The impact of containment policy and mobility on COVID-19 cases through structural equation model in Chile, Singapore, South Korea and Israel (#82138)

First submission

Guidance from your Editor

Please submit by 3 Mar 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 5 Figure file(s)
- 2 Table file(s)
- 1 Raw data file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The impact of containment policy and mobility on COVID-19 cases through structural equation model in Chile, Singapore, South Korea and Israel

jun jiao ¹, Leiyu Shi ², Manfei Yang ¹, Junyan Yang ¹, Meiheng Liu ¹, Gang Sun ^{Corresp. 1, 2}

Corresponding Author: Gang Sun Email address: sunhoney163@163.com

Objectives: The study aims to understand the impact of containment policy and mobility on COVID-19 cases in Chile, Singapore, South Korea and Israel. To provide experience in epidemic prevention and control. **Methods:** Structural equation modeling (SEM) of Containment policies, mobility, and COVID-19 cases were used to test and analyze the proposed hypotheses. **Results:** Chile, Israel and Singapore adopted containment strategies, focusing on closure measures. South Korea adopted a mitigation strategy with fewer closure measures, focusing on vaccination and severe case management. There was a significant negative relationship among Containment policies, mobility, and COVID-19 cases. **Conclusion:** To control the COVID-19 and slow down the increase of COVID-19 epidemic is more severe. Thus, countries can take measures from the following three aspects: strengthen the risk monitoring, and keep abreast of the COVID-19 risk; adjust closure measures in time and reduce mobility; and strengthen public education on COVID-19 prevention to motivate citizen to consciously adhere to preventive measures.

¹ Southern Medical University, Guangzhou, Guangdong, China

The Johns Hopkins University, Baltimore, United States

1	The impact of containment policy and mobility on COVID-19 cases through structural
2	equation model in Chile, Singapore, South Korea and Israel
3	
4	Authors: Jun Jiao ¹ , Leiyu Shi ² , Manfei Yang ¹ , Junyan Yang ¹ , Meiheng Liu ¹ , Gang Sun ^{1,2,*}
5	
6	1 Department of Health Management, School of Health Management, Southern Medical
7	University, Guangzhou, Guangdong, China
8	2 Department of Health Policy and Management, Bloomberg School of Public Health, Johns
9	Hopkins University, Baltimore, Maryland, USA
10	
11	*Corresponding Author: Gang Sun ^{1,2}
12	¹ Department of Health Management, School of Health Management, Southern Medical
13	University, Guangzhou, Guangdong, 510515, China
14	² Department of Health Policy and Management, Bloomberg School of Public Health, Johns
15	Hopkins University, Baltimore, MD, 21205, USA.
16	
17	Email address:
18	sunhoney163@163.com
19	gsun15@jhu.edu
20	
21	
22	
23	
24	
25	
26	

27

28

- Abstract
- 29 **Objectives:** The study aims to understand the impact of containment policy and mobility on
- 30 COVID-19 cases in Chile, Singapore, South Korea and Israel. To provide experience in epidemic
- 31 prevention and control.
- 32 Methods: Structural equation modeling (SEM) of Containment policies, mobility, and COVID-
- 33 19 cases were used to test and analyze the proposed hypotheses.
- 34 Results: Chile, Israel and Singapore adopted containment strategies, focusing on closure
- 35 measures. South Korea adopted a mitigation strategy with fewer closure measures, focusing on
- 36 vaccination and severe case management. There was a significant negative relationship among
- 37 Containment policies, mobility, and COVID-19 cases.
- 38 **Conclusion:** To control the COVID-19 and slow down the increase of COVID-19 cases, countries
- 39 can increase the stringency of containment policies when COVID-19 epidemic is more severe.
- 40 Thus, countries can take measures from the following three aspects: strengthen the risk monitoring,
- and keep abreast of the COVID-19 risk; adjust closure measures in time and reduce mobility; and
- 42 strengthen public education on COVID-19 prevention to motivate citizen to consciously adhere to
- 43 preventive measures.
- 44 **Keywords:** COVID-19, structural equation modeling, mobility, Containment policies

45

46

1 Introduction

- 47 COVID-19 still negatively affects normal life. WHO recommends a containment strategy in the
- 48 first stage of a pandemic, especially by actively tracing and isolating close contacts to prevent their
- 49 transformation into a chain of transmission, to stop as much transmission as possible, and
- 50 eventually make the pandemic disappear. As of May 1, 2022, there were 513,52,166 confirmed
- cases and 6,261,385 deaths worldwide.
- 52 Chile is a model country in the fight against COVID-19, making full use of big data to aid
- 53 government decision-making, establishing a platform for monitoring the movement, a proactive
- search system for asymptomatic cases, and a COVID-19 vaccine antibody response monitoring
- 55 program^{1,2}. Chile is active in vaccination, which is one of the highest vaccination rates in the
- world³. In the early stage of COVID-19, Singapore adopted strict border containment measures
- 57 through the containment strategy and initiated a graded diagnosis and treatment policy⁴. Singapore

began lockdown measures to isolate migrant workers on April 7, 2020⁵. After the vast majority of citizen vaccinated in 2022, Singapore was no longer pursued the "clean-up strategy" and declared coexistence with COVID-19. South Korea, in the early stages of COVID-19, implemented a containment strategy, escalated public alert levels, and entry control procedures. In response to cluster outbreaks, South Korea implemented a strict lockdown and 14-day quarantine⁶. Entering the Omicron, South Korea eased social restrictions, leading to a spike in COVID-19 cases. On April 30, 2022, 330, 000 people per million in South Korea had been infected. Israel is a superior student of vaccination, being the first country to fully vaccinate, the first to administer vaccine booster shots and the first to prescribe the fourth dose of vaccine^{7,8}. Israel's COVID-19 strategy is a mixture of vaccine policy and closure policy. During the Omicron period, Israel was the first country who declared lockdown. But on March 1, 2022, it lifted most of the restrictions on COVID-19, including the "gathering restriction". In this study, to provide opinions and suggestions on restoring normal production and life order, the structural equation model(SEM) of Containment policies, Mobility, and COVID-19 cases was constructed to test and analyze the proposed hypotheses.

≱

2 Research framework

Containment policies for COVID-19 were first implemented in Wuhan, China on January 23, 2020. These policies are collectively known as the Wuhan City Containment policy and include home quarantine, strict exit screening measures closure, a shutdown of public transportation, a ban on leaving Wuhan, and other Containment policies^{9,10}. Scholars have used a variety of statistical methods and models to analyze the effects of certain periods and geographic closure measures. In studies of early stages of COVID-19, it was shown that conducting a social restriction policy and limiting social distance was effective in reducing COVID-19 cases^{11,12}. Vincenzo Alfano's research estimated the impact of lockdown via feasible generalized least squares fixed effect. Their results show that lockdown is effective in reducing the number of new cases, and it can keep 20 days¹³. Hien Lau et al. 's study focused on the lockdown period in Wuhan, during which the increase rate of cases decreased¹⁴. But Billy J Quilty found that airport screening is unlikely to detect a sufficient proportion of 2019-nCoV infected travelers¹⁵. In addition, some scholars believe that containment policies are not sustainable policies, and long-term use would seriously affect the economy and normal production and life order⁹. What are the effects of containment policies in

the face of the long-term epidemic and constant variation of COVID-19? Thus, it was hypothesized that:

H1: Containment measures are negatively correlated with COVID-19 cases

Mobility is the public's response to the containment policies and the severity of the containment policies. Data of Google Mobility can effectively reflect the implementation of containment policies ^{16–19}. Many countries use movement restrictions as part of epidemic response ¹⁸. Jose Maria Martin Moreno et al. studied the relationship among Vaccinations, Mobility, and COVID-19 Transmission. The study highlights the significance of mobility in realizing the effectiveness of COVID-19 vaccines ¹⁶. Chenjing Fan's study believed that Migration may be the primary reason for the long-distance transmission of the disease, and proposed Containment policies ²⁰. The level of containment measures varies from country and period, with mandatory containment measures restricting access to people. And population movements may be exacerbated when containment policies are not in place or when there is a panic effect on the population about the virus ^{17,21,22}. In this paper, we study whether containment policies are related to mobility and how containment policies affect mobility. Thus, the following was hypothesized:

H2: Containment policies are negatively correlated with Mobility

In infectious diseases, mobility is strongly correlated with epidemic transmission^{19,23}. When people move, they take contagious diseases with them and spread them. And since COVID-19 is spread through respiratory droplets and indirect contact, the reduction of mobility and contact reduction can reduce the effective reproduction rate (R_t) and control the disease epidemic. The achievement of R_t <1 is necessary to stop the spread of infectious diseases^{24,25}. In most studies, mobility is mostly used as a moderating variable^{13,15,16}. Through modeling, Jayson S. Jia et al. found that mobility had a greater impact on COVID-19 spread in Hubei province, but a weaker impact outside Hubei Province²⁶. In addition, mobility is considered to be an important factor leading to long-distance infection and prone to cluster outbreaks, which is also an important factor to be paid attention to in the long-term response to COVID-19^{27,28}. Thus, the following was hypothesized:

H3: Mobility is positively correlated with COVID-19 cases

Figure 1 represents the research framework of this study. The novelty of this study is not only the systematic analysis of COVID-19 Containment policies, but also conducted an empirical study on the relationship among Containment policies, Mobility, and COVID-19 cases by constructing SEM

120 Figure 1 Research framework 121 122 3 Methods 123 3.1 Variables and Sources 124 In this article, we acquire the data on containment policies from Oxford COVID-19 Government 125 Response Tracker (https://github.com/OxCGRT/covid-policy-tracker). According to Oxford 126 127 COVID-19 Government Response Tracker, the study divided containment policies into the following tegories: school closing, workplace closing, cancel public events, restrictions on 128 gathering size, close public transport, stay-at-home requirement, and restrictions on international 129 travel and assigns a value of 0-5 according to their severity. The mobility data at the country level 130 collected from Community Mobility Reports provided by Google (https:/ 131 /www.google.com/covid19/mobility/). The Google Community Mobility Reports 132 population mobility data for six locations: retail and recreation, grocery and pharmacy, residential, 133 transit stations, parks, and workplaces. In this work, mobility has changed compared to baseline 134 days (the median value for the 5 weeks from January 3 to February 6, 2020). Data on COVID-19 135 136 cases from Coronavirus Resource Centre at Johns **Hopkins** University (https://coronavirus.jhu.edu/?from=groupmessage). Thus, we collected data on Containment 137 policies, Mobility, and COVID-19 cases in Chile, Singapore, South Korea and Israel from May 1, 138 2020, to April 30, 2022. Then, we take a set of data every six days and obtain a total of 488 sets 139 140 of data. 3.2 Structural Equation Modeling 141 142 SEM was used to measure the causal relationships between latent variable constructs. It was run by using AMOS 24. This study considered using SEM in constructing a model of the impact of 143 Containment policies – Mobility - COVID-19 cases. 144 145 4 Results 146 4.1 National trend of COVID-19 pandemic 147 As shown in Figure 2, overall, Trends of containment policies in four countries show an overall 148 decline and phase fluctuations, which is generally consistent with the timing of the mutant strain 149 in countries. And the total data in Chile is higher than in three other countries, especially in the 150

early period of COVID-19. Chile closed public places and workplaces for a long time, canceling 151 events, limited transportation, keep closing schools until the sanitary conditions allow a gradual 152 return. Singapore's trend is relatively smooth. The changes in containment policies are small and 153 return to the original state after a phased increase. Workplace closing and international travel 154 controls remain largely unchanged. In the beginning, South Korea's containment policies were at 155 a low level, and only school closing and international travel controls measures were taken. And 156 public transport has never been shut down. South Korea only retained international travel controls 157 after April 18, 2022. Israel's trend fluctuates greatly, showing a trend of sharp increase and sharp 158 decline. The policy changes come from three policy changes: cancel public events, stay at home 159 requirements, and restrictions on internal movement. 160 As shown in Figure 3, T1 to T6 are mobility data of places in retail and recreation, grocery and 161 pharmacy, residential, transit stations, parks, and workplaces. For T1-retail and recreation, for 162 most of the time, all four countries were below the baseline, showing an overall upward trend. But 163 Chile in December 2021 and South Korea in June and December 2021 is above the baseline. For 164 T2-grocery and pharmacy, there are much differences among four countries. For T3-residential, 165 166 Chile, Singapore and the early period of Israel were higher than baseline, and in others has no obvious change compared with baseline. For T4-transit stations, others are below the baseline, 167 168 except for Chile which is above the baseline after October 2021. For T5-parks, there are two trends. In Chile and Singapore, the trend of T5 is lower than baseline. However, in South Korea and Israel, 169 170 trends are wild fluctuation and great higher than baseline, especially in South Korea. And the trend of T6-workplaces is similar as T4. 171 As shown in Figure 4, the rank of total cases in South Korea, Israel, Chile, and Singapore. For total 172 cases per million n, Chile is 185,226.106 cases per million, Singapore is 218,800.43 cases per 173 174 million, South Korea is 336,723.26 cases per million, Israel is 438,715.32 cases per million. 175 Figure 2 Trend of containment policies 176 177 178 179

Figure 3 Trend of mobility in Chile, Singapore, South Korea, and Israel (compared to baseline days -the median value for the 5 weeks from January 3 to February 6, 2020)

180 181 182

Figure 4 Total cases of COVID-19

184

185

186

187

188

189

190

191

192

193

194

4.2 Structural Equation Modeling

In this study, the Person correlation analysis was used to examine the relationship between latent variables used within the research scope, and the results were presented in Table 1. A significant correlation was observed among the three (P<0.001). There was a negative correlation between containment policies and mobility (r = -0.662, P=0.00<0.001) and COVID-19 cases (r = -0.276, P=0.00<0.001). There was a positive correlation between mobility and COVID-19 cases (r = 0.176, P=0.00<0.001). The two variables that were found to have a higher relationship level than other variables in the study were containment policies related to mobility. The relationship between these two variables was seen to be positive and moderate (r = -0.662, P=0.00<0.001). Furthermore, the weakest positive relationship between the variables was found between mobility and COVID-19 cases (r = 0.176, P=0.00<0.001).

195 196

Table 1 Correlation values between scales.

197

- 198 Before building the SEM, we tested the measurement models. After model modification, mobility
- and COVID-19 cases retained 3 factors respectively, which was exact identification, while
- 200 containment policies retained 4 factors, which showed excellent fitting levels ($\chi^2/SD=1.78$,
- 201 GFI=0.99, AGFI=0.98, NFI=0.99, RMSEA=0.04, CFI=0.99)²⁹.
- 202 In this stage, the impact of containment policies, mobility, and COVID-19 cases was investigated
- 203 through SEM. Whether or not the measurement models were validated was then analyzed with
- 204 Chi-square , χ^2 /SD, GFI, AGFI, NFI, RMSEA, and CFI fit indices.
- In the testing of the final model, the paths between the variables and the model were found to be
- significant at the 0.001 level. The fit indices of the hypothetical model were calculated as $\chi 2/SD =$
- 9.26. Moreover, it was determined to have acceptable values of GFI = 0.91, AGFI = 0.84, NFI =
- 0.92, RMSEA = 0.13, and CFI = 0.93. These values reveal that the fit indices of the model can be
- 209 considered as either good or within acceptable limits. The final SEM model is presented in Figure

210 5.

211212

Figure 5 Final SEM model in this study

- 214 Moreover, Error! Reference source not found. presents the variance values, standard error, P,
- and standardized regression coefficients explained in the model regarding direct affection. After

correction, all paths pass the significance test.

217

216

Table 2 Revised model path analysis results

218219220

221

222

223

224

225

226

227

228

229

230

231

The standardized regression coefficient between containment policies and mobility was found to be -0.84. This value indicates that there is a negative correlation between them. Moreover, containment policies are a strong influence factor on mobility. This result confirms the first hypothesis of the study (H1: Containment measures are negatively correlated with COVID-19 cases). The standardized regression coefficient between mobility and COVID-19 cases was found to be -0.29, which is a weak negative correlation. In other words, the regression weight for mobility in the prediction of COVID-19 cases is significantly different from zero at the 0.01 level. This result is inconsistent with the third hypothesis of the study (H3: Mobility is positively correlated with COVID-19 cases). The standardized regression coefficient between containment policies and COVID-19 cases was found to be -0.45. This result indicated that there was a moderate negative correlation between containment policies and COVID-19 cases found. This result confirms the second hypothesis of the study (H2: Containment policies are negatively correlated with Mobility).

232

233

5 Discussion

- 234 This study describes the Containment policies, Mobility, and COVID-19 cases in Chile, Singapore,
- South Korea and Israel in response to COVID-19. Chile, Israel and Singapore adopted containment
- 236 strategies that focused on closure policies. Chile strictly managed population management and
- border closures. Israel focused on entry control, and Singapore adopted a regular blockade. In
- 238 contrast, South Korea adopted a mitigation strategy, consistently refraining from a large-scale
- 239 closure policy and focusing on vaccines and severe cases.
- 240 In addition, SEM of Containment policies, Mobility, and COVID-19 cases was used to test and
- 241 analyze the proposed hypotheses. In COVID-19, Containment policies, Mobility, and COVID-19
- 242 cases were significantly and negatively related to each other. This paper discusses the three
- 243 previously proposed hypotheses and provides targeted recommendations for responding to
- 244 COVID-19.

245

5.1 National Containment policies, and mobility

- 246 In response to COVID-19, four countries have adopted different containment policies. mobility
- 247 reflects the extent to which people are implementing policies and is reflected in COVID-19 case

data. In this study, Chile, Israel and Singapore adopted containment strategies, focusing on the 248 effect of lockdown measures and social restriction policies, which used lockdown to block 249 epidemic spread. South Korea has adopted a mitigation strategy that focuses less on lockdown and 250 more on vaccination and severe case management. 251 In the early stages of COVID-19, Chile attached importance to containment policies and focused 252 253 on population management and border closing. Home quarantine was mandatory when Chile announced into "national disaster". In the global push for vaccination, Chile has seized the 254 opportunity to accelerate vaccination far faster than any other country in the Americas^{1,30}. Since 255 Chile began mass vaccination in February 2021, mobility and COVID-19 cases have increased. 256 Some academics have suggested that the rapid and effective vaccination campaign gave the 257 Chilean government and people a false sense of security, lifting closure measures too early and 258 causing too many people to traveling^{2,31}. 259 Like Chile, Israel is a vaccination star⁸. Israel is very sensitive to the use of containment policies, 260 261 that is, policies are very variable and change with COVID-19. Israel has also seen the biggest change in blockade policy among the four countries. Among the containment policies, Israel has 262 263 focused on entry control measures. Since Israel is a small country, most arrivals go through its only international airport, making entry control measures easier to implement³². Due to the rapid 264 265 change of containment policies, Israel used Traffic Light Model to show the epidemic level in the region, so that the public could learn about it in time. However, the epidemic began to increase 266 267 rapidly in 2022. On March 1, 2022, Israel announced the full opening of its borders, leading to an increase in COVID-19 cases. 268 Singapore responded quickly to COVID-19, preventing imported cases through a strict border 269 policy. In the face of cluster outbreaks, Singapore promptly took lockdown measures to block the 270 271 epidemic³³. Although Singapore's containment policies have not changed much, they are much 272 lower than those of the other three countries. Its mobility, except residential, is largely below the baseline. Even after Singapore's containment policies, mobility did not surge rapidly but steadily 273 and slowly increased. This shows that the Singaporean people have a clear understanding of 274 COVID-19. In practice, the regular lockdown measures are appropriate for Singapore⁴. 275 276 South Korea has implemented a mitigation strategy in response to COVID-19. The severity of the lockdown policy remained at a low level and there was not any large-scale lockdown. For 277 containment policy, South Korea mainly maintained school closing and international travel 278

controls. In the early stages of COVID-19, South Korea responded to COVID-19 well, with 279 COVID-19 cases at a low level. In addition, South Korea has set up drive-through nucleic acid 280 testing sites and adopted an aggressive testing strategy to identify COVID-19 patients³⁴. The 281 turning point of COVID-19 in South Korea came in 2022. The omicron epidemic came as South 282 Korea relaxed quarantine measures, easing border controls and pushing home quarantine policies. 283 Polls in South Korea show that only a minority support strict lockdown policies, while majority 284 support easing them, and there were gatherings for people infected with COVID-19. In this case, 285 South Korea has further eased containment policies, and the daily COVID-19 cases became the 286 highest in the world. 287

288289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

5.2 SEM model of Containment policies, mobility, and COVID-19 cases

Through the testing and revision of the model, the study found that there was a significant negative relationship among Containment policies, Mobility, and COVID-19 cases. In addition, the model shows that mobility and COVID-19 cases contradict the hypothesis. The results of the final SEM model are explained here. In the final SEM model, containment policies retain school closing, workplace closing, close public transport, and stay-at-home requirement: all of the four factors are policies to limit outgoings. In mobility, the three factors of the data of retail and recreation, grocery and pharmacy, and parks were retained, showing different trends in the four countries. COVID-19 cases retain the three factors of total cases, new cases, and new cases per million, which not only retain the overall case indicators but also pay attention to changing trends and national population data. The results of this study point out that, first, there is a strong negative correlation between containment policies and COVID-19 cases, that is, COVID-19 cases decrease as the severity of containment policies increases. In response to the sudden COVID-19, many countries began to implement travel restrictions and border prevention and control policies, which are also effective ways to reduce COVID-19 cases entering the country^{15,35}. Among containment policies included in the final model, the effect of the stay-at-home requirement (C6) on containment policies was the most significant, with factor loading reaching 0.93 under normalization. The stay-at-home requirement policy includes curfew, home isolation, banned for unessential activities, etc., which is also the most changed policy among containment policies of the four countries. Its audience is all citizens, which is also one of the important policies that require whole citizen^{36,37}. The school

closing, workplace closing and close public transport policies are all closed policies targeted at 310 specific regions. However, COVID-19 is still in a long-term trend, and prolonged containment 311 policies harm social and economic development³⁸. However, we cannot deny the effect of 312 containment policies on controlling COVID-19. Under such circumstances, the country should 313 take appropriate containment policies following the trend of COVID-19, and implement relaxed 314 containment policies that are easy to implement when COVID-19 enters into the normal period, 315 so that COVID-19 prevention and control and economic development should be carried out 316 simultaneously. This requires real-time monitoring and analysis of COVID-19 situation at home 317 and abroad, and timely adjustment of the severity of policies. 318 Secondly, there is a moderate negative correlation between containment policies and mobility, that 319 is, mobility decreases with the increase in the severity of containment policies. In the early stage 320 of COVID-19, when the pathogenicity, transmission ways, mortality, and other characteristics of 321 virus are not clear, there is a certain fear of COVID-19, and people tend to obey the policy 322 arrangements and reduce mobility. And poor people are more vulnerable to COVID-1939,40. 323 Mobility reflects the influence of the stay-at-home requirement policy through T3-Residential. The 324 325 residential mobility in Chile and Singapore are both above the baseline, which shows that they implement strict stay-at-home requirement policies. Strong containment policies can effectively 326 327 reduce mobility. Research by Matan Yechezkel also points out that in Israel closure policies have had a marked effect on mobility, especially the elderly 41. And people's perceptions of epidemic 328 329 risk also play a role in their response behavior. The more people perceive a higher epidemic risk, the more they tend to take protective measures. By 2021, when some countries began to downplay 330 COVID-19, reduce the stringency of containment policies, and accelerate the resumption of work 331 and production, the population's perception of the epidemic risk began to shift. Response behaviors 332 333 showed by mobility have also changed, as evidenced by increased mobility in public places. The government should strictly review the publicity of COVID-19 and policies, and enhance public 334 education, which enable the citizen to consciously implement the containment policy and reduce 335 mobility.5 336 The last but not least, there was a weak negative correlation between mobility and COVID-19 337 338 cases, that is the number of COVID-19 cases decreased with increased mobility. This is contrary to our hypothesis H3. Yun Li's study suggests that mobility may not always directly affect COVID-339 19 trends⁴². For this reason, this study identifies a significant change in mobility of some countries 340

after 2021. In Korea and Israel, park mobility figures remain high and much higher than at-home 341 mobility. Stepping into the Omicron epidemic, the proportion of asymptomatic infections 342 increases, and combined with the immune escape nature of the omicron variant, it is difficult to 343 detect the virus with a single nucleic acid test^{43,44}. The population perceives itself to be 344 asymptomatic and delays or even does not seek medical care, which may lack case data but is 345 exacerbated by population mobility. In addition, in the person correlation test, mobility and 346 COVID-19 cases were positively correlated. In the person correlation, the data on mobility 347 included data from public places and also from residential; however, the SEM screened 3 factors. 348 We believe this may be the reason for the contradictory paths of person correlation and the SEM. 349

350

351

6 Conclusion

- 352 The study used the SEM to analyze the impact of Containment policy and Mobility on COVID-19
- cases in Chile, Singapore, South Korea and Israel. Chile, Israel and Singapore adopted containment
- 354 strategies, focusing on the effect of containment policies. South Korea adopted a mitigation
- 355 strategy that focuses less on containment policies and more on vaccination and severe case
- management. In COVID-19, there is a significant negative relationship among Containment
- policies, Mobility, and COVID-19 cases.
- To control the COVID-19 and slow down the increase of COVID-19 cases, countries can increase
- 359 the stringency of containment policies when COVID-19 epidemic is more severe. Thus, countries
- 360 can take measures from the following three aspects: strengthen the risk monitoring, and keep
- abreast of the COVID-19 risk; adjust closure measures in time and reduce mobility; and strengthen
- public education on COVID-19 prevention to motivate citizen to consciously adhere to preventive
- measures.

- 365 *Ethics of Approval and Consent to Participate:* This study did not involve ethical issues.
- 366 **Patient and Public Involvement statement:** No patient and public were involved in this analysis.
- 367 *Consent for Publication:* Not applicable.
- 368 Availability of data and material: The datasets analyzed during the current study are available in
- 369 Oxford COVID-19 Government Response Tracker (https://github.com/OxCGRT/covid-policy-
- 370 tracker), Google (https://www.google.com/covid19/mobility/), Johns Hopkins University
- 371 (https://coronavirus.jhu.edu/?from=groupmessage).

PeerJ

372	Competing Interests: The authors have no conflicts of interest to declare.
373	Acknowledgments: The authors gratefully acknowledge the study participants who have been
374	involved and contributed to the paper. The authors gratefully acknowledge the financial supports
375	by the Natural Science Foundation of Guangdong Province (No.2022A1515011112).
376	Funding: This study was supported by the Natural Science Foundation of Guangdong Province
377	(No.2022A1515011112).
378	Authorship contributions: JJ and GS conceived the paper. MY, JY, and ML collected the data. JJ
379	drafted the manuscript. LS and MY revised the manuscript. GS contributed to the critical revision
380	of the manuscript for important intellectual content and approved the final version of the
381	manuscript. All authors have read and approved the final manuscript. JJ and GS are the study
382	guarantors.
383	

384 **Reference**

- 385 1. Castillo C, Villalobos Dintrans P, Maddaleno M. The successful COVID-19 vaccine rollout in Chile:
- 386 Factors and challenges. *Vaccine X*. 2021;9:100114. doi:10.1016/j.jvacx.2021.100114
- 387 2. N, P, R. Chile Sees New Wave Of COVID-19 Infections Despite Rapid Vaccine Distribution. NPR.
- 388 https://www.npr.org/2021/04/04/984203749/chile-sees-new-wave-of-covid-19-infections-despite-rapid-
- vaccine-distribution. Published April 4, 2021. Accessed June 17, 2022.
- 390 3. Ritchie H, Mathieu E, Rodés-Guirao L, et al. Coronavirus Pandemic (COVID-19). Our World Data. March
- 391 2020. https://ourworldindata.org/covid-vaccinations. Accessed June 27, 2022.
- 392 4. Wang X, Shi L, Zhang Y, Chen H, Sun G. Policy disparities in fighting COVID-19 among Japan, Italy,
- 393 Singapore and China. Int J Equity Health. 2021;20(1):33. doi:10.1186/s12939-020-01374-2
- 5. Chen H, Shi L, Zhang Y, Wang X, Sun G. A cross-country core strategy comparison in China, Japan,
- 395 Singapore and South Korea during the early COVID-19 pandemic. *Glob Health*. 2021;17(1):22.
- 396 doi:10.1186/s12992-021-00672-w
- 397 6. Chen H, Shi L, Zhang Y, Wang X, Sun G. Policy Disparities in Response to COVID-19 between China and
- 398 South Korea: *J Epidemiol Glob Health*. 2021;11(2):246. doi:10.2991/jegh.k.210322.001
- 399 7. Regev-Yochay G, Gonen T, Gilboa M, et al. Efficacy of a Fourth Dose of Covid-19 mRNA Vaccine against
- 400 Omicron. N Engl J Med. 2022;386(14):1377-1380. doi:10.1056/NEJMc2202542
- 401 8. Andrews N, Stowe J, Kirsebom F, et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529)
- 402 Variant. N Engl J Med. March 2022. doi:10.1056/NEJMoa2119451
- 403 9. Kumar A, Priya B, Srivastava SK. Response to the COVID-19: Understanding implications of government
- 404 lockdown policies. J Policy Model. 2021;43(1):76-94. doi:10.1016/j.jpolmod.2020.09.001
- 405 10. Caristia S, Ferranti M, Skrami E, et al. Effect of national and local lockdowns on the control of COVID-19
- 406 pandemic: a rapid review. Epidemiol Prev. 2020;44(5-6 Suppl 2):60-68. doi:10.19191/EP20.5-6.S2.104
- 407 11. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ. Physical distancing, face masks, and eye
- 408 protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and
- 409 meta-analysis. Lancet Lond Engl. 2020;395(10242):1973-1987. doi:10.1016/S0140-6736(20)31142-9
- 410 12. McGrail DJ, Dai J, McAndrews KM, Kalluri R. Enacting national social distancing policies corresponds
- 411 with dramatic reduction in COVID19 infection rates. PLoS ONE. 2020;15(7):e0236619.
- 412 doi:10.1371/journal.pone.0236619
- 413 13. Alfano V, Ercolano S. The Efficacy of Lockdown Against COVID-19: A Cross-Country Panel Analysis.
- 414 Appl Health Econ Health Policy. 2020;18(4):509-517. doi:10.1007/s40258-020-00596-3
- 415 14. Lau H, Khosrawipour V, Kocbach P, et al. The positive impact of lockdown in Wuhan on containing the
- 416 COVID-19 outbreak in China. J Travel Med. 2020;27(3):taaa037. doi:10.1093/jtm/taaa037
- 417 15. Quilty BJ, Clifford S, Group 2 C nCoV working, Flasche S, Eggo RM. Effectiveness of airport screening at
- 418 detecting travellers infected with novel coronavirus (2019-nCoV). Eurosurveillance. 2020;25(5):2000080.
- 419 doi:10.2807/1560-7917.ES.2020.25.5.2000080
- 420 16. Guo J, Deng C, Gu F. Vaccinations, Mobility and COVID-19 Transmission. Int J Environ Res Public
- 421 *Health*. 2021;19(1):97. doi:10.3390/ijerph19010097
- 422 17. Fang H, Wang L, Yang Y. Human mobility restrictions and the spread of the Novel Coronavirus (2019-
- 423 nCoV) in China. J Public Econ. 2020;191:104272. doi:10.1016/j.jpubeco.2020.104272
- 424 18. Charu V, Zeger S, Gog J, et al. Human mobility and the spatial transmission of influenza in the United
- 425 States. *PLoS Comput Biol.* 2017;13(2):e1005382. doi:10.1371/journal.pcbi.1005382
- 426 19. Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A. Multiscale mobility networks and
- 427 the spatial spreading of infectious diseases. Proc Natl Acad Sci. 2009;106(51):21484-21489.
- 428 doi:10.1073/pnas.0906910106
- 429 20. Fan C, Cai T, Gai Z, Wu Y. The Relationship between the Migrant Population's Migration Network and
- 430 the Risk of COVID-19 Transmission in China—Empirical Analysis and Prediction in Prefecture-Level Cities.
- 431 Int J Environ Res Public Health. 2020;17(8):2630. doi:10.3390/ijerph17082630
- 432 21. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan,
- 433 China. Lancet Lond Engl. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5
- 434 22. Jiao J, Shi L, Zhang Y, et al. Core policies disparity response to COVID-19 among BRICS countries. *Int J*
- 435 *Equity Health.* 2022;21. doi:10.1186/s12939-021-01614-z

- 436 23. Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT. Synchrony, Waves, and Spatial
- 437 Hierarchies in the Spread of Influenza. Science. 2006;312(5772):447-451. doi:10.1126/science.1125237
- 438 24. Noland RB. Mobility and the effective reproduction rate of COVID-19. *J Transp Health*. 2021;20:101016.
- 439 doi:10.1016/j.jth.2021.101016
- 440 25. Yang C, Ma QY, Zheng YH, Yang YX. Transmission routes of 2019-novel coronavirus (2019-nCoV).
- 441 Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(4):374-377. doi:10.3760/cma.j.cn112150-20200216-0016
- 442 26. Jia JS, Lu X, Yuan Y, Xu G, Jia J, Christakis NA. Population flow drives spatio-temporal distribution of
- 443 COVID-19 in China. *Nature*. 2020;582(7812):389-394. doi:10.1038/s41586-020-2284-y
- 27. Chen S, Yang J, Yang W, Wang C, Bärnighausen T. COVID-19 control in China during mass population
- 445 movements at New Year. *Lancet Lond Engl.* 2020;395(10226):764-766. doi:10.1016/S0140-6736(20)30421-9
- 446 28. Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel
- 447 coronavirus (COVID-19) outbreak. *Science*. 2020;368(6489):395-400. doi:10.1126/science.aba9757
- 448 29. Iacobucci D. Structural equations modeling: Fit Indices, sample size, and advanced topics. *J Consum*
- 449 *Psychol.* 2010;20(1):90-98. doi:10.1016/j.jcps.2009.09.003
- 450 30. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int. Accessed June 17, 2022.
- 451 31. Taylor L. Covid-19: Spike in cases in Chile is blamed on people mixing after first vaccine shot. BMJ.
- 452 2021;373:n1023. doi:10.1136/bmj.n1023
- 453 32. Goldberg Y, Mandel M, Bar-On YM, et al. Waning Immunity after the BNT162b2 Vaccine in Israel. N
- 454 Engl J Med. October 2021:NEJMoa2114228. doi:10.1056/NEJMoa2114228
- 455 33. Tan JB, Cook MJ, Logan P, Rozanova L, Wilder-Smith A. Singapore's Pandemic Preparedness: An
- 456 Overview of the First Wave of COVID-19. Int J Environ Res Public Health. 2021;18(1):252.
- 457 doi:10.3390/ijerph18010252
- 458 34. Kim S, Castro MC. Spatiotemporal pattern of COVID-19 and government response in South Korea (as of
- 459 May 31, 2020). Int J Infect Dis. 2020;98:328-333. doi:10.1016/j.ijid.2020.07.004
- 460 35. Pham QD, Stuart RM, Nguyen TV, et al. Estimating and mitigating the risk of COVID-19 epidemic rebound
- associated with reopening of international borders in Vietnam: a modelling study. Lancet Glob Health. April
- 462 2021. doi:10.1016/S2214-109X(21)00103-0
- 463 36. Wang X, Shi L, Zhang Y, Chen H, Sun G. Coping with COVID-19: Core Elements of Lockdown Wuhan
- 464 City Policy. J Health Care Poor Underserved. 2021;32(1):373-385. doi:10.1353/hpu.2021.0029
- 465 37. Paital B, Das K, Parida SK. Internation social lockdown versus medical care against COVID-19, a mild
- 466 environmental insight with special reference to India. Sci Total Environ. 2020;728:138914.
- 467 doi:10.1016/j.scitotenv.2020.138914
- 468 38. Atim MG, Kajogoo VD, Amare D, et al. COVID-19 and Health Sector Development Plans in Africa: The
- 469 Impact on Maternal and Child Health Outcomes in Uganda. Risk Manag Healthc Policy. 2021;14:4353-4360.
- 470 doi:10.2147/RMHP.S328004
- 471 39. Papageorge NW, Zahn MV, Belot M, et al. Socio-demographic factors associated with self-protecting
- 472 behavior during the Covid-19 pandemic. *J Popul Econ.* 2021;34(2):691-738. doi:10.1007/s00148-020-00818-x
- 473 40. Wang K, Wong ELY, Ho KF, et al. Unequal availability of workplace policy for prevention of coronavirus
- 474 disease 2019 across occupations and its relationship with personal protection behaviours: a cross-sectional
- 475 survey. Int J Equity Health. 2021;20(1):200. doi:10.1186/s12939-021-01527-x
- 476 41. Yechezkel M, Weiss A, Rejwan I, Shahmoon E, Ben-Gal S, Yamin D. Human mobility and poverty as key
- 477 drivers of COVID-19 transmission and control. *BMC Public Health*. 2021;21(1):596. doi:10.1186/s12889-021-
- 478 10561-x
- 479 42. Li Y, Li M, Rice M, et al. The Impact of Policy Measures on Human Mobility, COVID-19 Cases, and
- 480 Mortality in the US: A Spatiotemporal Perspective. Int J Environ Res Public Health. 2021;18(3):996.
- 481 doi:10.3390/ijerph18030996
- 482 43. Kannan S, Shaik Syed Ali P, Sheeza A. Omicron (B.1.1.529) variant of concern molecular profile and
- 483 epidemiology: a mini review. Eur Rev Med Pharmacol Sci. 2021;25(24):8019-8022.
- 484 doi:10.26355/eurrev 202112 27653
- 485 44. Bruel T, Hadjadj J, Maes P, et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and
- 486 BA.2 in patients receiving monoclonal antibodies. *Nat Med.* March 2022. doi:10.1038/s41591-022-01792-5

Figure 1 Research framework

Figure 1 Research framework

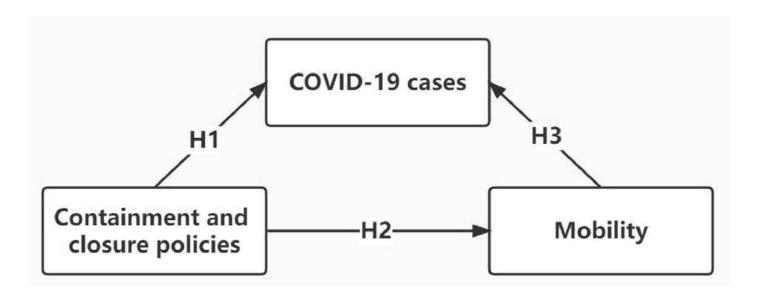


Figure 2 Trend of containment policies

Figure 2 Trend of containment policies

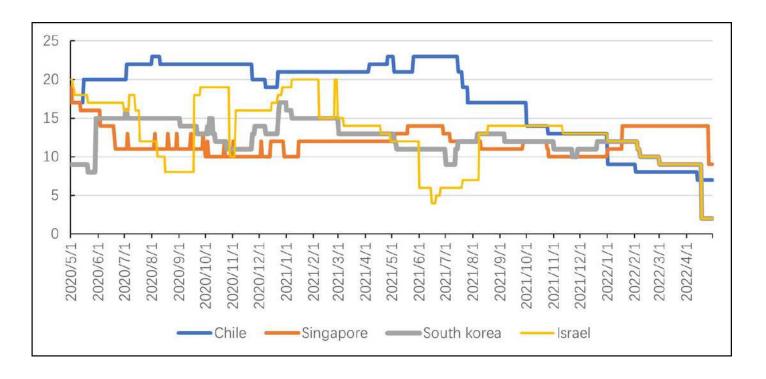


Figure 3 Trend of mobility in Chile, Singapore, South Korea, and Israel (compared to baseline days -the median value for the 5 weeks from January 3 to February 6, 2020)

Figure 3 Trend of mobility in Chile, Singapore, South Korea, and Israel (compared to baseline days -the median value for the 5 weeks from January 3 to February 6, 2020)

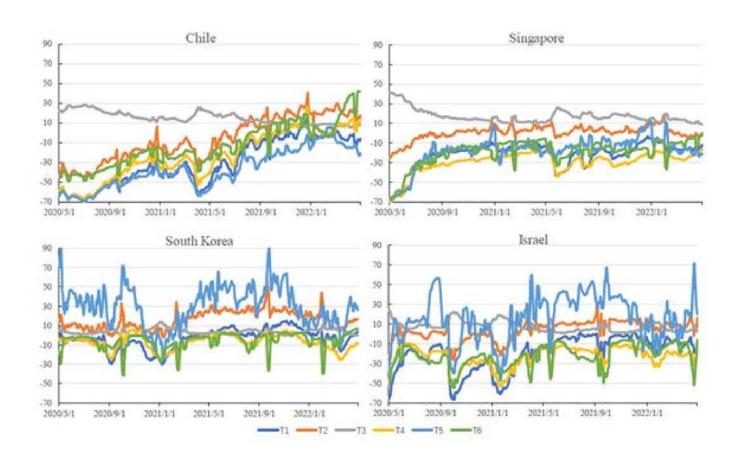


Figure 4 Total cases of COVID-19

Figure 4 Total cases of COVID-19

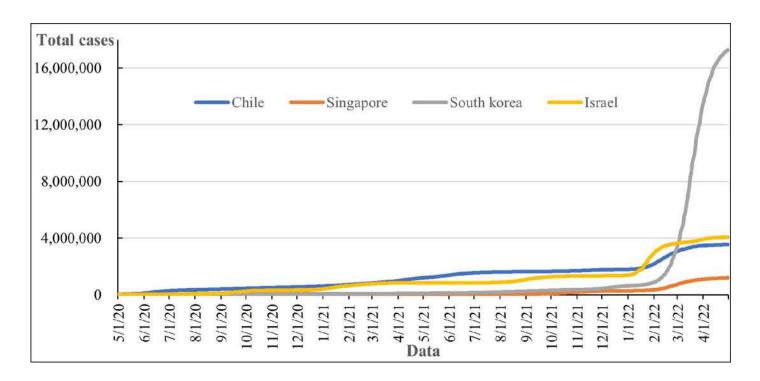
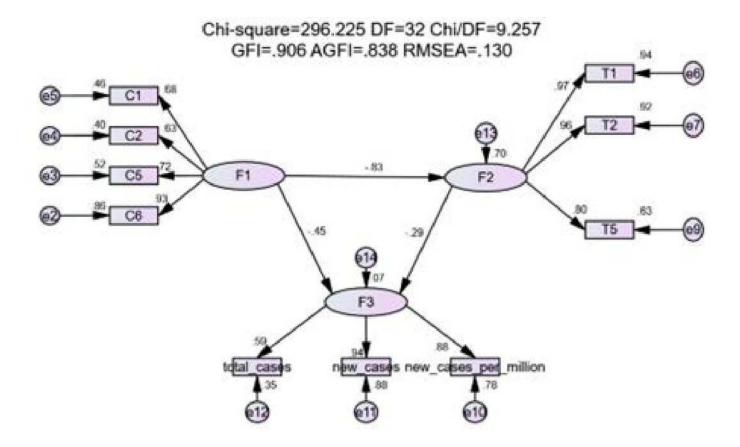



Figure 5 Final SEM model in this study

Figure 5 Final SEM model in this study

Table 1(on next page)

Table 1 Correlation values between scales.

Table 1 Correlation values between scales.

1

Table 1 Correlation values between scales.

Scale	Containment	Mobility	COVID-19 cases
	policies		
Containment	1	-0.66**	-0.28**
policies			
Mobility		1	0.18**
COVID-19 cases			1

2 ***P< 0.001

Table 2(on next page)

Table 2 Revised model path analysis results

Table 2 Revised model path analysis results

Table 1 Revised model path analysis results

Path		Unstd.	Std.	S.E.	P
F2	F1	-25.49	-0.84	1.60	***
F3	F2	-17696.80	-0.29	6248.70	0.005
F3	F1	-831755.49	-0.45	203669.52	***
F1	C1	1	0.68	0.09	***
	C2	0.76	0.63	0.05	***
	C5	0.71	0.72	0.06	***
	C6	1.56	0.93		
F2	T1	1	0.97		
	T2	0.81	0.96	0.02	***
	T5	1.40	0.80	0.05	***
F3	B1	1	0.60		
	B2	0.04	0.94	0.01	***
	B4	0.01	0.88	0.00	***

2 ***P< 0.001