Biogeographic barriers drive co-diversification within associated eukaryotes of the *Sarracenia alata* pitcher plant system

Jordan D Satler, Amanda J Zellmer, Bryan C Carstens

Understanding if the members of an ecological community have co-diversified is a central concern of evolutionary biology, as co-diversification suggests prolonged association and possible coevolution. By sampling associated species from an ecosystem, researchers can better understand how abiotic and biotic factors influence diversification in a region. In particular, studies of co-distributed species that interact ecologically can allow us to disentangle the effect of how historical processes have helped shape community level structure and interactions. Here we investigate the Sarracenia alata pitcher plant system, a community where many species from disparate taxonomic groups live in a mutualistic relationship inside the fluid-filled pitcher leaves. Direct sequencing of the eukaryotes present in the pitcher plant fluid enables us to better understand how a host plant can shape and contribute to the genetic structure of its associated inguilines, and to ask whether genetic variation in the associated taxa are structured in a similar manner to the host plant. We combine metagenomics with 454 sequencing to demonstrate that the pattern of genetic diversity in many, but not all, of the eukaryotic community is similar to that of *S. alata*, providing evidence that associated eukaryotes share an evolutionary history with the host pitcher plant. Our work provides further evidence that a host plant can influence the evolution of its associated commensals.

1	RUNNING HEAD: METAGENOMIC SAMPLING OF A PITCHER PLANT COMMUNITY
2	
3	Biogeographic barriers drive co-diversification within associated eukaryotes of the
4	Sarracenia alata pitcher plant system
5	
6	
7	Jordan D. Satler ¹ , Amanda J. Zellmer ² , and Bryan C. Carstens ^{1,*}
8	
9	
10	
11	¹ Department of Evolution, Ecology and Organismal Biology,
12	The Ohio State University, Columbus, Ohio 43210, USA
13	² Department of Biology
14	Occidental College, Los Angeles, California 90041, USA
15	
16	
17	*Corresponding Author:
18	Department of Evolution, Ecology and Organismal Biology, 318 W. 12th Avenue,
19	The Ohio State University, Columbus, Ohio 43210, USA
20	Email: carstens.12@osu.edu
21	
22	
23	

24

Abstract

25 Understanding if the members of an ecological community have co-diversified is a 26 central concern of evolutionary biology, as co-diversification suggests prolonged association and 27 possible coevolution. By sampling associated species from an ecosystem, researchers can better 28 understand how abiotic and biotic factors influence diversification in a region. In particular, 29 studies of co-distributed species that interact ecologically can allow us to disentangle the effect 30 of how historical processes have helped shape community level structure and interactions. Here 31 we investigate the Sarracenia alata pitcher plant system, an ecological community where many 32 species from disparate taxonomic groups live inside the fluid-filled pitcher leaves. Direct 33 sequencing of the eukaryotes present in the pitcher plant fluid enables us to better understand 34 how a host plant can shape and contribute to the genetic structure of its associated inquilines, and 35 to ask whether genetic variation in the taxa are structured in a similar manner to the host plant. We used 454 amplicon-based metagenomics to demonstrate that the pattern of genetic diversity 36 37 in many, but not all, of the eukaryotic community is similar to that of S. alata, providing 38 evidence that associated eukaryotes share an evolutionary history with the host pitcher plant. Our 39 work provides further evidence that a host plant can influence the evolution of its associated 40 commensals. 41 42

43

44 45

...

46

Introduction

48 Dynamic processes during the Pleistocene epoch have been implicated as drivers of 49 biological diversification (e.g., Hewitt, 2000; Hewitt, 2004). Glacial cycles contributed to both 50 landscape changes and climatic oscillations, providing strong abiotic factors that have led to 51 speciation within many groups (e.g., Leaché & Fujita, 2010; McCormack et al., 2010). One 52 region strongly influenced by these processes during the Quaternary is the southeastern United 53 States, where decades of research has examined the structure of genetic variation in a diverse set 54 of taxa (e.g., Avise et al., 1987; Avise, 2000; Burbrink, Lawson & Slowinski, 2000; Weisrock & 55 Janzen, 2000; Jackson & Austin, 2010; Newman & Rissler, 2011). Although glaciers never 56 extended to this latitude, changes in both flow rate and direction of flow of major rivers coupled 57 with fluctuations in sea level influenced phylogeographic patterns in this region (reviewed in 58 Soltis et al., 2006). Specifically, major rivers in the region have produced population genetic 59 structure in many clades, with the Mississippi River recognized as a well-characterized 60 biogeographic barrier (Brant & Orti, 2003; Pyron & Burbrink, 2009). The influence of landscape 61 features coupled with the presence of large-scale barriers can be expected to isolate populations 62 within a species, especially those with limited dispersal abilities. Consequently, plants and 63 animals that lack the ability to traverse large bodies of water are expected to exhibit substantial 64 population genetic structure in this region.

Complex interactions that occur within ecological communities can influence the
formation and maintenance of biodiversity. For example, numerous studies have shown how host
plant diversification can contribute to the diversification of associated species, typically insects
(e.g., Farrell & Mitter, 1990; Wheat et al., 2007; McKenna et al., 2009; Espindola et al. 2014).
These include systems where plants evolve secondary compounds in an "escape and radiate"

Manuscript to be reviewed

70 model of coevolution (Erlich & Raven, 1964), and systems that include mutualist organisms such 71 as plants and their pollinators. Such interactions can result in congruent demographic histories 72 (e.g., Smith et al., 2011) and patterns of co-diversification (e.g., Rønsted et al., 2005). While it 73 seems clear that the ecological interactions among plants and associated arthropods (e.g., 74 herbivores and pollinators) can potentially drive patterns of co-diversification, it is unclear how 75 host plants may influence other commensal organisms, particularly small eukaryotes. 76 Communities of commensal organisms in both facultative and obligate relationships may be 77 expected to show varying evolutionary patterns attributed to the level of dependency on the host 78 plant. Given the dynamic and topologically complex landscape of the southeastern region, the 79 study of ecological communities that span the breadth of host affinity, dispersal ability and life 80 history traits can help inform how taxonomically diverse communities have assembled through 81 time, and whether present day ecological associations extend into the deep past. 82 Phytotelmata—water bodies contained within living plants—provide an ideal system for 83 investigating co-diversification within an ecological community because they are self contained 84 and discrete units (Kitching, 2000). Carnivorous pitcher plants are one such system, where 85 decades of ecological work have documented a complex and distinct ecosystem associated with 86 the pitcher fluid contained within the modified leaves. Pitcher plants in the genus Sarracenia (F. 87 Sarraceniaeceae) contain a diverse microbiome, including groups such as bacteria, algae, 88 protists, rotifers and arthropods (e.g., Folkerts, 1999; Miller & Kneitel, 2005; Peterson et al., 89 2008; Koopman et al., 2010). Their highly modified leaves form a trap that captures and digests 90 prey items, while also providing a unique habitat for commensal organisms. Associated 91 inquilines form complex relationships in the pitchers, with many supplying digestive enzymes 92 that help break down decomposing prey items providing inorganic compounds for the plant (see

93 Adlassnig, Peroutka, & Lendl, 2010). A wide range of ecological work has investigated the 94 communities associated with these plants, primarily in Sarracenia purpurea, showing 95 community structure and interactions among the inquilines (e.g., Addicott, 1974; Bradshaw & 96 Creelman, 1984; Buckley et al., 2003; Gotelli & Ellison, 2006; terHorst, Miller & Levitan, 2010; 97 Miller & terHorst, 2012). Here, we focus on the Pale Pitcher Plant Sarracenia alata, a species 98 distributed in patchy habitats along the gulf coast across eastern Texas, Louisiana, Mississippi 99 and Alabama. This species is largely isolated from its congeners and occupies disjunct eastern 100 and western regions across the Mississippi River (Fig. 1). Work by Koopman & Carstens (2010) 101 identified population genetic structure in S. alata, and Zellmer et al. (2012) showed that major 102 rivers in the region promoted diversification within the plant. Population divergence across either 103 side of the Mississippi River is likely well into the Pleistocene, and estimated at greater than 104 120,000 years before present (Zellmer et al., 2012). Further analysis suggests that S. alata may 105 contain two cryptic species, corresponding to populations on the eastern and western sides of the Mississippi River (Carstens & Satler, 2013). Sarracenia alata thus represents a particularly 106 107 attractive system for investigating patterns of co-diversification, because the species exhibits 108 strong genetic differentiation across the landscape, with significant divergence across an 109 important biogeographic barrier (Soltis et al., 2006). In addition, longleaf pine savannahs in the 110 south have seen a staggering amount of habitat loss in recent times ($\sim 1\%$ of its original habitat 111 remains; Noss, 1989). High levels of cryptic genetic diversity highlight S. alata as a species of 112 interest; identifying ecologically associated taxa with a shared evolutionary history has clear 113 conservation implications.

Phylogeographic investigations of co-distributed taxa are usually limited to particular
taxonomic groups (e.g., Bell et al., 2012; Fouquet et al., 2012; Smith, Amei & Klicka, 2012;

116 Hope et al., 2014). While these studies can reveal evolutionary processes that produce patterns 117 within biogeographic regions, the conclusions drawn from such findings can be limited by the 118 shared life history traits that influence the formation of genetic structure (e.g., dispersal ability, 119 population size). Metagenomics provides a powerful approach for efficiently and rapidly 120 sampling taxonomic diversity within a habitat (reviewed in Tringe & Rubin, 2005), and thus may 121 provide comparative phylogeographic investigations with an efficient approach to the sampling 122 of taxa. Through the sequencing of environmental DNA, communities of small to microscopic 123 organisms can be directly sampled from the environment resulting in the assemblage of a data set 124 spanning a wide taxonomic breadth. Thus, when coupled with next generation sequencing 125 methods (Mardis, 2008), metagenomics greatly increases the "taxonomic toolbox" lending itself 126 well to investigations of comparative phylogeography. By analyzing a disparate assemblage of 127 taxa comprising an ecological community, our work has the potential to reveal a shared response 128 to historical events and thus evidence that evolutionary processes can shape community structure 129 and interactions through time (Smith et al., 2011). With the diverse array of microscopic 130 inquilines present within Sarracenia (e.g., Miller & Kneitel, 2005), pitcher plants provide an 131 ideal system for understanding how a host plant may influence genetic variation within an 132 associated community, and metagenomics provides a tool for sampling this taxonomic diversity. 133 Here we explore the process of evolutionary diversification in an ecological community. 134 We directly sample pitcher fluid from the modified leaves of S. alata, and apply a novel 135 approach utilizing metagenomics to test if S. alata has influenced genetic structure in its 136 eukaryotic commensal organisms. First, we characterize taxonomic diversity within the pitcher 137 plant fluid to get an understanding of the major lineages and their abundance in this unique 138 habitat. We then generate a comparative data set of OTUs which span the Mississippi River, and

assess the degree to which the inquiline community shares population genetic structure with the
host plant. We hypothesize that if eukaryotes associated with *S. alata* are ecologically dependent
on the plant, then the evolutionary history of the commensals should exhibit population genetic
structure largely congruent with that of *S. alata*. Alternatively, if taxa do not share an
evolutionary history with *S. alata*, community members should have unique population genetic
structure indicating an idiosyncratic response to landscape processes driving diversification in
the region.

- -
- 147
- 148

Material and Methods

149 Genetic Sampling

150 Pitcher fluid samples were collected following Koopman & Carstens (2010) during the 151 spring and summer of 2009 from part of the plant's distribution. Specifically, samples were 152 collected from 40 individuals across four locales (Abita Springs, Cooter's Bog, Kisatchie, 153 Talisheek; Fig. 1) in Louisiana during June and August, as pitcher diversity peaks at this time 154 (Koopman et al., 2010). In addition, fluid was collected from ten individuals per month for five 155 months (April through August) from Lake Ramsey, resulting in 50 samples, for a total sampling effort of 90 individuals from five locales. Sampling was originally designed to investigate both 156 157 spatial (all five locales) and temporal (Lake Ramsey) dynamics, however, we focus on just spatial patterns in this study. DNA was extracted using the Powersoil DNA Isolation Kit (MO 158 159 Bio). The large subunit 28S rRNA region was amplified for each fluid sample using the 160 following primer combination (LS1F: GTACCCGCTGAACTTAAGC ; LS4R: 161 TTGTTCGCTATCGGTCTC; modified from Hausner, Reid & Klassen, 1993), targeting a

162 roughly 330 base pair (bp) region. Each pitcher fluid sample was labeled with MID tags to allow 163 for multiplexing of individuals. PCRs were performed in triplicate and then pooled to prevent 164 PCR bias, and subsequently sequenced on a 454 Life Sciences Genome Sequencer FLX (Roche) 165 at Engencore Genomics Facility (University of South Carolina, Columbia) using 1/8th of a plate. 166 Raw sequences were initially processed using Mothur (Schloss et al., 2009) to sort sequences by 167 individual, remove low quality reads, and identify unique sequences for each individual. 168 Chloroplast data for S. alata was gathered from a previous study (see Carstens & Satler, (2013) 169 for details).

170

171 **Bioinformatics**

To quantify the taxonomic diversity present within the pitchers, sequences were clustered
into operational taxonomic units (OTUs) through *de novo* assembly. Metagenomic studies
commonly use *de novo* assembly for generating OTUs (e.g., O'Brien et al., 2005; Bik et al.,
2012; Zimmerman & Vitousek, 2012), and this allowed for a rough characterization of the
number of taxonomic units present within the pitcher fluid.

Sequences were first combined within each of the sampling locales (i.e., we restricted 177 178 clustering to those sequences collected from within each sample site), thereby treating each of 179 the five sites as a separate population (see Fig. 1). Reads were trimmed to 275 bp, discarding any 180 sequences below this threshold to remove potential bias associated with clustering samples of 181 unequal sequence size. For consistency, we only analyzed sequences from Lake Ramsey 182 collected at the same time periods as from the other sampling sites. Trimmed sequences were 183 assembled into clusters using the UPARSE algorithm (Edgar, 2013); this pipeline been shown to 184 outperform commonly used clustering methods such as Mothur and QIIME, and to work well

185 under a solely *de novo* clustering approach. Within each locale, identical reads were collapsed 186 and abundance values recorded (i.e., the number of times each unique read appeared in the data 187 set). Sequences were then clustered based upon a 97% threshold, with the most represented 188 sequences (based on abundance values) used to form initial OTU clusters, using a dynamic 189 programming algorithm to find clusters with the maximum score. The percent similarity 190 threshold is subjective, but since it is required for *de novo* assembly, we justify this value by 191 noting that (i) it was recommended by the author for *de novo* assembly in UPARSE (Edgar, 192 2013), (ii) it falls within the range used to delimit fungi with this locus (see Sota et al., (2014) 193 and references within), a group expected to be well represented within the pitcher fluid, and (iii) 194 chimeric detection is increasingly difficult when this value is decreased. The clustering step in 195 the pipeline ("cluster otus") uses UPARSE-OTU, an algorithm that simultaneously determines 196 the OTU clusters while removing chimeric sequences from the data set, a potential problem due 197 to errors with pyrosequencing.

198 Following OTU clustering, a single sequence from each cluster was used with a Basic 199 Local Alignment Search Tool (BLAST) search to gather taxonomic identification for each of the 200 clusters. Although there is a concern with the incompleteness of public databases, and that 201 searches could return spurious matches (Koski & Golding, 2001; Tringe & Rubin, 2005), at a 202 higher taxonomic level (e.g., Class, Order), we can be reasonably confident that sequence 203 matches reveal organismal affinity. In addition, for the purposes of this study, a qualitative 204 assessment of higher level identification is sufficient to understand taxonomic diversity present 205 within the pitcher fluid. A custom python script was used to search for taxonomic identities 206 among the OTUs. For all BLAST searches, sequences representing the centroid of the original 207 OTU searches (in UPARSE) were queried against the NCBI nucleotide database, using the

Megablast search algorithm, saving the top hit from each search. OTUs with BLAST hits were grouped by higher-level identification, generally at the level of Class or Order, to identify the variety of organisms present within the pitcher fluid. After summarizing taxonomic identity within the pitcher fluid at each site, rarefaction curves were generated with the package vegan (Oksanen et al., 2015) in R (R Core Team 2015), as a means to test if the taxonomic diversity had been adequately captured with our sampling efforts.

214

215 **Population Structure**

216 The major goal of this study is to identify OTUs that span the Mississippi River, and test 217 if the landscape processes that have influenced diversification in S. alata have influenced the 218 sampled organisms in a similar manner. To generate a comparative data set, all raw sequences 219 were combined and OTUs were assembled with UPARSE following the steps outlined above 220 (i.e., all sequences were clustered in a global analysis, regardless of sampling location). This data 221 set included all sequences generated from Lake Ramsey, as we were interested in collecting taxa 222 with widespread distributions. If taxa were time dependent, they would be restricted to Lake 223 Ramsey (during the months when only this locality was sampled) and removed following our 224 filtering process (see below); however, taxa stable in these communities would comprise 225 additional sequence information for comparative analysis. Following initial OTU clustering, the 226 data set was reduced to those taxa that contained at least ten sequences per OTU with a minimum 227 of three sequences on either side of the Mississippi River. These thresholds were used to 228 maximize the number of OTUs represented in the final data set while still containing enough 229 sequence data for statistical inference, both within and across sampling sites. In addition, it is 230 expected that any potential chimeric sequences not removed in the clustering step will fall below

231 these thresholds, further reducing the potential for error with our final OTUs. Each OTU was 232 aligned with MAFFT (Katoh & Standley, 2013), using either the L-INS-i (< 200 sequences) or 233 FFT-NS-i (> 200 sequences) algorithm. To survey taxonomic diversity among the retained 234 OTUS, a BLAST search was conducted on each of the OTUs following the same steps as 235 outlined above. 236 Data were summarized within each of the OTUs in order to characterize genetic variation 237 and quantify population genetic structure. Standard population genetic summary statistics 238 (nucleotide diversity (π), Watterson's theta (Θ_{w}), and Tajima's D) were calculated with the 239 package Pegas (Paradis, 2010) in R. Several approaches were used to explore the partitioning of 240 genetic variation among the OTUs. G_{ST} (Nei, 1973) values were generated to estimate the degree 241 of population differentiation among the locales, and were calculated with the R package gstudio 242 (Dyer, 2012). The level of genetic partitioning was assessed with an analysis of molecular 243 variation (AMOVA; Excoffier, Smouse & Quattro, 1992), because the G_{ST} is an analog to F_{ST} 244 values (Nei, 1973). AMOVAs take into account the amount of variation in the sequence data, 245 thereby extracting more information to determine the level of spatial structuring within the taxa. 246 AMOVAs were calculated in the program SPADS (Dellicour & Mardulyn, 2013), with 10,000 247 permutations to generate levels of significance. Hierarchical levels tested included (i) sampling 248 locales within each region (i.e., side of the Mississippi River), (ii) sampling locales within total 249 distribution, and (iii) between regions. In addition, the amount of allelic sorting on either side of 250 the Mississippi River was calculated using the genealogical sorting index (GSI; Cummings, Neel 251 & Shaw, 2008). This method is commonly applied to tests of taxonomic distinctness; it is applied 252 here to quantify levels of lineage sorting within each side of the river, with higher levels of 253 sorting suggesting greater population genetic structure indicative of a longer period of population

254 isolation. GSI values range from 0 (no sorting) to 1 (monophyletic on either size of barrier), with 255 p-values indicating the extent to which genetic structure recovered is more than would be 256 expected by chance alone. An input genealogy is required to calculate the GSI; these were 257 estimated using Maximum Likelihood (ML) with RAxML v7.2.8 (Stamatakis, 2006; Stamatakis, 258 Hoover & Rougemont, 2008). Depending on the number of sequences in the OTU, models of 259 sequence evolution included either GTRCAT (> 200 sequences) or GTRGAMMA (< 200260 sequences). Each ML tree was then input to the GSI web server, with 10,000 permutations to 261 generate levels of significance. In addition, isolation by distance (IBD) values were calculated to 262 see if there was a correlation between genetic and geographic distance, using the IBDWS v3.23 263 web server (Jensen, Bohonak & Kelley, 2005). Genetic distance matrices were calculated using a 264 Kimura 2-parameter (K2P) substitution model for each OTU; geographic matrices were 265 constructed measuring the Euclidean distance between sampling locales in kilometers with the 266 distance measurement tool in Google Earth (www.google.com/earth/, last accessed 18 July 267 2015). Finally, we used a chi-squared goodness of fit test to see if the number of OTUs with 268 significant population genetic structure across the various analyses was more than would be 269 expected by chance alone (assuming $\alpha = 0.05$). This allowed us to test the null hypothesis that 270 there is no correlation of population structure between the members of the eukaryotic community 271 and the host plant. 272

- 273
- 274

Results

275 Genetic Sampling

High-throughput sequencing resulted in a total of 26,399 sequences across 90 sampled pitchers. Following demultiplexing and quality control of samples, an average of 101 unique sequences were retained per pitcher (range: 12 - 199) for a total of 9,045 sequences. A fasta file containing all 9,045 sequences, as well as all OTU matrices from the comparative data set (see below), has been deposited at Dryad (####).

281

282 Taxonomic Diversity

283 To remove biases associated with the clustering of length variable sequences, all 284 sequences were trimmed to 275 bp (discarding any reads below this threshold), reducing the data 285 set from 9.045 sequences to 8.991 sequences. Lake Ramsey contained a disproportionately larger percentage of the total number of sequences (49%); however, to compare samples collected from 286 287 the same time periods, we only analyzed those samples from June and August, reducing the 288 number of sequences from Lake Ramsey from 4,398 to 2,286, resulting in a total of 6,879 289 sequences. OTU clustering at the 97% sequence identity within each locale resulted in a median 290 of 66 OTUs per sample site (324 total), ranging from 48 (Cooter's Bog) to 82 (Lake Ramsey) 291 total OTUs, with an average of 21 sequences per OTU when averaged across all sites. The 292 majority of OTUs had a close hit in the BLAST search (97%), although a small number of OTUs 293 (13) did not contain a match in the database (Fig. 2). Taxonomic diversity ranged across the tree 294 of life, with many OTUs containing hits to fungi, and to a lesser extent, various arthropod 295 groups, including insects and mites. In addition, numerous other groups were recovered in the 296 searches, including protozoans, nematodes, an annelid and even a vertebrate (Sus scrofa, wild 297 boar). Rarefaction curves for each sample site suggest that OTU diversity has not yet been 298 reached, indicating that the pitcher plant community was not fully sampled in any of the sites

Manuscript to be reviewed

(Fig. 3). Although fewer sequences per site likely prevented us from obtaining representatives
from the full diversity of species within each pitcher, wider spatial sampling helped us achieve
our goal of sampling a large number of eukaryotic species for a comparative data set (see below),

303 **Population Structure**

304 A global clustering effort was completed to generate a comparative data set for taxa that 305 span the Mississippi River. As we were interested in widespread taxa, we used all sequences 306 collected from Lake Ramsey—including those collected from additional time periods—resulting 307 in the use of the full data set (8,991 sequences). Following de novo clustering, UPARSE 308 produced 323 OTUs of which 65 contained a minimum of ten sequences and of these, 31 OTUs 309 contained at least three representatives on either side of the river. BLAST hits of a single 310 sequence from each of the 31 OTUs indicate that fungi and mites are the most well represented 311 taxa (Table 1). One OTU did not contain a significant BLAST hit, and with parameters relaxed, 312 poorly matched a portion of the sequence to multiple disparate taxonomic groups. Since we 313 detected it in multiple pitchers, it seems unlikely that this OTU represents a chimeric sequence. 314 Given the incompleteness of taxonomic databases, however, we retained this OTU for 315 downstream analysis, resulting in a final dataset of 31 OTUs (see Table S1 for the sequencing 316 distribution among locales). In this final set, the number of sequences per OTU ranged from 14 317 to 2,507, with a median of 54 (average of 225 sequences; Table 1). 318 A range of genetic variation is present in the sampled OTUs (Table 1). For example, 319 estimates of nucleotide diversity (π) range from ~0.001 to 0.05, a fifty fold difference. Tajima D 320 values are negative for most taxa (median = -2.0101), with 21 of these values significant, 321 indicative of an excessive number of segregating sites in the data sets. Negative Tajima D values

Manuscript to be reviewed

can be interpreted as resulting from a rapid demographic expansion, or from natural selection, on the marker itself or on a linked gene. This could also be the result of population structure in those OTUs, as collapsing separate populations can increase the number of segregating sites in a taxon. Among taxonomic groups, all fungi have a negative Tajima D value, with the majority (73%) being significant. Of note are the Tajima D values for the arthropods, where all three insects have significantly negative values, and all seven mites have negative values, with three out of seven being significant.

329 There are varying levels of population structure across the taxonomic groups. Roughly 330 half of the fungi contain significant partitioning of genetic variance at the level of the sampling 331 locale, with two taxa also significant at the level of locales within regions (Fig. 4; Table S2). 332 Sequence-based F statistics display similar patterns, with G_{ST} values ranging from 0.003 - 0.280333 (average $G_{ST} = 0.101$), suggesting population genetic structure is evident on either side of the 334 Mississippi River in many taxa. Despite this structure, there is considerable sharing of alleles 335 across the Mississippi River in the fungi, although some of the species contain greater sorting 336 than would be expected by chance (see GSI results; Fig. 4; Table S2). Furthermore, genetic 337 diversity in all but two of the fungi is not correlated with geographic distance (Table S2). Results 338 in the mites are similar, with roughly half of the taxa sampled showing a significant amount of 339 genetic variation distributed among the locales, as well as across the Mississippi River (Fig. 4, Table S2). F statistics in the mites are slightly lower than those in the fungi (average G_{ST} = 340 341 0.081). This structure is also evident in the GSI results, with allelic sorting in most taxa higher 342 than would be expected by chance (Fig. 4; Table S2). Patterns among the fungi (roughly half of 343 the OTUs), mites and insects generally reflect those of the host plant, with the remaining taxa 344 showing essentially no evidence for this shared genetic structure. Chi-squared goodness of fit

- tests show that more taxa share population genetic structure with the host plant than would beexpected by chance in many of the analyses (Table 2).
- 347
- 348
- 349

Discussion

350 Investigations into the evolutionary history of host plants and their associated insects 351 have provided evidence for co-diversification over long time-periods (e.g., Weiblen & Bush, 352 2002) in addition to demographic patterns that suggest a concerted response to abiotic factors 353 over shorter periods of time (e.g., Smith et al., 2011). Inspired by such studies, we sampled a 354 diverse set of organisms (representing similarly diverse ecological interactions) associated with 355 the Pale Pitcher Plant in order to investigate the extent to which this ecological community has 356 co-diversified. Within Sarracenia alata, previous work has demonstrated that populations are genetically structured across the landscape (Koopman & Carstens, 2010). Major rivers are 357 358 important drivers of diversification both in the region (Soltis et al., 2006) and for S. alata 359 (Zellmer et al., 2012), and analysis of the barcode data presented here demonstrates that slightly 360 under half of the eukaryotes sampled share similar population genetic structure with S. alata. 361 Our results show that a core eukaryotic community exhibits congruent patterns of 362 population genetic structure, with many taxa displaying significant genetic structuring at the 363 level of the sampling locality (based on Φ_{ST}); approximately half of the microscopic fungi and 364 half of the mites are structured in a manner similar to that of the host plant (Fig. 4). Given the 365 dispersal capabilities of fungal spores (e.g., Peay, Kennedy & Bruns, 2008), this degree of 366 population genetic structure is strikingly high (but see Taylor et al., 2006). Fungi are ubiquitous 367 in terrestrial habitats, however, with many species associated with soils and plants. Fungal

Manuscript to be reviewed

368 species have also been recovered from pitcher plant leaves, demonstrating their known presence 369 within these microhabitats (reviewed in Adlassnig, Peroutka & Lendl, 2010). Multiple mite 370 species from the family Histiostomatidae have been described from *Sarracenia* pitcher plants 371 (Hunter & Hunter, 1964; Fashing & O'Connor, 1984), and act as prey consumers within the 372 pitchers. Approximately half of the mites identified here exhibited population genetic structure 373 similar to that of S. alata, reflecting structure seen both among sample sites and across the 374 Mississippi River (Fig. 4). Other members of this core group include two of the three sampled 375 insects (all three share a closest BLAST hit to ants), with general strong support across analyses 376 for co-diversification. Ants comprise a large component of prey items for Sarracenia (Newell & 377 Nastase, 1998; Ellison & Gotelli, 2009), and one could interpret these results as being indicative 378 of general biogeographic structuring in the longleaf pine savannah habitat. Such results are 379 illustrative of the challenges associated with understanding if interactions among organisms have 380 driven the shared responses to historical events reflected in patterns of co-diversification. 381 Although ants represent a major prey item of *Sarracenia* plants, our field work suggests

382 that the plant does not specialize on any particular species of ant. Therefore, ants in general may 383 be considered to have a relatively weak ecological association with the plant, and these results 384 may highlight the strong influence that landscape and abiotic factors have on diversification in 385 the region. Teasing these two interpretations (i.e., ecological association vs. landscape and 386 abiotic factors) apart is non-trivial, yet an understanding of the strength of ecological association, 387 habitat affinity, and dispersal ability can lend insight on this issue. Given the ecological 388 associations shared among many of the inquilines with the host plant in this system, shared 389 population structure does provide evidence that ecology plays a role in shaping diversification 390 patterns through time. As the Mississippi River is an important evolutionary barrier to this

Manuscript to be reviewed

391 system (and many groups across the region), diversification across the river may have taken
392 place via the mechanism of oxbow lake formation, where changes in the river channel moved a
393 portion of the habitat from the eastern to the western side of this barrier.

394 While slightly under one-half of the sampled taxa share population genetic structure with 395 S. alata, there are other taxa with discordant evolutionary histories. Many of the fungal taxa 396 exhibit little to no population structure, and we suspect that these microscopic species are 397 widespread and not restricted to the pitcher plant bog habitats. Their dispersal ability is likely to 398 be higher than the larger members of this community, allowing them to escape the influence of 399 biogeographic barriers. Other microscopic eukaryotes exhibit no evidence of population 400 structure, including two protizoans and the sampled nematodes, suggesting that biogeographic 401 barriers do not provide an obstacle for long-distance dispersal in these taxa (Finlay, 2002). In 402 addition, one insect species demonstrates a lack of population structure. Further investigation of 403 the BLAST result for this OTU (hit to Solenopsis xyloni in original search; see Table 1) indicates 404 that this OTU is an identical match to the invasive red fire ant (Solenopsis invicta). Given the 405 devastating impact and colonization power of the red imported fire ant, the lack of population 406 structure is likely a product of their recent introduction to the southeastern United States (from 407 South America). Solenopsis invicta has grown explosively and displaced native species in the 408 region (Porter & Savignano, 1990; Stuble, Kirkman & Carroll, 2009) and the lack of structure 409 recovered is consistent with the expectations of an invasive species. Clearly, ecological 410 association and dispersal ability both play a role in the level of congruence detected in 411 population genetic structure across species, although quantifying these two factors, especially 412 dispersal for microscopic eukaryotes, remains a challenge.

Manuscript to be reviewed

413 Phylogeographic patterns within a species can be informative, but in aggregate, the 414 results across many species make it possible to identify community responses to landscape 415 changes. To date, phylogeographic researchers have not fully utilized metagenomics as a tool for 416 increasing the taxonomic breadth of a comparative study. The S. alata system is ideal for such 417 studies, as each pitcher provides a self-contained and discreet habitat, where micro- and 418 macroscopic organisms can live and persist in an ecological entanglement. The increased 419 sampling facilitated by metagenomic approaches allowed us to identify a core evolutionary 420 community within S. alata, and the simplest explanation for this congruence is that the core 421 community has diversified in unison because the constituent members are ecologically 422 dependent on S. alata. As such, the OTUs sampled represent an example of shared evolutionary 423 patterns across an ecological community, and suggests that co-diversification is not limited to 424 specialized interactions such as plants and pollinators. The recent discovery of cryptic diversity 425 within S. alata (Carstens & Satler, 2013), together with the work presented here, highlights the 426 need for conserving species like pitcher plants, which play a role in the survival of many 427 different organisms. Such systems contain species that have been ecologically interdependent 428 over evolutionary time scales, thus the loss of substantial diversity in the pitcher plant could lead 429 to loss of diversity in its commensal species.

Given the power of comparative analysis for phylogeographic research, metagenomics can be leveraged to increase our knowledge of the evolutionary processes that lead to biogeographic patterns around the world. In particular, environmental sampling can provide access to taxa spanning the range of ecological and life history traits, as well as greater spatial sampling, which can provide evidence of the landscape processes that have structured species and communities in a region (Bermingham & Moritz, 1998). Potential pitfalls, however, do

Manuscript to be reviewed

436 remain when applying metagenomics for such an analysis. In this study, a large number of 437 sampled OTUs are fungi (Fig. 2), which could be indicative of their ubiquity in nature, but could 438 also be due to our use of primers originally developed from fungal genomic resources. The need 439 to isolate specific gene fragments with primers could have biased the taxonomic sampling, which 440 may have also contributed to the non-asymptotic nature of the rarefaction curves, although this is 441 more likely due to a relatively small number of sequences from next generation sequencing with 442 the sampling strategy used in this study. In addition, challenges exist when using de novo 443 assembly for generating a taxonomic data set, particularly with the requirement of a percent 444 threshold to determine the placement of sequences within OTUs. Although some values are 445 commonly used for certain groups, it is unlikely that a single cutoff is appropriate across the tree 446 of life. Further exploration of the correlation between sequence similarity and taxonomic identity 447 across diverse groups is necessary to better place sequences with their proper OTU. However, as 448 demonstrated here, metagenomic data can be beneficial for phylogeographic studies, with careful and transparent analysis of the data providing valuable insight into the diversification of a region. 449 450 or in our case, an ecological community composed of a diverse set of lineages.

451 Remarkably, the co-diversification described here may extend beyond the eukaryotic 452 members of this ecosystem. Koopman & Carstens (2011) provide evidence that the phylogenetic 453 community structure in the bacterial microbiome reflects the population genetic structure of the 454 plant. Since the bacterial microbiome is dominated by Enterobacteriaceae (Koopman et al., 455 2010), a family commonly found in animal guts, it could be that the insect members of the core 456 community facilitate colonization of bacteria in the pitchers (which are sterile before opening; 457 see Peterson et al., 2008). If the core arthropods seed the pitchers with Enterobacteria, these 458 microbes may produce enzymes that contribute to the digestive function of the pitcher. Since

459	these complex ecological interactions have likely persisted for hundreds of thousands of years
460	(based on estimates from S. alata), our work underscores the importance of investigating the
461	evolutionary relationships of ecological communities.
462	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	
477	
478	
479	
480	
481	

482	<u>Acknowledgements</u>
483	We thank members of the Carstens lab, particularly Margaret Hanes (formerly Koopman) and
484	Sarah Hird, for comments and discussion regarding the manuscript. We thank the AE and
485	reviewers for comments that helped improve this manuscript.
486	
487	
488	
489	
490	
491	
492	
493	
494	
495	
496	
497	
498	
499	
500	
501	
502	
503	
504	

505	References
506	Addicott JF. 1974 Predation and prey community structure: an experimental study of the effect
507	of larvae on the protozoan communities of pitcher plants. <i>Ecology</i> 55 , 475–492.
508	Adlassnig W, Peroutka M, Lendl T. 2011 Traps of carnivorous pitcher plants as a habitat:
509	composition of the fluid, biodiversity and mutualistic activities. Annals of Botany 107, 181-
510	194. (doi:10.1093/aob/mcq238)
511	Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC. 1987
512	Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics
513	and systematics. Ann. Rev. Ecol. Syst. 18, 489-522.
514	Avise JC. 2000 Phylogeography: the history and formation of species. Cambridge, MA: Harvard
515	University Press.
516	Bell RC, MacKenzie JB, Hickerson MJ, Chavarria KL, Cunningham M, Williams S, Moritz C.
517	2012 Comparative multi-locus phylogeography confirms multiple vicariance events in co-
518	distributed rainforest frogs. Proc. R. Soc. B 279, 991–999. (doi:10.1038/rspb.2011.1229)
519	Bermingham E, Moritz C. 1998 Comparative phylogeography: concepts and applications. Mol.
520	<i>Ecol.</i> 7 , 367–369. (doi:10.1046/j.1365-294x.1998.00424.x)
521	Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK. 2012 Sequencing our
522	way towards understanding global eukaryotic biodiversity. Trends Ecol. Evol. 27, 233-243.
523	(doi:10.1016/j.tree.2011.11.010)
524	Bradshaw WE, Creelman RA. 1984 Mutualism between the carnivorous purple pitcher plant and
525	its inhabitants. American Midland Naturalist 112, 294–304.

- 526 Brant SV, Orti G. 2003 Phylogeography of the Northern short-tailed shrew, Blarina brevicauda
- 527 (Insectivora: Soricidae): past fragmentation and postglacial recolonization. *Mol. Ecol.* 12,
- 528 1435–1449. (doi:10.1046/j.1365-294X.2003.01789.x)
- 529 Buckley HL, Miller TE, Ellison AM, Gotelli NJ. 2003 Reverse latitudinal trends in species
- richness of pitcher-plant food webs. *Ecology Letters* 6, 825–829. (doi:10.1046/j.1461-
- 531 0248.2003.00504.x)
- 532 Burbrink FT, Lawson R, Slowinski JS. 2000 Mitochondrial DNA phylogeography of the
- 533 polytypic North American rat snake (*Elaphe obsoleta*): a critique of the subspecies concept.
- 534 *Evolution* **54**, 2107–2118. (doi:10.1111/j.0014-3820.2000.tb01253.x)
- 535 Carstens BC, Satler JD. 2013 The carnivorous plant described as Sarracenia alata contains two
- 536 cryptic species. *Biol. J. Linn. Soc.* **109**, 737–746. (doi:10.1111/bij.12093)
- 537 Cummings MP, Neel MC, Shaw KL. 2008 A genealogical approach to quantifying lineage
- 538 divergence. *Evolution* **62**, 2411–2422. (doi:10.1111/j.1558-5646.2008.00442.x)
- 539 Dellicour S, Mardulyn P. 2014 SPADS 1.0: a toolbox to perform spatial analyses on DNA
- sequence data sets. *Molecular Ecology Resources* 14, 647–651. (doi:10.1111/1755-
- 541 0998.12200)
- 542 Dyer RJ. 2012 The gstudio package. Virginia: Virginia Commonwealth University.
- 543 Edgar RC. 2013 UPARSE: highly accurate OTU sequences from microbial amplicon reads.
- 544 *Nature Methods* **10**, 996–998. (doi:10.1038/nmeth.2604)
- Ehrlich PR, Raven PH. 1964 Butterflies and plants: a study in coevolution. *Evolution* 18, 586–
 608.
- 547 Ellison AM, Gotelli NJ. 2009 Energetics and the evolution of carnivorous plants—Darwin's
- ⁵⁴⁸ 'most wonderful plants in the world'. J. Exp. Bot. **60**, 19–42. (doi:10.1093/jxb/ern179)

549	Espíndola A, Carstens BC, Alvarez N. 2014 Comparative phylogeography of mutualists and the
550	effect of the host on the genetic structure of its partners. Biol. J. Linn. Soc. 113, 1021–1035.
551	(doi:10.1111/blj.12393)
552	Excoffier L, Smouse PE, Quattro JM. 1992 Analysis of molecular variance inferred from metric
553	distances among DNA haplotypes: application to human mitochondrial DNA restriction data.
554	<i>Genetics</i> 131 , 479–491.
555	Farrell B, Mitter C. 1990 Phylogenesis of insect/plant interactions: have Phyllobrotica leaf
556	beetles (Chrysomelidae) and the Lamiales diversified in parallel? Evolution 44, 1389–1403.
557	Fashing NJ, OConnor BM. 1984 Sarraceniopus - a new genus for Histiostomatid mites
558	inhabiting the pitchers of the Sarraceniaceae (astigmata: Histiostomatidae). International
559	Journal of Acarology 10, 217–227.
560	Finlay BJ. 2002 Global dispersal of free-living microbial eukaryote species. Science 296, 1061-
561	1063. (doi:10.1126/science.1070710)
562	Folkerts D. 1999 Pitcher plant wetlands of the southeastern United States. Pp 247–275 in Batzer
563	DP, Rader RB, Wissinger SA, eds. Invertebrates in Freshwater Wetlands of North America:
564	Ecology and Management. John Wiley and Sons, Inc., New York, NY.
565	Fouquet A, Noonan BP, Rodrigues MT, Pech N, Gilles A, Gemmell NJ. 2012 Multiple
566	Quaternary refugia in the eastern Guiana shield revealed by comparative phylogeography of
567	12 frog species. Syst. Biol. 61, 461-489. (doi:10.1093/sysbio/syr130)
568	Gotelli NJ, Ellison AM. 2006 Food-web models predict species abundances in response to
569	habitat change. PLoS Biol. 4, e324. (doi:10.1371/journal.pbio.0040324)
570	Hausner G, Reid J, Klassen GR. 1993 On the subdivision of Ceratocystis s.l., based on partial
571	ribosomal DNA sequences. Can. J. Bot. 71, 52-63.

- 572 Hewitt G. 2000 The genetic legacy of the Quaternary ice ages. *Nature* **405**, 907–913.
- 573 (doi:10.1038/35016000)
- 574 Hewitt GM. 2004 Genetic consequences of climatic oscillations in the Quaternary. *Phil. Trans.*
- 575 *R. Soc. Lond. B* **359**, 183–195. (doi:10.1098/rstb.2003.1388)
- 576 Hope AG, Ho SYW, Malaney JL, Cook JA, Talbot SL. 2014 Accounting for rate variation
- among lineages in comparative demographic analyses. *Evolution* **68**, 2689–2700.
- 578 (doi:10.1111/evo.12469)
- 579 Hunter PE, Hunter CA. 1964 A new Anoetus mite from pitcher plants. Proc. Entomol. Soc.
- 580 *Wash.* **66**, 39–46.
- 581 Jackson ND, Austin CC. 2010 The combined effects of rivers and refugia generate extreme
- 582 cryptic fragmentation within the common ground skink (*Scincella lateralis*). Evolution **64**,

583 409–428. (doi:10.1111/j.1558-5646.2009.00840.x)

- Jensen JL, Bohonak AJ, Kelley ST. 2005 Isolation by distance, web service. BMC Genetics 6,
- 585 13. v.3.23 <u>http://ibdws.sdsu.edu/</u> (doi:10.1186/1471-2156-6-13)
- 586 Katoh K, Standley DM. 2013 MAFFT multiple sequence alignment software version 7:
- 587 improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780.
- 588 (doi:10.1093/molbev/mst010)
- 589 Kitching RL. 2000. Food webs and container habitats: the natural history and ecology of
- 590 phytotelmata. Cambridge University Press.
- 591 Koopman MM, Carstens BC. 2010 Conservation genetic inferences in the carnivorous pitcher
- 592 plant Sarracenia alata (Sarraceniaceae). Conserv. Genet. 11, 2027–2038.
- 593 (doi:10.1007/s10592-010-0095-7)

- 594 Koopman MM, Fuselier DM, Hird S, Carstens BC. 2010 The carnivorous pale pitcher plant
- 595 harbors diverse, distinct, and time-dependent bacterial communities. *Appl. Environ.*
- 596 *Microbiol.* **76**, 1851–1860. (doi:10.1128/AEM.02440-09)
- 597 Koopman MM, Carstens BC. 2011 The microbial phyllogeography of the carnivorous plant
- *Sarracenia alata. Microb. Ecol.* **61**, 750–758. (doi:10.1007/s00248-011-9832-9)
- 599 Koski LB, Golding GB. 2001 The closest BLAST hit is often not the nearest neighbor. J. Mol.
- 600 *Evol.* **52**, 540–542. (doi:10.1007/s002390010184)
- 601 Leaché AD, Fujita MK. 2010 Bayesian species delimitation in west African forest geckos
- 602 (*Hemidactylus fasciatus*). Proc. R. Soc. B **277**, 3071–3077. (doi:10.1098/rspb.2010.0662)
- 603 Mardis ER. 2008. Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum.

604 *Genet.* **9**, 387–402. (doi:10.1146/annurev.genom.9.081307.164359)

- 605 McCormack JE, Heled J, Delaney KS, Peterson AT, Knowles LL. 2011 Calibrating divergence
- 606 times on species trees versus gene trees: implications for speciation history of *Aphelocoma*

607 jays. *Evolution* 65, 184–202. (doi:10.1111/j.1558-5646.2010.01097.x)

- 608 McKenna DD, Sequeira AS, Marvaldi AE, Farrell BD. 2009 Temporal lags and overlap in the
- diversification of weevils and flowering plants. *Proc. Nat. Acad. Sci.* **106**, 7083–7088.
- 610 (doi:10.1073/pnas.0810618106)
- 611 Miller TE, Kneitel JM. 2005 Inquiline communities in pitcher plants as a prototypical
- 612 metacommunity. In: Metacommunities: spatial dynamics and ecological communities (eds
- 613 Holyoak M, Leibold MA, Holt R) University of Chicago Press, Chicago, IL, pp.122.145.
- 614 Miller TE, terHorst CP. 2012 Testing successional hypotheses of stability, heterogeneity, and
- 615 diversity in pitcher-plant inquiline communities. *Oecologia* **170**, 243–251.
- 616 (doi:10.1007/s00442-012-2292-1)

617 Nei M. 1973 Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. 70,

618 3321–3323.

- 619 Newell SJ, Nastase AJ. 1998 Efficiency of insect capture by Sarracenia purpurea
- 620 (Sarraceniaceae), the northern pitcher plant. *American Journal of Botany* **85**, 88–91.
- 621 Newman CE, Rissler LJ. 2011 Phylogeographic analyses of the southern leopard frog: the impact
- of geography and climate on the distribution of genetic lineages vs. subspecies. *Mol. Ecol.*
- 623 **20**, 5295–5312. (doi:10.1111/j.1365-294X.2011.05353.x)
- 624 Noss RF. 1989 Longleaf pine and wiregrass: keystone components of an endangered ecosystem.
- 625 *Natural Areas Journal* 9, 211–213.
- 626 O'Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. 2005 Fungal community
- 627 analysis by large-scale sequencing of environmental samples. *Appl. Environ. Microbiol.* **71**,
- 628 5544–5550. (doi:10.1128/AEM.71.9.5544-5550.2005)
- 629 Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos
- 630 P, Stevens MHH, Wagner H. 2015 vegan: community ecology package. R package version
- 631 2.2-1. http://CRAN.R-project.org/package=vegan
- 632 Paradis E. 2010 pegas: an R package for population genetics with an integrated-modular
- 633 approach. *Bioinformatics* **26**, 419–420. (doi:10.1093/bioinformatics/btp696)
- 634 Peay KB, Kennedy PG, Bruns TD. 2008 Fungal community ecology: a hybrid beast with a
- 635 molecular master. *Bioscience* **58**, 799–810. (doi:10.1641/B580907)
- 636 Peterson CN, Day S, Wolfe BE, Ellison AM, Kolter R, Pringle A. 2008 A keystone predator
- 637 controls bacterial diversity in the pitcher-plant (*Sarracenia purpurea*) microecosystem.
- 638 *Environ. Microbiol.* **10**, 2257–2266. (doi:10.1111/j.1462-2920.2008.01648.x)

- 639 Porter SD, Savignano DA. 1990 Invasion of polygyne fire ants decimates native ants and
- 640 disrupts arthropod community. *Ecology* **71**, 2095–2106. (doi:10.2307/1938623)
- 641 Pyron RA, Burbrink FT. 2009 Lineage diversification in a widespread species: roles for niche
- 642 divergence and conservatism in the common kingsnake, *Lampropeltis getula*. Mol. Ecol. 18,
- 643 3443–3457. (doi:10.1111/j.1365-294X.2009.04292.x)
- R Core Team. 2015. R: a language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
- 646 Rønsted N, Weiblen GD, Cook JM, Salamin N, Machado CA, Savolainen V. 2005 60 million
- 647 years of co-divergence in the fig-wasp symbiosis. *Proc. R. Soc. B* 272, 2593–2599.
- 648 (doi:10.1098/rspb.2005.3249)
- 649 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA,
- 650 Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber
- 651 CF. 2009 Introducing mothur: open-source, platform-independent, community-supported
- 652 software for describing and comparing microbial communities. *Appl. Environ. Microbiol.* 75,
- 653 7537–7541. (doi:10.1128/AEM.01541-09)
- 654 Smith CI, Tank S, Godsoe W, Levenick J, Strand E, Esque T, Pellmyr O. 2011 Comparative
- 655 phylogeography of a coevolved community: concerted population expansions in Joshua trees
- and four yucca moths. *PLoS ONE* **6**, e25628. (doi:10.1371/journal.pone.0025628)
- 657 Smith BT, Amei A, Klicka J. 2012 Evaluating the role of contracting and expanding rainforest in
- 658 initiating cycles of speciation across the Isthmus of Panama. *Proc. R. Soc. B* 279, 3520–3526.
- 659 (doi:10.1098/rspb.2012.0706)

- 660 Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS. 2006 Comparative phylogeography
- of unglaciated eastern North America. Mol. Ecol. 15, 4261–4293. (doi:10.1111/j.1365-
- 662 294X.2006.03061.x)
- 663 Sota T, Kagata H, Ando Y, Utsumi S, Osono T. 2014 Metagenomic approach yields insights into
- fungal diversity and functioning. Species Diversity and Community Structure (pp. 1–23).
- 665 Springer Japan.
- 666 Stamatakis A. 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with
- thousands of taxa and mixed models. *Bioinformatics* **22**, 2688–2690.
- 668 (doi:10.1093/bioinformatics/btl446)
- 669 Stamatakis A, Hoover P, Rougemont J. 2008 A rapid bootstrap algorithm for the RAxML web
- 670 servers. *Syst. Biol.* **57**, 758–771. (doi:10.1080/10635150802429642)
- 671 Stuble KL, Kirkman LK, Carroll CR. 2009 Patterns of abundance of fire ants and native ants in a
- 672 native ecosystem. *Ecological Entomology* **34**, 520–526. (doi:10.1111/j.1365-
- 673 2311.2009.01098.x)
- 674 Tajima F. 1989 Statistical method for testing the neutral mutation hypothesis by DNA
- 675 polymorphism. *Genetics* **123**, 585–595.
- 676 Taylor JT, Turner E, Townsend JP, Dettman JR, Jacobson D. 2006 Eukaryotic microbes, species
- 677 recognition and the geographic limits of species: examples from the kingdom fungi. *Phil.*
- 678 *Trans. R. Soc. B.* **361**, 1947–1963. (doi:10.1098/rstb.2006.1923)
- 679 terHorst CP, Miller TE, Levitan DR. 2010 Evolution of prey in ecological time reduces the effect
- size of predators in experimental microcosms. *Ecology* **91**, 629–636. (doi:10.1890/09-
- 681 1481.1)

- 682 Tringe SG, Rubin EM. 2005 Metagenomics: DNA sequencing of environmental samples. *Nature*
- 683 *Reviews Genetics* **6**, 805–814. (doi:10.1038/nrg1709)
- 684 Weiblen GD, Bush GL. 2002 Speciation in fig pollinators and parasites. Mol. Ecol. 11, 1573-
- 685 1578. (doi:10.1046/j.1365-294X.2002.01529.x)
- 686 Weisrock DW, Janzen FJ. 2000 Comparative molecular phylogeography of North American
- 687 softshell turtles (*Apalone*): implications for regional and wide-scale historical evolutionary
- 688 forces. *Mol. Phyl. Evol.* **14**, 152–164. (doi:10.1006/mpev.1999.0689)
- 689 Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T. 2007 The genetic
- 690 basis of a plant-insect coevolutionary key innovation. Proc. Nat. Acad. Sci. 104, 20427–
- 691 20431. (doi:10.1073/pnas.0706229104)
- 692 Zellmer AJ, Hanes MM, Hird SM, Carstens BC. 2012 Deep phylogeographic structure and
- 693 environmental differentiation in the carnivorous plant Sarracenia alata. Syst. Biol. 61, 763–
- 694 777. (doi:10.1093/sysbio/sys048)
- 695 Zimmerman NB, Vitousek PM. 2012 Fungal endophyte communities reflect environmental
- 696 structuring across a Hawaiian landscape. *Proc. Nat. Acad. Sci.* **109**, 13022–13027.
- 697 (doi:10.1073/pnas.1209872109)

698

699

700

701

702

- 703
- 704

705	Figure Legends
706	Figure 1. Sampling distribution of Sarracenia alata in Louisiana. Sample sites are partitioned
707	based on side of the Mississippi River. Red circles represent Kisatchie (K) and Cooter's Bog (C)
708	in the west; blue squares represent Lake Ramsey (L), Abita Springs (A) and Talisheek (T) in the
709	east.
710	
711	Figure 2. Taxonomic composition of the OTUs for each sample site. Each site contains the
712	number of OTUs (N) and the major lineages in which they belong. See Supplemental Material
713	for full taxonomic information.
714	
715	Figure 3. Rarefaction curves of OTU richness at each sampling site.
716	
717	Figure 4. Population genetic structure for the inquiline community spanning the Mississippi
718	River. Results are shown from the AMOVA and GSI analyses. AMOVA analyses show the
719	hierarchical partitioning scheme of locales within regions (Φ_{SC}), locales within total distribution
720	(Φ_{ST}) , and between regions (Φ_{CT}) . GSI analyses represent the amount of allelic sorting on the
721	eastern and western sides of the Mississippi River. Dark cells indicate taxa with significant
722	genetic structure at the corresponding level; Table S2 contains specific values from each
723	analysis. See Carstens and Satler (2013) for sampling information for S. alata, as these samples
724	were collected from throughout the plant's distribution.

1

Sampling distribution of *Sarracenia alata* in Louisiana.

Sample sites are partitioned based on side of the Mississippi River. Red circles represent Kisatchie (K) and Cooter's Bog (C) in the west; blue squares represent Lake Ramsey (L), Abita Springs (A) and Talisheek (T) in the east.

2

Taxonomic composition of the OTUs for each sample site.

Each site contains the number of OTUs (*N*) and the major lineages in which they belong. See Supplemental Materials for full sampling information.

Manuscript to be reviewed

3

Rarefaction curves of OTU richness at each sampling site.

Rarefaction curves of OTU richness at each sampling site are shown with the number of OTUs plotted against the number of sequences.

4

Population genetic structure for the inquiline community spanning the Mississippi River.

Results are shown from the AMOVA and GSI analyses. AMOVA analyses show the hierarchical partitioning scheme of locales within regions (Φ_{sc}), locales within total distribution (Φ_{sT}), and between regions (Φ_{cT}). GSI analyses represent the amount of allelic sorting on the eastern and western sides of the Mississippi River. Dark cells indicate taxa with significant genetic structure at the corresponding level. See Table S2 for specific values from each analysis.

Manuscript to be reviewed

Table 1(on next page)

Table 1

Taxa included in the final comparative data set. Information for OTUs include number of sequences (N), their nearest BLAST hit (except for *S. alata*), nucleotide diversity (π), Watterson's theta (Θ_w) per site, Tajima's *D*, and G_{ST} . Significance of G_{ST} and Tajima's *D* (*D* following a beta distribution; Tajima, 1989) at $\alpha = 0.05$ is indicated with an asterisk (*).

Manuscript to be reviewed

- 1 Table 1. Taxa included in the final comparative data set. Information for OTUs include number
- 2 of sequences (N), their nearest BLAST hit (except for *S. alata*), nucleotide diversity (π) ,
- 3 Watterson's theta (Θ_w) per site, Tajima's *D*, and G_{ST}. Significance of G_{ST} and Tajima's *D* (*D*
- 4 following a beta distribution; Tajima, 1989) at $\alpha = 0.05$ is indicated with an asterisk (*).

Taxa	Ν	BLAST	π	Θ_{w}	Tajima's D	G _{ST}
Fungi1	52	Cladosporium sp. (Fungi)	0.0088	0.0244	-2.1585*	0.1099*
Fungi2	51	Fusarium annulatum (Fungi)	0.0130	0.0299	-2.0211*	0.2335
Fungi3	22	Curvularia sp. (Fungi)	0.0157	0.0272	-1.7148	0.1419
Fungi4	2507	Candida saitoana (Fungi)	0.0059	0.0918	-2.6902*	0.0025
Fungi5	97	Candida saitoana (Fungi)	0.0072	0.0203	-2.0520*	0.0514
Fungi6	168	Candida saitoana (Fungi)	0.0090	0.0187	-1.6674	0.0167
Fungi7	84	Candida saitoana (Fungi)	0.0088	0.0217	-2.0016*	0.0711
Fungi8	57	Candida quercitrusa (Fungi)	0.0134	0.0341	-2.0901*	0.1150
Fungi9	30	Candida saitoana (Fungi)	0.0010	0.0053	-2.3512*	0.0991
Fungi10	54	Candida saitoana (Fungi)	0.0050	0.0183	-2.3958*	0.0788
Fungi11	189	Mucor circinelloides (Fungi)	0.0078	0.0307	-2.3694*	0.0090
Fungi12	14	Uncultured soil fungus (Fungi)	0.0087	0.0100	-0.6488	0.2805
Fungi13	40	Uncultured fungus (Fungi)	0.0103	0.0125	-0.6810	0.2494
Fungi14	766	Fungal endophyte (Fungi)	0.0117	0.0586	-2.4374*	0.0052
Fungi15	15	Nigrospora sphaerica (Fungi)	0.0106	0.0188	-1.8028*	0.0451
Amoebozoal	227	Fuligo septica (Amoebozoa)	0.0042	0.0347	-2.6856*	0.0411
Alveolata1	18	Leptopharynx costatus (Alveolata)	0.0182	0.0324	-1.8094*	0.0418
Nematoda1	79	Nematoda sp. (Nematoda)	0.0150	0.0317	-1.8654*	0.4101
Nematoda2	154	Nematoda sp. (Nematoda)	0.0130	0.0174	-0.9456	0.2359
Nematoda3	21	Nematoda sp. (Nematoda)	0.0188	0.0170	0.2858	0.0624
Insect1	61	Brachymyrmex depilis (Insecta)	0.0122	0.0285	-2.0101*	0.0346
Insect2	37	Solenopsis xyloni (Insecta)	0.0208	0.0409	-1.8296*	0.0723

Manuscript to be reviewed

Insect3	41	Paratrechina hystrix (Insecta)	0.0081	0.0208	-2.1225*	0.2694
Mite1	828	Ovanoetus sp. (Acari)	0.0086	0.0620	-2.5727*	0.0150*
Mite2	30	Ovanoetus sp. (Acari)	0.0152	0.0348	-2.1831*	0.2911
Mite3	1071	Anoetus sp. (Acari)	0.0071	0.0678	-2.6276*	0.0101*
Mite4	56	Anoetus sp. (Acari)	0.0114	0.0242	-1.7765	0.0437
Mite5	34	Anoetus sp. (Acari)	0.0176	0.0219	-0.7551	0.1516
Mite6	50	Anoetus sp. (Acari)	0.0111	0.0197	-1.4951	0.0427
Mite7	45	Anoetus sp. (Acari)	0.0049	0.0098	-1.5594	0.0147
Unknown	66	No BLAST Match	0.0059	0.0198	-2.2971*	0.3539
Host plant	79	Sarracenia alata	0.0028	0.0034	-0.4521	0.8483*

5

6

Table 2(on next page)

Table 2

A chi-squared goodness of fit test was used to measure if the number of taxa with significant population genetic structure was more than would be expected by chance alone. Under a null model we would expect a significant result 5% of the time (assuming $\alpha = 0.05$). Results show that for many analyses, there are more OTUs with significant values than expected by chance, suggesting an association between many members of the community and the host pitcher plant.

1 Table 2. A chi-squared goodness of fit test was used to measure if the number of taxa with

2 significant population genetic structure was more than would be expected by chance alone.

3 Under a null model we would expect a significant result 5% of the time (assuming $\alpha = 0.05$).

4 Results show that for many analyses, there are more OTUs with significant values than expected

- 5 by chance, suggesting an association between many members of the community and the host
- 6 pitcher plant.

Test	χ^2	df	p-value	Number Significant	Total Taxa
Φ_{SC}	22.3612	1	2.26 X 10 ⁻⁶	7	29
Φ_{ST}	80.8004	1	2.20 X 10 ⁻¹⁶	12	29
Φ_{CT}	1.5263	1	0.22	0	29
G _{ST}	1.4278	1	0.23	3	31
GSI _E	20.1715	1	7.08 X 10 ⁻⁶	7	31
GSI _W	13.4482	1	2.45 X 10 ⁻⁴	6	31

7