotic ankle exoskeletons under proportional myoelectric control on
the cost of transport of walking both inside on a treadmill and outside overground.
We hypothesized that walking with the exoskeletons would lead to a lower cost of
transport compared to walking without them both on a treadmill and outside. We
saw no significant increases or decreases in cost of transport or exoskeleton mechanics
when walking with the exoskeletons compared to walking without them both on a
treadmill and outside. We saw a strong negative correlation between walking speed
and cost of transport when walking with and without the exoskeletons. In the future,
research should consider how performing more difficult tasks, such as incline and
loaded walking, affects the cost of transport while walking with and without robotic
ankle exoskeletons. The value of this study to the literature is that it emphasizes
the importance of both hardware dynamics and controller design towards reducing
metabolic cost of transport with robotic ankle exoskeletons. When comparing our
results to other studies using the samehardwarewith different controllers or very similar
controllers with different hardware, there are a wide range of outcomes as to metabolic
benefit.

Subjects Human-Computer Interaction, Biomechanics
Keywords Exoskeleton, Metabolics, Myoelectric, Lower-limb

INTRODUCTION
Lower limb robotic exoskeletons are used in a variety of real-world applications.
Therapeutic training, physical assistance, and human augmentation are the usual goals
for lower limb robotic exoskeleton design (Young & Ferris, 2017). In rehabilitation,
exoskeletons can allow neurologically impaired patients to practice movements that they
could not complete without assistance and can also serve as assistive technology to replace
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lost physical capabilities (Milia et al., 2018). For able-bodied humans, robotic lower limb
exoskeletons can assist with physically demanding tasks like lifting heavy objects safely,
walking with heavy loads and extending endurance for walking long distances (MacLean &
Ferris, 2019; Yandell, Tacca & Zelik, 2019; Maurice et al., 2020; Tang et al., 2022). Current
pitfalls of robotic exoskeletons include that they are often too heavy, bulky, or require
extensive adaptation by the user (Young & Ferris, 2017; Fritz, Patzer & Galen, 2019; van
Dijsseldonk et al., 2020; Siviy et al., 2022).

A common method of quantifying the effectiveness of robotic lower limb exoskeletons
is by evaluating the changes in metabolic cost (Sawicki et al., 2020). Exoskeletons ideally
should be able to decrease the metabolic cost when wearing the powered device compared
to not wearing the device or wearing the device in an unpowered, transparent mode (Au,
Weber & Herr, 2009; Grabowski & Herr, 2009; Mooney, Rouse & Herr, 2014; Collins, Bruce
Wiggin & Sawicki, 2015;Galle et al., 2017; Seo et al., 2018; Panizzolo et al., 2019). Previously
published studies on powered ankle exoskeletons have shown a decrease in metabolic
cost ranging from 5.6–21.4% during powered walking compared to unpowered walking
or not wearing the device (Mooney, Rouse & Herr, 2014; Galle et al., 2017; Sawicki et al.,
2020). There are currently very few lower-limb exoskeleton studies that have measured
metabolic cost outside of the laboratory setting. MacLean & Ferris (2019) evaluated a
robotic knee exoskeleton and found that although it provided a 4.2% decrease in metabolic
cost during indoor incline walking on a treadmill with a backpack, it increased metabolic
cost of walking on a hilly terrain course outdoors (MacLean & Ferris, 2019). A recent study
was able to achieve a 17% decrease in the metabolic cost of walking using an untethered
ankle exoskeleton by optimizing the control of the ankle exoskeleton for each individual
(Slade et al., 2022). The inclusion of outdoor walking in these studies is an important
step towards understanding how robotic exoskeletons affect metabolic cost in real-world
environments. While indoor treadmill walking provides steady-state conditions, it cannot
accurately reflect all aspects of a real-world environment. Outdoor trials reflect the presence
of obstacle avoidance, variable walking speed, changes in direction, and uneven terrain
(Parker et al., 2021; Schmitt et al., 2021; Semaan et al., 2022; Soliman et al., 2022).

A very important aspect determining the success of robotic lower limb exoskeletons
is the control method. Many studies have used state-based controllers, which sense
kinematic and kinetic information about the gait cycle and the environment in order to
determine the control pattern (Masengo et al., 2020; Sawicki et al., 2020; Hybart & Ferris,
2022; Lora-millan, Moreno & Rocon, 2022; Siviy et al., 2022). This approach can be very
successful for flat, level terrain when walking at a constant speed. In those settings, the next
few steps are very much like the last few steps. Another alternative to kinematic and kinetic
state control is to use neural signals from the human by incorporating electromyography
(EMG) or electroencephalography signals (Ferris & Lewis, 2013; He et al., 2018; Tariq,
Trivailo & Simic, 2018). A recent study using an adaptive controller based on EMG and
joint angle found a decrease in the metabolic cost of walking by 22% when compared to
the Unpowered, transparent condition (Jackson & Collins, 2019).

The purpose of this study was to determine the effect of proportional myoelectric-
controlled, robotic ankle exoskeletons on metabolic cost of walking indoors on a
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treadmill and outdoors overground. We altered the controller on commercially available
robotic ankle exoskeletons (Dephy Exoboots) to implement a proportional myoelectric
controller similar to what has been used in many treadmill studies (Gordon & Ferris, 2007;
Sawicki & Ferris, 2008; Sawicki & Ferris, 2009a). The exoskeletons aided plantarflexion
by supplementing torque during the push off phase of stance based on the user’s soleus
EMG amplitude (Hybart & Ferris, 2022). This proportional myoelectric control allows the
person wearing the device to have intentional control over the exoskeleton’s activation
and deactivation. Past studies using pneumatic ankle exoskeletons under proportional
myoelectric control for walking on a treadmill found large decreases in metabolic cost
(Sawicki & Ferris, 2008; Sawicki & Ferris, 2009a; Sawicki & Ferris, 2009b). We hypothesized
that the metabolic cost of walking while wearing the powered exoskeleton would be lower
compared to not wearing the exoskeletons and compared to unpowered walking in both
laboratory and real-world environments. By using electromechanical ankle exoskeletons,
the participants were untethered and could freely walk on a university campus setting
outdoors in this study. We were able to compare changes in metabolic cost for indoor
treadmill walking and outdoor overground walking.

MATERIALS & METHODS
Participants
We recruited 12 participants (five female, seven male) with the following characteristics,
mean (s.d.): age 22.6 (8.66) yrs.; height: 1.73 (0.075) m; mass: 69.3 (10.2) kg The standard
deviation for the age is large because the minimum and maximum ages were 18 and
50 years, respectively. Without the 50-year-old, the mean and standard deviation in age
were 20.1 (2.1). Other data from the 50-year-old participant was not an outlier and was
therefore kept in the analysis. Participants had no previous neurological or musculoskeletal
conditions. Each participant was right-handed and had no previous experience walking
with a robotic ankle exoskeleton prior to the first training session for this study. The
University of Florida Institutional Review Board (IRB201801218) approved this study.
Each participant read and signed an informed consent form approved by the University of
Florida Institutional Review Board (IRB201801218). We expected 12 participants would
provide sufficient statistical power based on our previous research (Sawicki & Ferris, 2008;
Sawicki & Ferris, 2009a; Koller, Remy & Ferris, 2018; MacLean & Ferris, 2019). Preliminary
statistical power analysis on pilot data for three participants indicated that 12 participants
would provide 0.8 power for an alpha equal to 0.05.

Equipment
We used the commercially available Dephy exoskeletons (EB60) with an open-source
software option, allowing us to implement our own high-level control (Dephy, Inc.
Maynard, MA). A proportional myoelectric controller with an input of the user’s soleus
muscle provided the input current to the motor (Hybart & Ferris, 2022). The soleus
electromyography (EMG) data were high-pass filtered (2nd order Butterworth, cutoff
frequency 50 Hz), full wave rectified, and low-pass filtered (2nd order Butterworth, cutoff
frequency 8 Hz). We then multiplied the resulting signal by a participant-specific gain
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Figure 1 Dephy Exoboots worn by participant and an example EMG and control signal.Dephy Exo-
boots with Coapt EMG bipolar sensors visible on the tibialis anterior muscles. Example of raw and filtered
soleus EMG and the controlling current that applies a plantarflexor torque at push off.

Full-size DOI: 10.7717/peerj.15775/fig-1

determined while walking with the exoskeletons unpowered to get the motor current
(Fig. 1). During the Unpowered condition, the soleus EMG were processed through the
same pipeline as during the Powered condition in real time. The output of this pipeline
was a target current. This target current was only sent to the exoskeleton as a controlling
current during the Powered condition, but the researchers were able to visualize this
output during all conditions. During the Unpowered condition the participant-specific
gains were determined to ensure that the target current reached the maximum value of 7.6
A q-axis (phase) current, which is equivalent to 20 A of line-to-line current as described by
Dephy, Inc. This target current was then sent as a controlling current during the Powered
condition. The controlling current was transformed via a variable transmission ratio into
an ankle torque that pulled the toe down. The exoskeletons only assisted in plantarflexion
and the control signal dropped to zero during swing when the foot switches did not register
any weight on the foot. The only resistance to dorsiflexion during swing was the passive
unwinding of the chain and the weight of the boots. The total system added 4.5 kg to the
participants.

We measured EMG on the soleus, gastrocnemii, and tibialis anterior using bipolar skin
electrodes (Coapt, Inc. Chicago, IL, USA). We only used the soleus EMG in the control
of the exoskeletons. We used force sensitive resistors to determine strides while outside
and inertial measurement units (IMU) to find ankle angle (APDM, Inc. Portland, OR,
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Figure 2 The collection protocol andmap of the outdoor course that partcipants walked. (A) Diagram
of all five conditions. We randomized conditions within the indoor and outdoor conditions, as well as be-
tween conditions. All indoor and all outdoor conditions occurred consecutively to reduce time spent trav-
elling between indoor and outdoor test sites. (B) Map of the outdoor route located on the University of
Florida campus. Each lap was 0.45 km for a total of 1.35 km per condition. The green dot indicates the
start and stopping point.

Full-size DOI: 10.7717/peerj.15775/fig-2

USA). We used a force instrumented treadmill to determine indoor gait events (Bertec,
Co. Columbus, OH, USA). Participants wore a facemask to take respiratory measurements
(Cosmed K5, Rome, Italy). The metabolic system added an additional 0.9 kg to the
participants. We asked participants not to eat for at least 3 h prior to the data collection to
reduce variability in metabolic cost measurements.

Collection
Prior to this collection, participants completed three separate training days of 30 min each
walking with the robotic ankle exoskeletons. Participants stood for 6 min to determine
their standing baseline metabolic cost. We subtracted this baseline measurement from
all metabolic cost measurements to determine the net metabolic cost for each condition.
Participants completed five total walking trials (three indoor and two outdoor) (Fig.
2A). The trials were semi-randomized with all indoor trials completed at one time and
both outdoor trials completed back-to-back to reduce time spent travelling between
testing areas. For the indoor trials, participants walked for 8 min at a self-selected speed,
determined on the first day of training, on a force instrumented treadmill. The indoor
conditions were Boots Only, Unpowered, and Powered. In the Boots Only condition
participants wore the boots used with the exoskeletons but did not wear the exoskeletons.
In the Unpowered condition participants wore the exoskeletons in a transparent mode. In
the Powered condition the exoskeletons were on and assisting in plantarflexion. For the
outdoor conditions, a human pacer walking next to the participants kept participants at
a self-selected speed chosen on the treadmill via verbal feedback. The metabolic system
stored speed data and heartrate data from a chest strap monitor that was time synced to
the metabolic data. For the outdoor conditions, we omitted the Unpowered condition to
reduce the length of the total data collection. The outdoor trials consisted of the participants
walking a 0.45 km loop three times (Fig. 2B). Participants briefly paused at the end of each
lap to mark the laps in the metabolics and exoskeleton systems. After each condition,
participants rested to return to baseline metabolic cost before beginning the next trial.
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Analysis
We calculated the metabolic cost using the Brockway equation (Brockway, 1987). We
filtered the outdoor metabolic cost data with a fourth-order, low- pass, Butterworth filter
(cutoff frequency of 0.1 Hz). We calculated the net metabolic cost for each condition
by subtracting the standing baseline metabolic cost. For indoor conditions, we averaged
the last 3 min of steady-state metabolic data to determine the metabolic cost for that
condition. We present the data as cost of transport to account for differences in speed
between participants. We show the outdoor data as the timeseries because participants did
not reach a steady state during those trials.

Statistical analysis
For the indoor data we performed a one-way ANOVA to look at differences in cost of
transport between our three conditions. For the outdoor conditions, we analyzed the
filtered metabolic data as a time series and performed a t -test using statistical parametric
mapping (SPM) (Pataky, 2010; Donnelly et al., 2017).

RESULTS
Contrary to our hypothesis, there were no significant differences in the cost of transport
across conditions (ANOVA, p= 0.20) during indoor treadmill walking. The cost of
transport for the Boots Only condition was 2.8 ± 0.60 J kg−1m−1, for the Unpowered
condition it was 3.2 ± 0.50 J kg−1m−1, and for the Powered condition it was 3.1 ± 0.60
J kg−1m−1 (Fig. 3). There was a 16% larger average cost of transport in the Unpowered
condition compared to the Boots Only condition, an 11% larger average cost of transport in
the Powered condition compared to the Boots Only condition and a 5% lower average cost
of transport in the Powered condition compared to the Unpowered condition. The average
heart rate for the Boots only condition was 95 ± 15 bpm, for the Unpowered condition it
was 97± 18 bpm, and for the Powered condition it was 96± 17 bpm (ANOVA, p= 0.94).

Between the outdoor Boots Only and Powered conditions, there were no significant
differences in cost of transport (Fig. 4A) or heart rate. There were no significant differences
within each condition from lap 1 to lap 3. The average cost of transport across all laps with
the exoskeletons was 3.15W kg−1, while the average cost of transport across all laps without
the exoskeletons was 2.79 W kg−1. This is a 12.9% increase in the cost of transport when
wearing the exoskeletons compared to not wearing the exoskeletons. The maximum cost of
transport when wearing the exoskeletons was 4.49 W kg−1 and the minimum was 2.32 W
kg−1. While not wearing the exoskeletons the maximum cost of transport was 3.62 W kg−1

and the minimum was 2.11 W kg−1. Peaks in cost of transport of each lap were at 7–10%
of the lap. These correspond to timepoints shortly after the speed of participants dropped
to the lowest point (Fig. 4B), and participants just completed the longest uphill portion of
the course (Fig. 4C). The minimum cost of transport for each lap was around 90%, which
occurred after the longest portion of the course that did not involve a turn. There was
a significant negative correlation between participant walking speed and metabolic cost
of transport in the boots only condition (p= 0.0013, r2 = 0.8125) and a nonsignificant
negative correlation in the Powered condition (p= 0.0618, r2= 0.5536).
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Figure 3 Cost of transport while walking inside on a treadmill with the exoskeletons powered, unpow-
ered, and without the exoskeletons.Violin plots showing the net cost of transport (J kg −1 m −1) for the
final 3 min of indoor treadmill walking in each condition. The average cost of transport was highest in
the unpowered condition (orange) and lowest in the boots only condition (red). The Powered condition
(blue) had lower cost of transport than the Unpowered condition, but higher than the Boots Only condi-
tion. None of the differences were significant. Within each plot the box indicates the median and first and
third quartiles. The shaded area shows the distribution of the data across participants.

Full-size DOI: 10.7717/peerj.15775/fig-3

During the outdoor Powered condition, there were nonsignificant reductions in peak
exoskeleton mechanical power of 12% (p= 0.99), peak exoskeleton torque of 4.2%
(p= 0.86), and positive work of 6.0% (p= 0.94) from lap 1 to lap 3. The ankle angle
remained consistent between laps (Fig. 5). Normalized soleus muscle activity had no
significant changes between lap 1 (root mean square = 0.91), lap 2 (root mean square =
0.90), and lap 3 (root mean square = 0.91) (p= 0.70).

The exoskeleton had a slightly larger but nonsignificant difference in peak mechanical
power of 16% (p= 0.48), peak torque of 7.0% (p= 0.057), and positive work of 25%
(p= 0.22) during the treadmill condition compared to the outdoor condition (Fig. 6).
Normalized soleusmuscle activity was significantly lower in the outdoor Powered condition
(root mean square = 0.91) than the indoor Powered condition (root mean square = 1.07)
(p= 0.017).

DISCUSSION
Contrary to our hypothesis, we did not find a reduction in the cost of transport when
walking with the exoskeleton powered either inside or outside. During the indoor trials
there was a nonsignificant increase in cost of transport from the boots only condition
compared to both the Unpowered and Powered exoskeleton conditions. There was
a nonsignificant decrease from the Unpowered condition compared to the Powered
exoskeleton condition, which suggests that the exoskeleton was able to counteract some of
the increased metabolic cost due to the added distal mass of the exoskeletons (Browning
et al., 2007). In the outdoor conditions, there were no significant differences in cost of
transport at any point in the three laps when wearing the exoskeletons compared to not
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Figure 4 Net cost of transport, average speed, and elevation changes for the outdoor conditions. (A)
Net cost of transport (J kg −1 m −1) for Boots Only (red) and Powered (blue) conditions over the entire 3
laps of the outdoor course. No significant differences were seen over the three laps. Shaded areas represent
one standard deviation. (B) Average speed (m/s) over the duration of the course for the Boots Only (red)
and Powered (blue) conditions. Shaded areas represent one standard deviation. (C) Change in elevation
over the duration of the course. Vertical black lines indicate the starts of lap 2 and 3. Vertical dotted lines
indicate the maximum cost of transport within each lap and vertical dashed lines indicate the minimum
cost of transport within each lap for the Boots Only (red) and Powered conditions (blue).

Full-size DOI: 10.7717/peerj.15775/fig-4
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Figure 5 Average exoskeletonmechanical power, work, and torque and participant ankle angle across
the three laps of the outdoor trials. Average Ankle angle (deg), exoskeleton mechanical power (W kg −1),
exoskeleton torque (Nm kg −1), and exoskeleton work (J kg −1) for lap 1 (red), lap 2 (orange) and lap 3
(blue) of the outdoor powered condition. Work is separated into positive, negative, and net values. There
was a nonsignificant drop in exoskeleton power, torque, and positive work during the final lap of the out-
door condition. The x axis is 0–100% of the gait cycle, with 0% and 100% being heel strikes. Shaded areas
represent one standard deviation.

Full-size DOI: 10.7717/peerj.15775/fig-5

wearing them. There was a cyclical increase and decrease in the metabolic cost during
each of the three laps in both conditions at approximately 7–10% of each lap (Fig. 4A).
This occurred shortly after participants were at their lowest walking speed, an average
of 0.97 m/s. We found a negative correlation between walking speed and metabolic cost
of transport. This is supported by previous research that shows when walking slower or
faster than their preferred walking speed on level ground, individuals have an increase
in cost of transport (Fig. 4B) (Ralston, 1958; Margaria, 1976; Zarrugh & Radcliffe, 1978).
When wearing the exoskeleton participants had a less negative correlation between their
walking speed and metabolic cost. However, this is most likely due to the already increased
metabolic cost due to using the device. The reduced speed occurred around the longer,
more gradual of the two curves on the course. Before this curve in the course, at about 90%
of each lap, the outdoor cost of transport was at its minimum for each lap. This minimum
occurred after the longest portion of the course without any changes in direction, and the
longest slightly downhill portion of the course (4 C). The speed was over 1.0 m/s during
the portion of the laps that saw a decrease in metabolic cost. There was a strong negative
correlation between the walking speed and cost of transport in the boots only condition.
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Figure 6 Average exoskeletonmechanical power, work, and torque and participant ankle angle when
walking on a treadmill compared to outside overground. Average ankle angle (deg), exoskeleton me-
chanical power (W kg −1), exoskeleton torque (Nm kg −1), and exoskeleton work (J kg −1) for the outdoor
(yellow) and indoor (green) powered conditions. Work is separated into positive, negative, and net val-
ues. There was a nonsignificant drop in exoskeleton power and torque during the outdoor condition. The
x axis is 0–100% of the gait cycle, with 0% and 100% being heel strikes. Shaded areas represent one stan-
dard deviation.

Full-size DOI: 10.7717/peerj.15775/fig-6

There was also a relatively strong negative correlation between walking speed and cost of
transport in the Powered condition, but it did not reach statistical significance.

There were no significant differences in exoskeleton power, torque, or work between
the indoor and outdoor conditions. A human pacer walked with the participants to help
maintain a similar speed overground compared to their speed on the treadmill. The use of
the pacer may have produced more consistent strides in the overground walking condition
than is typically seen during unpaced overground walking (Schmitt et al., 2021). When
walking outside overground and inside on a treadmill, the exoskeletons provided an
average mechanical power of 0.45 W kg−1 and 0.54 W kg−1 respectively (Fig. 6).

Other studies using proportional myoelectric control reported larger reductions in
metabolic cost and greater exoskeleton mechanical power outputs. In past studies from
our laboratory, pneumatic ankle exoskeletons have generated an average peak exoskeleton
mechanical power of 1.47 W kg−1 when walking on a treadmill at a similar speed (Gordon
& Ferris, 2007; Sawicki & Ferris, 2008; Koller et al., 2015; Koller, Remy & Ferris, 2018). In
these studies, they recorded an average reduction in metabolic cost of 14.4% at the end
of the Powered condition compared to the Unpowered condition (Sawicki & Ferris, 2008;
Koller et al., 2015; Koller, Remy & Ferris, 2018). Comparatively, we saw a reduction of 5%
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between the Unpowered condition and Powered condition in the study presented in this
article. In the other studies using proportional myoelectric control, participants walked at
an average speed of 1.21 m s−1, which is slightly higher than the average speed of 1.15 m
s−1in the study presented in this article. The lower power output of the exoskeletons in our
study compared to previous studies using a similar controller is one likely reason we did
not see reductions in the cost of transport. The electromechanical Exoboots used in our
study had different mechanical capabilities compared to the pneumatic ankle exoskeletons
used in the previous studies (Gordon, Sawicki & Ferris, 2006; Lee, Pan & Rouse, 2019).

In comparison to previous research studies measuring metabolic cost of transport
during walking with Dephy ExoBoots, we found a smaller metabolic benefit than shown
in those studies. Two other studies used the Dephy ExoBoots under different state-based
controllers and recorded metabolic cost of transport (Medrano, Thomas & Rouse, 2022;
Shepherd et al., 2022). Medrano, Thomas & Rouse (2022) used a current based controller
to apply plantarflexor torques with varying onset times, magnitudes, and durations to
determine perceivable metabolic cost changes. Participants in this study walked at 1.25
m s−1. The average metabolic cost reduction they achieved was 12.6% compared to
the average metabolic cost of walking without an exoskeleton. They did not measure
exoskeleton mechanical power or work but had a peak torque between 12 and 20 Nm.
Shepherd et al. (2022) used a convolutional neural network gait phase estimator to provide
a peak torque at 84% of stance phase at variable speeds. Participants in this study walked at
the sinusoidally varying speeds of 1.1 to 1.6 m s−1 with a 30 s period. The average reduction
in metabolic cost they achieved was 5.2% during variable speed walking compared to not
wearing the exoskeleton. They did not present exoskeleton mechanical power or work but
had a peak torque of 30 Nm. Comparatively, we saw an average peak torque of 17 Nm on
the treadmill. One cause of our low metabolic cost benefit is likely that our peak torque is
on the lower end of what other studies have achieved using the same hardware. Another
cause might be that our controller applied torques earlier in the gait cycle and over a
longer duration than the other two papers.Medrano, Thomas & Rouse (2022) had a control
duration of 10–60% of the gait cycle with an onset at 25–50% of the stride. Shepherd et
al. (2022) applied torques for 38% of the stride with an onset at about 30%. Our applied
torque onset was earlier and stayed on longer, with our onset being at 10% of the gait
cycle, and the duration being 55–60% of the stride on average. An earlier onset is typical in
exoskeletons under proportional myoelectric control because it is directly responding to
the physiological signals. The triceps surae muscles are active throughout the stance phase
(Sawicki & Ferris, 2008; Koller et al., 2015). The use of proportional myoelectric control in
combinationwith a hardware system that has a nonlinear relationship betweenmuscle input
and torque output may lead to a non-ideal relationship between onset timing, duration,
and magnitude of actuation. Future implementations of proportional myoelectric control
with electromechanical motor could employ state-based gains to correct this nonlinear
issue.

Comparison of data from many robotic ankle exoskeleton studies indicate there is not
a universal relationship between soleus muscle activity, metabolic cost, and exoskeleton
mechanical power when walking with assistive ankle exoskeletons. Various hardware and
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controller designs provide an assortment of metabolic reductions during gait. Figure 7
shows reduction inmetabolic cost and reduction in soleusmuscle activity across six different
studies. Each study shows the changes in metabolic cost and muscle activity relative to the
exoskeletonmechanical power provided in the study. The studies include both exoskeletons
under proportional myoelectric control (red) (Sawicki & Ferris, 2008; Koller et al., 2015;
Koller, Remy & Ferris, 2018), and exoskeletons under state-based controllers (blue) (Galle et
al., 2017; Koller, Remy & Ferris, 2018; Jackson & Collins, 2021). Each of the studies included
walking on a treadmill with the exoskeletons powered compared to unpowered. We did
not include the original Dephy ankle exoskeleton studies by Mooney and colleagues in
Fig. 7 as they did not include mechanical power provided by the exoskeletons during
unloaded walking (Mooney, Rouse & Herr, 2014; Mooney & Herr, 2016). For proportional
myoelectric control studies, there was a strong relationship between exoskeletonmechanical
power and reductions in metabolic cost (red solid line, R2

= 0.97). However, there was
not a strong relationship between exoskeleton mechanical power and reductions in soleus
muscle activity (red dashed line, R2

= 0.0001). For state-based control studies, there were
very weak correlations between exoskeleton mechanical power and reductions in metabolic
cost reduction (blue solid line, R2

= 0.03), and between exoskeleton mechanical power and
reductions in soleus muscle activity (blue dashed line, R2

= 0.06). The variability across
studies suggests that factors other than ankle exoskeleton mechanical power and type of
controller are important to determining metabolic cost savings when walking with robotic
ankle exoskeletons. The added mass, comfort of fit, and mechanical power transmission
efficacy could all play a role in metabolic power reductions when walking with ankle
exoskeletons. One previous study examining biomechanical changes to gait with robotic
ankle exoskeletons found that subjected learned how to reduce muscle mechanical work
at the hip joint during walking to rely more on ankle mechanical power with extended
practice (Koller et al., 2015). It may be necessary to customize the controller for each
individual’s biomechanical walking pattern to achieve optimal metabolic reduction with
robotic exoskeleton assistance (Poggensee & Collins, 2021; Slade et al., 2022).

Based on previous research using robotic ankle exoskeletons, 90 min of training
over three training sessions prior to the data presented in this article was sufficient for
participants to adapt fully to the assistance (Sawicki & Ferris, 2009a; Malcolm et al., 2013;
Slade et al., 2022). There were no significant changes in the exoskeleton power, torque, or
work from lap 1 to lap 3 in our study. There also were no significant changes in soleus
muscle activation from lap 1 to lap 3. It is possible that many days or weeks of practice with
the ankle exoskeletons could have reduced metabolic cost further (Huang, Kram & Ahmed,
2012; Poggensee & Collins, 2021), but our results suggest they were fairly steady state at the
time of outdoor testing.

There were several limitations to this study. One limitation is that we did not collect
joint angles other than the ankle, nor did we record biological joint moment, power, or
work from the knee and hip. Work at the hip is more energetically costly than work at
the ankle (Kuo, 2001; Lewis & Ferris, 2008). Therefore, quantifying joint angle, power,
moment, and work changes at the hip would provide more insight into the lack of change
in the cost of transportation. A second limitation is that we did not include the Unpowered
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Figure 7 Comparison of the changes in metabolic cost and soleus RMS with respect to exoskeleton
mechanical power between this study and previous literature. The exoskeleton mechanical power
(W/kg) versus the percent reduction in metabolic cost of walking with robotic ankle exoskeletons
compared to walking with the exoskeletons unpowered in six different studies (left) and the percent soleus
RMS reduction (right). Metabolic cost reduction (solid circles) and soleus RMS reduction (open circles)
for four studies, including the one presented in this article, use proportional myoelectric control (red)
and three studies use state-based exoskeleton control methods (solid blue). There was a strong linear
relationship between power output and metabolic cost when using proportional myoelectric control (red
solid line, R2

= 0.97), but not when using other types of control (blue solid line, R2
= 0.03). There was

not a strong correlation between the power output and soleus RMS when using proportional myoelectric
control (R2

= 0.0001) or other types of controllers (R2
= 0.06).

Full-size DOI: 10.7717/peerj.15775/fig-7

condition outside. We chose not to include this condition to keep the duration of the
collection to a reasonable length, especially when asking participants to fast beforehand.
Our indoor Unpowered condition had the highest cost of transport of the three conditions.
If we had collected an Unpowered outdoor condition, we may have been able to better
discern what portion of the metabolic cost while wearing the exoskeletons powered was
due to the added mass. Another limitation is that we tried to control the speed of walking
overground. Walking at nonpreferred walking speeds increases the cost of transport
(Browning & Kram, 2005). Because participants chose their walking speed on the treadmill
and we used that same speed overground, it may not have been reflective of their preferred
outdoor overground walking (Malatesta, Canepa & Menendez, 2017). We chose to try to
speed match the indoor and overground conditions to facilitate comparisons between
conditions, but future studies should allow more variability in walking speeds to better
represent real world cost of transport. It is important to note that even during steady-state
walking on level ground, other studies show fluctuations in cost of transport over time
(Zukowski et al., 2017; Wong, Selinger & Donelan, 2019). A final limitation is that we did
not take any qualitative measures of performance. Despite metabolic cost being a gold
standard for exoskeleton performance, it does not provide the full picture on how the
human perceives the device. It is important to take into account how the human embodies
assistive devices (Hybart & Ferris, 2022). Using a qualitative or quantitative measure of
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embodiment and user perception of the device may provide important information on
why exoskeletons are not used more often.

The ankle exoskeletons and proportional myoelectric controller used in the study may
have fared much better if participants had to traverse inclines or carry heavy backpack
loads. Walking up an incline or carrying a load substantially increases the mechanical work
and metabolic cost of walking. The ankle exoskeletons may have provided a higher relative
benefit in those scenarios. Other lower limb exoskeleton studies have shown decreases in
metabolic cost with a load or at an incline (Sawicki & Ferris, 2009a;Mooney, Rouse & Herr,
2014; MacLean & Ferris, 2019). Future studies should include incline and decline walking,
walking with a load, and stair ascent and descent, as well as increasing the power output
of the exoskeletons to increase the metabolic benefit. Testing robotic exoskeletons over
a wide array of conditions and tasks provides a better evaluation of their efficacy in real
world scenarios.

CONCLUSIONS
We tested the hypothesis that using commercially available robotic ankle exoskeletons
under proportional myoelectric control would lead to a reduction in the cost of transport
of walking both inside on a treadmill and outside overground when compared to not
using the exoskeletons. We found no significant changes in the cost of transport on the
treadmill or outside. There were no significant differences in exoskeleton torque or power
from the first lap and last laps in the outdoor walking. The lack of change in cost of
transport and exoskeleton mechanics across conditions may have been because of too
low mechanical power output from the exoskeletons, but comparison with the literature
suggests exoskeletonmechanical power is not the driving factor inmetabolic cost reductions
during walking. One important finding of the study was that results in metabolic cost and
gait mechanics from treadmill walking were very similar to overground walking when
elevation changes were limited and speed was controlled. Future studies evaluating robotic
ankle exoskeletons should consider greater variation in outdoor terrain such as inclines
and stairs as they are likely to require increased exoskeleton power and metabolic demand.
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