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ABSTRACT
Background. Understanding morpho-genetic diversity and differentiation of species
with relatively large distributions is crucial for the conservation and sustainablemanage-
ment of their genetic resources. The present study focused onAnnona senegalensis Pers.,
an important multipurpose wild plant, distributed exclusively in natural ecosystems
but facing several threats. The study assessed the genetic and morphological diversity,
structure, and differentiation of the species in populations from Western (Benin)
and Southern (Mozambique) Africa. The material was evaluated to ascertain the
environmental (climatic) determinants of the variation within this species.
Methods. Four sub-populations comprised of 154 individuals were phenotyped based
on nineteen plant, fruit, and leaf morphological traits and further genotyped using ten
polymorphic nuclear microsatellite (nSSR) markers.
Results. The results indicated strong differences in plant, fruit, and leaf morphological
traits between Western and Southern populations. Furthermore, the studied popula-
tions were characterized by high genetic diversity, with an average genetic diversity
index of 1.02. Western populations showed higher heterozygosity values (0.61–0.71)
than Southern populations (0.41–0.49).Western and Southern populationswere clearly
differentiated into two different genetic groups, with further genetic subdivisions
reflecting four sub-populations. Genetic variation between regions (populations) was
higher (69.1%) than among (21.3%) and within (9.6%) sub-populations. Four distinct
morphological clusters were obtained, which were strongly associated with the four
genetic groups representing each sub-population. Climate, mainly precipitation and
temperature indexes, explained the relatively higher variation found in morphological
traits fromWestern (40.47%) in relation to Southern (27.98%) populations. Our study
suggests that both environmental and genetic dynamics play an important role in the
development of morphological variation in A. senegalensis.
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INTRODUCTION
The change in land use and climate are fragmenting the natural habitats of many useful
wild edible fruit trees (Anuragi et al., 2016). As a consequence, some of these species are
threatened and have a narrow or fragmented distribution (Chichorro, Juslén & Cardoso,
2019; IUCN, 2022). Sustainable management and conservation of such useful species
require a better understanding of the existing diversity to utilize their potential efficiently.
However, such information is available for only a limited number of species, and many
species are yet to be documented.

Population diversity quantifies the magnitude of genetic and morphological variability
within a population (Hughes et al., 2008). The more diverse a population is, the more
it can adapt to a changing environment (Sheidai et al., 2014). Morphological traits have
been used as a tool to characterize the unexplored potential of germplasm for developing
elite genotypes, i.e., more resilient, productive, and nutritive (Folorunso & Modupe, 2007).
Yet, the morphological variability observed in wild populations is usually the expression
of the signal of genetic diversity shaped by environmental conditions. For instance,
the morphological variability of Prunus serotina Ehrh was influenced by temperature
and precipitation extremes (Guzmán, Segura & Fresnedo-Ramírez, 2018). Likewise, Vitex
doniana Sweet was influenced by environmental traits, mainly climate factors (Hounkpèvi
et al., 2016). However, the morphological variability found in Polygonum aviculare L. s was
reported to rather have a strong genetic basis (Mosaferi et al., 2015). Therefore, although
both genetic diversity and environmental conditions can drive variation in the observed
phenotypes, their relative importance varies across species.

Annona senegalensis, also known as the wild custard apple, is an edible fruit plant widely
distributed in Africa (Orwa et al., 2009). Its distribution spans South Africa, Mozambique,
and Botswana (Southern Africa), and Benin, Niger, Burkina-Faso, and Mali (Western
Africa). Annona senegalensis is a perennial woody, anemophilous, and predominantly
outcrossing plant (Kwapata et al., 2007). It is a diploid species from the Annonaceae family,
one of the largest tropical and subtropical families. It has a high nutritional, medicinal,
and economic importance for African rural communities, contributing significantly to
household livelihoods and income (Mapongmetsem, Kapchie & Tefempa, 2012; Donhouedé
et al., 2022). Different parts of this species are also used in traditional medicine to treat
diseases such as tuberculosis, gastritis, and snake bites, among others (Okhale et al., 2016).
As a traditional food plant in Africa, A. senegalensis plays an important role in the context
of food security, and its domestication has the potential to improve nutrition, foster
development, and support sustainable land use. However, A. senegalensis is facing several
threats due to its high exploitation, as well as land use changes that have resulted in
severe degradation of its habitat (Kwapata et al., 2007; Ba, Diémé & Sy, 2021). Despite
several past studies have highlighted that this species will likely disappear without any
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conservation efforts (Campbell & Popenoe, 1988; Kwapata et al., 2007; Ba, Diémé & Sy,
2021), genetic data that would assist in this procedure are still largely missing. Only
one study assessed the genetic diversity of A. senegalensis and it was based on only three
microsatellite markers and three populations occurring in Malawi (Kwapata et al., 2007).
In Western Africa, some authors reported high morphological variability in A. senegalensis
populations and attributed 42% of this variability to climate (Hounkpèvi et al., 2020).
Whether such morphological variation can still occur in a larger geographical range is
unclear. Furthermore, understanding if the observed role of climate at the local scale
can be expanded to a larger geographical range is essential to better follow the species
response to environmental conditions. Species with a wide range of distribution often
grow under diverse environmental conditions which give an opportunity to study how
genes are expressed and the probable response of their populations to future climate
change. The use of molecular markers is known as one of the best tools to study genetic
material and explore genetic diversity in plants (Feng et al., 2016). Simple sequence repeats
(SSR) or microsatellite markers are codominant, easily automated, highly polymorphic,
highly reproducible, and cost-effective. Therefore, they have been widely used to assess
genetic diversity among populations of a given taxon (Gomes et al., 2020; Rohini et al.,
2020; Senkoro et al., 2020; Xue et al., 2021; Eken et al., 2022). The present study aimed to
understand the morpho-genetic diversity, structure, and differentiation of A. senegalensis
populations from Western (Benin) and Southern (Mozambique) Africa and the role of
climate and genetic factors in shaping phenotypic variability. Specifically, we have assessed,
(i) the genetic diversity, population structure, and differentiation; (ii) the morphological
diversity, and structure; (iii) the overlapping between genetical and morphological
clustering of individuals; and (iv) the relative importance of climate in the morphological
variation.

MATERIAL AND METHODS
Study area
The study was carried out in Niassa Special Reserve (NSR), Mozambique (Southern
Africa), and in the Sudanian zone, Benin (Western Africa), two locations where the species
is best known and used. NSR is located in Northern Mozambique approximately between
latitudes 12◦8′40′N and 12◦22′40′N; and longitudes 37◦21′00′E and 37◦45′00′E (Fig. 1).
It covers approximately 42,000 km2 and has been described as the largest protected area
of Mozambique and the third largest in Africa (Ryan et al., 2016; Mbanze et al., 2019).
Seventy-two percent of the total area of NSR is covered by dry Zambezian Miombo
woodlands that are dominated by Brachystegia spiciformis Benth, Brachystegia boehmii
Taub, and Julbernardia globiflora Benth. (White, 1983). The climate is tropical sub-humid,
with a dry and relatively hot period between May and October. The annual rainfall is on
average 900 mm per year increasing from the East (800 mm) to the West (1,200 mm).
Temperature ranges between 20 and 30 ◦C (Allan et al., 2017). About 60,000 people are
living inside the reserve and are concentrated around the two main villages of Mecula
(Moz_MEC) in the East and Mavago (Moz_MAV) in the West, and along the main
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Figure 1 Location of the studied populations in Benin andMozambique. Each data point indicates a
sub-population. The brown colour indicates areas where no sub-population was sampled.

Full-size DOI: 10.7717/peerj.15767/fig-1

road (NCP, 2017; SRN, 2008; Mbanze et al., 2021). Slash-and-burn agriculture is the main
livelihood activity of the population (Cunliffe et al., 2009).

The Sudanian zone is located in Northern Benin between latitudes 9◦45′N and 12◦25′N
and longitudes 0◦45′E and 3◦55′E (Fig. 1) and is characterized by a tropical dry climate
with two seasons (rainy and dry). The mean annual rainfall in this zone is often below
1,000 mm and the temperature is on average 27.5 ◦C (Gnanglè et al., 2011). The vegetation
is composed of dry forests, woodlands, savannahs, and riparian forests. Common tree
species in the area include Isoberlinia spp., Combretum spp., Acacia spp., Hyparrhenia spp.,
Loudetia spp., and Andropogon spp. (Gnanglè et al., 2012). North Borgou (Ben_BGN) and
Mekrou pendjari (Ben_MPE) are the two main phytogeographical districts of the Sudanian
zone of Benin. People living in the Sudanian zone of Benin are mainly farmers.

Sampling and data collection
A total of 154 individuals of Annona senegalensis from the two geographical regions (Fig.
1; Table 1) were analyzed for genetic diversity and population structure. Due to the
unavailability of trees bearing mature fruits in some populations, morphological data
focused on a total of 147 individuals. In each region, two sub-populations were selected
and within each, and leaves and fruits were collected along a linear transect of 30 km,
with a minimum distance of 100 m to 10 km to avoid sampling siblings. Twenty-seven
to sixty individuals were sampled within each sub-population and used for genetic and
morphological analysis (Table 1). Samples from all individuals were brought to the
laboratory for morphological analysis. For the genetic analysis, fresh leaves were kept
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Table 1 Study areas, populations, geographical coordinates and sample number.

Regions Populations Longitude Latitude Altitude # samples

Ben_BGN 3.55885 10.93528 308 30Western Africa
(Benin) Ben_MPE 0.85198 10.51104 167 60

Moz_MEC 37.10937 −12.07651 281 37Southern Africa
(Mozambique) Moz_MAV 36.01857 −12.08318 1087 27

Notes.
Ben_BGN, North Borgou population from Benin; Ben_MPE, Mekrou pendjari population from Benin; Moz_MEC, Mecula
population from Mozambique; Moz_MAV, Mavago population from Mozambique.

in silica gel while in the field and stored at −80 ◦C once in the laboratory until DNA
extraction.

DNA extraction and nSSR amplification
Genomic DNA was isolated with the InnuSPEED Plant DNA Kit (Innuscreen GmbH,
Analytik, Jena, Germany) according to the procedures described by the manufacturer,
using 50 mg of ground leaves. The yield and purity of each sample was determined by
spectrophotometry at 230, 260, and 280 nm (Nanodrop 2000, Thermo Fisher Scientific,
Waltham, MA, USA), and complemented by agarose gel electrophoresis (Gomes et al.,
2020). Based on the consistency of the polymorphic amplifications, ten microsatellite
markers were used for genetic diversity analysis: LMCH4, LMCH6, LMCH11 (Escribano,
Viruel & Hormaza, 2004), LMCH29, LMCH43, LMCH48, LMCH78, LMCH79, LMCH119,
and LMCH122 (Escribano, Viruel & Hormaza, 2008).

PCR reactions were performed under the following conditions: 94 ◦C for 1min; 94 ◦C for
30 s, 55 ◦C for 30 s (45 ◦C for LMCH29), 72 ◦C for 1 min (35 cycles); and 72 ◦C for 5 min.
Each reaction was performed in a final volume of 15µL containing 100 ng of genomicDNA,
0.4 µM each primer (Table 2), 1.25U MyTaq DNA polymerase and 1X MyTaq Reaction
Buffer (Meridian Bioscience, Cincinnati, OH, USA). Forward primers were labeled with a
fluorescent dye at the 5′-end. PCR products were separated by capillary electrophoresis on
a CEQ™ 8000 capillary DNA analysis system (Beckman Coulter, Fullerton, CA, USA) and
allele sizes were determined with GeneMapper 3.2 (Applied Biosystems, Waltham, MA,
USA).

Data on morphological traits
Data were collected in Mozambique from January to April 2021 and in Benin from June
to September 2021, after fruiting. Six morphological descriptors were measured on plants,
namely total height, bole height, crown height, trunk diameter at breast height, crown
diameter, and crown shape. The bole height is the height from the ground to the first big
branch and the crown height is the difference between total height (m) and bole height
(m). The crown shape was derived from the ratio of crown height over crown diameter. To
determine the crown diameter (m), four radii were measured from the projection of the
crown on the ground (Glèlè Kakaï et al., 2011;Hounkpèvi et al., 2016). At least 40 leaves and
40 ripened fruits were collected per individual. Seven morphological fruit descriptors were
measured: fruit length (mm), fruit width (mm), fruit dry weight (g), number of seeds per
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Table 2 Locus name, primer sequences, GenBank Accession number, and expected size of the amplified fragments from the polymorphic nSSR
markers used in this study.

Name Primer sequences (5′−3′ ) Accession no. Repeat Size (bp) Reference study

LMCH4 F: ATTAGAACAAGGACGAGAAT
R: CCTGTGTCTTTCATGGAC

AY685391 (GA)14 112–128 Escribano, Viruel & Hormaza (2004)

LMCH6 F: GGCATCCTATATTCAGGTTT
R: TTAAACATTTTGGACAGACC

AY685393 (CT)14 220–254 Escribano, Viruel & Hormaza (2004)

LMCH11 F: TACCTCTCGCTTCTCTTCCT
R: GATGATTAGACACAAGTGGATG

AY685398 (CT)10 173–176 Escribano, Viruel & Hormaza (2004)

LMCH29 F: GTACCATCTTTTAGGAAATC
R: TGCAATCTATGTTAGTCAC

DQ923748 (GA)9 185–195 Escribano, Viruel & Hormaza (2008)

LMCH43 F: CTAGTTCCAAGACGTGAGAGAT
R: ATAGGAATAAGGGACTGTTGAG

EF424144 (GA)9 210–216 Escribano, Viruel & Hormaza (2008)

LMCH48 F: TTAGAGTGAAAAGCGGCAAG
R: TCAAGCTACAGAAAGTCTACCG

EF424148 (GA)12 141–154 Escribano, Viruel & Hormaza (2008)

LMCH78 F: ATTTGATTGATTGATTTCCTA
R: CTTTTGCTTTCTTTCACATC

EF424169 (GA)9 159–161 Escribano, Viruel & Hormaza (2008)

LMCH79 F: GAAGCAAGTAGACACGTAGTA
R: AGGGTTGGTATTTCTTTATAGT

EF424170 (CT)12 206–210 Escribano, Viruel & Hormaza (2008)

LMCH119 F: CAGAAAATTAGCAGAGGACTCA
R: GTGGGTTGGGTTTTTAGGTC

EF424198 (GA)12 191–212 Escribano, Viruel & Hormaza (2008)

LMCH122 F: AGCAAAGATAAAGAGAAGATAA
R: ATCCAAGCCTATTAACAACT

EF424200 (GA)9 177–210 Escribano, Viruel & Hormaza (2008)

fruit, seeds weight (g), pulp dry mass (g), fruit shape and the ratio fruit length to fruit width
(Hounkpèvi et al., 2016; Lawin et al., 2021). Six quantitative descriptors were measured on
leaves, including leaf length (cm), leaf width (cm), limb length (cm), petiole length (cm),
leaf dry weight (g), and the ratio of leaf length to petiole length (Sun et al., 2020;Mollick et
al., 2021). Fruits and leaves were further oven-dried at 105 ◦C until constant weight for the
determinations of fruit dry weight, pulp mass, seeds dry weight, and leaf dry weight. After
measuring the fruit dry weight, each fruit was split manually and the seeds were separated
from the pulp. The number of seeds per fruit was then counted, and the seeds weight and
pulp mass were weighed. Weights were measured using a 0.01 g precision scale while a
centimeter ruler and a digital caliper with a 0.01 mm level of precision were used for all
other measurements (Table 3).

Bioclimatic data
Using the GPS coordinates of each individual in QGIS 3.16.2 (QGIS Development Team,
2021), bioclimatic data was extracted from the CHELSA (Climatologies at High resolution
for the Earth’s Land Surface Areas) database, considering the last data available over 30
years (1979-2013).

Genetic diversity, population structure, and differentiation
For each geographical area and sub-population, genetic diversity was assessed by calculating
the total number of alleles (Ta), mean number of alleles per locus (Na), Shannon’s
information index (H), mean expected heterozygosity (He), mean observed heterozygosity
(Ho), inbreeding coefficient (FIS), and Polymorphism Information Content (PIC) using
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Table 3 Morphological traits of plants, fruits, and leaves of A. senegalensis.

Organs Morphological descriptors Short name Units Equipment/material used

Total height Tot.hei m Suunto Clinometer
Bole height Bol.hei m Suunto Clinometer
Crown height Crown.hei m NA
Trunk diameter at breast DBH cm Electronic caliper
Crown diameter Crown.diam m Suunto Clinometer

Plant

Crown shape Crown.shp NA NA
Fruit length Fruit.leng mm 0.01 mm resolution digital caliper
Fruit width Fruit.wid mm 0.01 mm resolution digital caliper
Fruit dry weight Fruit.wei g 0.01 g sensitive balance
Number of seeds per fruit Fruit.nseeds NA NA
Seeds weight Seeds.wei g 0.01 g sensitive balance
Pulp dry mass Pulp.mass g 0.01 g sensitive balance

Fruit

Fruit shape Fruit.shp NA NA
Leaf length Leav.len cm Centimetre rule
Leaf width Leav.wid cm Centimetre rule
Limb length Limb.len cm Centimetre rule
Petiole length Petiol.len cm Centimetre rule
Leaf dry weight Leav.wei g 0.01 g sensitive balance

Leaves

Ratio leaf length to petiole length Leav.len_Petiol.len NA NA

Notes.
NA, not applicable.

GenAlEx 6.51 (Peakall & Smouse, 2012). The Bayesian program STRUCTURE v.2.3.4
(Pritchard et al., 2000) was used to test whether any discrete genetic structure existed
among samples. The analysis was performed assuming 1 to 10 genetic clusters (K ) with
ten replications per K. Models were run assuming ancestral admixture and correlated allele
frequencies using run lengths of 300,000 interactions for each K after 50,000 burn-in steps.
The optimum K was determined using STRUCTURE HARVESTER (Earl & VonHoldt,
2012), which identifies the optimal K based on both the posterior probability of the
data for a given K and the 1K (Evanno, Regnaut & Goudet, 2005). The results of the
replicates at the best-fit K identified by STRUCTURE were then post-processed using
CLUMPP 1.1.2 (Jakobsson & Rosenberg, 2007). A Principal Coordinates Analysis (PCoA)
was also constructed in GenAlEx 6.51 (Peakall & Smouse, 2012) to detect the genetic
relatedness among individuals based on Nei’s genetic distance. Analysis of molecular
variance (AMOVA) was performed to quantify the partitioning of genetic variance
between the geographical regions, as well as between and within sub-populations that
showed genetic differentiation in STRUCTURE and PCoA. Each AMOVA was run with
10,000 permutations at 0.95 significance levels in Arlequin 3.11 (Exoffier, Laval & Schneider,
2005). The relationships between population pairwise Nei’s genetic distances and linear
geographical distances (isolation by distance) were examined with a Mantel test (Mantel,
1967) implemented in Arlequin 3.11 (Exoffier, Laval & Schneider, 2005) using the same
permutation and significance levels.
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Morphological diversity and structuring
The morphological traits of 40 leaves and 40 fruits were measured per individual, and the
respective averages were used for statistical analysis. Individual data was recorded for the
remaining traits, i.e., total height, bole height, crown height, trunk diameter at breast height,
crown diameter, and crown shape. Themean, standard error, and coefficient of variation of
eachmorphological trait were calculated by population and sub-population. The coefficient
of variation (cv %) was used to assess the variability of eachmorphological trait, considering
a cv < 25% an indicator of weak variability (Reza et al., 2017). A student t -test was first used
to evaluate differences between Northern and Southern populations. Similarly, an analysis
of variance was used to compare traits among the four sub-populations. The assumptions
of normality and homoscedasticity required to run these tests were checked previously,
using the Shapiro–Wilks test and the Levene test, respectively. When the violation of the
assumption of normality was severe (p< 0.01), the corresponding non-parametric test
(Mann–Whitney or Kruskal-Wallis) was applied.When the Analysis of Variance (ANOVA)
indicated a significant difference, a SNK-test was applied as a multiple comparison test in
the package AGRICOLAE (De Mendiburu & Agricolae, 2020) to separate means.

To assess the relationship between the morphological descriptors and the bioclimatic
variables, a redundancy analysis (RDA) within the VEGAN package was carried out on the
least square mean values of the morphological descriptors and bioclimatic variables (Table
S, supplementary data). The RDA was first carried out separately for the Western, and
the Southern sub-populations. Another RDA analysis was implemented with the merged
populations. These RDA analyses were intended to assess whether the relative importance
of the relationships between bioclimatic variables and morphological variation was similar
for the two regions. All analyses were implemented in R statistical software version 4.1.2
(R Core Team, 2021).

RESULTS
Genetic diversity, structure, and differentiation
A total of 156 alleles were found among the 154 Annona senegalensis samples. The number
of alleles varied from 27 in the Southern (Moz_MAV sub-population) to 55 in the Western
(Ben_BGN sub-population) region (Table 4). The total number of alleles was significantly
higher in the sub-populations sampled in the Western region than in the Southern
region (F = 3.23, p =0.023). This pattern was also observed in the average number of
alleles (F = 2.05, p= 0.001), the Shannon Diversity Index (F = 1.04, p= 0.021), and the
observed (F = 4.24, p= 0.019) and expected heterozygosity (F = 4.47, p= 0.024) (Table
4). The percentage of polymorphic loci was overall very high and showed the same pattern
(F = 3.39, p= 0.025) i.e., higher in the Western than in the Southern population (Table 4).
FIS showed negative values in all sampled populations (Table 4) suggesting a heterozygosity
higher than expected under the Hardy-Weinberg assumption. FIS values were lower in the
Western than in the Southern population (F = 1.29, p= 0.012; Table 4).

The Bayesian clustering program STRUCTURE found the highest LnP(D) and 1K
values for K = 2 differentiating the samples collected in Benin from the ones collected
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Table 4 Genetic diversity values (mean± standard error) of A. senegalensis inWestern and Southern Africa.

Populations Ta Na H Ho He FIS PIC

Benin (western)
Ben_BGN 55 5.50± 0.41 1.43± 0.11 0.74± 0.06 0.71± 0.03 −0.06± 0.10 100.00± 0.00
Bem_MPE 41 4.10± 0.44 1.10± 0.19 0.74± 0.08 0.61± 0.05 −0.22± 0.08 100.00± 0.29

Mozambique (southern)
Moz_MEC 33 3.30± 0.39 0.87± 0.14 0.52± 0.13 0.49± 0.08 −0.02± 0.15 90.00± 8.04
Moz_MAV 27 2.70± 0.33 0.69± 0.15 0.58± 0.14 0.41± 0.09 −0.26± 0.13 90.00± 4.00
All 156 3.90± 0.30 1.02± 0.13 0.64± 0.05 0.56± 0.04 −0.14± 0.09 95.00± 2.89

Notes.
Ben_BGN, North Borgou population from Benin; Ben_MPE, Mekrou pendjari population from Benin; Moz_MEC, Mecula population from Mozambique; Moz; Ta, total
number of alleles; Na, average number of alleles; H, average Shannon’s diversity index; Ho, average observed heterozygosity; He, average expected heterozygosity; FIS, in-
breeding coefficient; PIC, % of polymorphic loci.

Figure 2 Genetic structure of 154 Annona senegalensis samples collected in Benin andMozambique,
in four different populations: Borgou Nord (Ben_BGN), Mekrou Pendjari (Ben_MPE), Mecula
(Ben_MEC) andMavago (Ben_MAV). Results are based on the best assignment results retrieved by
STRUCTURE (K = 2 and K = 4). Each sample is represented by a thin vertical line divided into K-colored
segments that represent the individual’s estimated membership fractions in K clusters.

Full-size DOI: 10.7717/peerj.15767/fig-2

in Mozambique (Fig. 2). Nevertheless, STRUCTURE further revealed a secondary high
LnP(D) and 1K values at K = 4 differentiating the four sub-populations, Ben_BGN,
Ben_MPE, Ben_MEC, and Ben_MAV into different genetic clusters (Fig. 2). Despite
an overall high genetic integrity found in most samples, the results showed some signs
of admixture between the genetic groups from Benin and Mozambique, although this
admixture was negligible (Fig. 2). The same geographical pattern was retrieved by a
principal coordinate analysis (PCoA) (Fig. 3). The first two coordinates of PCoA explained
35.9% of the total variation. Samples were spatially separated considering the two main
geographic areas (Benin and Mozambique), but also by sub-populations following the
K = 4 clustering result found in STRUCTURE (Fig. 2). The degree of spatial separation
was lower for the two Mozambican sub-populations than for the ones from Benin (Fig. 3).
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Figure 3 Principal coordinate analysis (PCoA) of the studied Annona senegalensis populations. The
percentage of explained variance of each axis is given in parentheses. Population colors follow the K = 4
genetic groups identified by STRUCTURE.

Full-size DOI: 10.7717/peerj.15767/fig-3

AMOVA revealed that a high proportion of genetic variation was attributable to
significant differences between the two regions (69.1%) supported by high levels of genetic
differentiation (FST = 0.305, p< 0.001). In addition, 21.3% of variation occurred among
populations while the remaining was found within sub-populations. In addition, the
Mantel test confirmed the existence of a significant positive correlation between Nei’s
genetic distance and geographic distance for all pairwise sub-populations (r = 0.212,
p< 0.001).

Morphological diversity and structure
The morphological traits of A. senegalensis varied significantly between Northern and
Southern populations. Plants from Southern populations were significantly larger (DBH:
15.89 ± 2.10 cm) and taller (Total height: 5.72 ± 0.75 m) than those from Northern
populations (DBH: 5.89 ± 0.62 cm; Total height: 2.56 ± 0.27 m) (Table 5). Irrespective of
the population, the coefficient of variation (cv) was high (cv > 25%) for all traits. However,
Northern populations had the highest cv values irrespective of the traits, except for the
crown shape. A significant difference was reported among sub-populations. However,
the sub-population Ben_BGN (North Benin) had a similar trunk diameter at breast
height (DBH) to that of Moz_MEC (South Mozambique). Within Southern populations,
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Table 5 Descriptive statistics of morphological traits of A. senegalensis plants individuals.

Parameters Statistics Populations Sub-populations

Northern
(Benin)

Southern
(Mozambique)

Northern (Benin) Southern (Mozambique)

Ben_BGN Ben_MPE Moz_MEC Moz_MAV

m± se 5.89b±0.62 15.89a±2.10 10.15b±1.85 3.76c±0.48 12.17b±4.22 20.03a±3.85
DBH (cm)

cv (%) 60.7 52.90 30.92 20.63 35.08 46.55
Min 2.50 5.30 5.00 2.50 5.30 11.10
Max 21.00 53.00 21.00 5.70 21.40 53.00
m± se 2.56b±0.27 5.72a±0.75 3.93c±0.71 1.87d±0.24 5.10b±0.93 6.41a±1.23
cv (%) 45.17 31.04 15.49 33.96 23.31 32.27
Min 1.10 2.60 2.30 1.10 2.60 3.90

Total
height (m)

Max 4.80 10.40 4.80 4.50 7.50 10.40
m± se 0.77b±0.081 2.04a±0.27 1.25b±0.22 0.53c±0.06 1.96a±0.35 2.14a±0.41
cv (%) 53.74 39.78 27.38 29.63 28.67 48.06
Min 0.27 0.70 0.45 0.27 0.70 0.80

Bole
height
(m)

Max 1.90 5.00 1.90 1.00 3.00 5.00
m± se 1.79b±0.18 3.68a±0.48 2.68b±0.49 1.34c±0.17 3.14b±0.57 4.27a±0.82
cv (%) 47.56 45.21 22.54 41.5 36.18 45.69
Min 0.70 0.90 1.10 0.70 0.90 1.30

Crown
height
(m)

Max 3.80 9.20 3.65 3.80 5.00 9.20
m± se 2.80a±0.29 3.18a±0.42 4.98a±0.91 1.71b±0.22 1.89b±0.34 4.61a±0.88
cv (%) 65.55 65.39 32.13 27.84 19.62 49.07
Min 0.88 0.96 2.30 0.88 0.96 1.48

Crown
diameter
(m)

Max 7.99 10.80 7.99 3.13 2.56 10.80
m± se 0.73b±0.07 1.44a±0.19 0.58c±0.10 0.80c±0.10 1.72a±0.31 1.14b±0.21Crown

size shape cv (%) 39.37 54.40 35.32 36.65 42.59 65.00
Min 0.30 0.30 0.30 0.41 0.44 0.30
Max 2.11 3.90 1.21 2.11 3.90 3.16

sub-populations Moz_MEC and Moz_MAV had similar values for bole height. The cv
value decreased from both populations (31.04% to 65.55%) to sub-populations (15.49% to
65.00%), but was still relatively high. The DBH, bole height, crown height, crown diameter,
and crown shape were more diverse in Moz_MAV, while the total height highly varied in
Ben_MPE (Table 5).

The morphological parameters of fruits and leaves varied significantly among
populations (Table 6). Considering the four sub-populations, results showed that
Moz_MAV had the highest value for fruit length, fruit shape, fruit dry weight, number
of seeds, seeds weight, pulp dry mass, limb length, leaf length, and leaf width. Ben_BGN
had the highest fruit width, while the highest value for petiole length and leaf weight was
recorded in Ben_MPE. Fruits from Mozambique were found to be bigger than those from
Benin. Some traits, like the ratio of leaf length to petiole length, showed similar values
between populations (Table 6). Furthermore, Ben_BGN and Moz_MEC presented similar
values for fruit length and number of seeds per fruit. Both regions and their respective
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sub-populations showed high cv regarding all traits, except fruit length, width, and fruit
shape (Table 6). For fruit length, cv values varied from 15.53% to 15.96% in Western
populations and from 14.53% to 18.76% in Southern populations. For fruit width, cv
values varied from 11.68% to 13.43% in Western populations and from 12.46% to 14.58%
in the Southern populations; and for fruit shape, cv values varied from 7.41% to 10.03% in
Western populations and from 8.96% to 12.45% in Southern populations. The hierarchical
clustering of the individuals based on their morphological traits resulted in four clusters
(Fig. 4).

Overlap between genetic and morphological clusters
The chi-square test was performed to test the association between morphological clusters
and genetic clusters. Results (Pearson chi-square= 209.771, DF= 9, p< 0.0001; Likelihood
ratio chi-square = 195.358, DF = 9, p < 0.0001) suggested a significant association
between genetic and morphological variation, and hence, an effect of genetic factors
on the morphological variation i.e., the distribution of trees in genetic clusters is not
independent of themorphological clusters. For instance, 86.67%of the individuals included
in morphological cluster 1 corresponded to genetic cluster 1; and 70% of the individuals
included in morphological cluster 3 correspond to the genetic cluster 3 (Table 7).

Influence of bioclimatic variables on the morphological variation
The redundancy analysis showed that there was a significant correlation between
morphological traits and bioclimatic variables. Furthermore, this relationship varied in
diverse ways according to the two regions. In all cases, only the first two axes were significant
(p= 0.001, F = 12.489) and explained the extent to which variation in morphological traits
is related to bioclimatic variables. In Western populations, the model considered nine
out of the 19 bioclimatic variables (F = 7.7245, p= 0.001, adjusted R2

= 0.404). The
first axis (RDA1) explained 80.77% of the total variance and was a combination of mean
diurnal air temperature range (chelsa_b_1), temperature seasonality (chelsa_b_3), mean
daily maximum air temperature in the warmest month (chelsa_b_4), annual range of air
temperature (chelsa_b_6), mean daily air temperature of the wettest quarter (chelsa_b_7),
mean daily air temperature in the warmest quarter (chelsa_b_9), and mean monthly
precipitation in the coldest quarter (chelsa_b_18). The second axis (RDA2) explained
8.56% of the total variation and combined mean annual air temperature (chelsa_bio), and
annual precipitation (chelsa_b_11).

In Southern populations, the model considered only five out of the 19 bioclimatic
variables (F = 5.3517, p= 0.001, adjusted R2

= 0.279. The first axis (RDA1) explained
67.17% of the total variance and was a combination of mean annual air temperature
(chelsa_bio), mean diurnal air temperature range (chelsa_b_1), temperature seasonality
(chelsa_b_3), and mean daily maximum air temperature in the warmest month
(chelsa_b_4). The second axis (RDA2) explained 21.74% of the total variation and only
considered the annual range of air temperature (chelsa_b_6).

When merging the two populations, the model considered 11 out of the 19 bioclimatic
variables (F = 12.489, p= 0.001, adjusted R2

= 0.463). The first axis (RDA1) explained
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Table 6 Descriptive statistics onmorphological traits of fruits and leaves of A. senegalensis.

Parameters Statistics Populations Sub-populations

Northern
(Benin)

Southern
(Mozambique)

Northern (Benin) Southern (Mozambique)

Ben_BGN Ben_MPE Moz_MEC Moz_MAV

m± sd 25.44b±2.28 30.79a±4.07 28.27b±5.16 24.03c±3.10 28.50b±5.20 33.34a±6.41Fruit length
(mm) cv 17.61 18.00 15.53 15.96 18.76 14.53

Min 15.35 20.73 20.37 15.35 20.73 23.05
Max 37.95 43.19 37.95 33.27 41.51 43.19
m± sd 23.95b±2.52 25.65a±3.39 27.34a±4.99 22.26c±2.87 24.23a±4.42 27.23a±5.24
cv 15.99 14.75 13.43 11.68 12.46 14.58
Min 13.41 18.35 20.30 13.41 19.12 18.35

Fruit width
(mm)

Max 35.93 35.30 35.93 28.76 32.02 35.30
m± sd 1.06b±0.11 1.21a±0.16 1.03b±0.18 1.08b±0.13 1.20a±0.21 1.23a±0.23
cv 9.47 10.88 7.41 10.03 12.45 8.96
Min 0.90 1.01 0.93 0.90 1.01 1.02

Fruit shape

Max 1.49 1.62 1.23 1.49 1.62 1.50
m± sd 2.42b±0.25 5.95a± 0.78 3.50c±0.64 1.88d±0.24 4.43b± 0.80 7.63a±1.46
cv 59.52 38.06 50.70 44.62 34.08 22.32
Min 0.63 1.91 1.54 0.63 1.91 3.99

Fruit dry weight
(g)

Max 10.93 10.10 10.93 4.83 7.98 10.10
m± sd 18.54b±1.95 29.93a±3.96 22.44b±4.09 16.58c±2.14 24.60b±4.49 35.84a±6.89
cv 38.27 43.42 39.35 30.74 42.32 36.78
Min 3.88 8.00 8.76 3.88 8.00 14.90

Number seeds
(g)

Max 44.96 75.35 44.96 28.66 52.28 75.35
m± sd 0.85b±0.08 2.51a±0.33 1.15c±0.21 0.69d±0.09 1.96b±0.35 3.13a±0.60
cv 59.91 37.55 53.01 52.85 37.77 23.84
Min 0.17 0.60 0.39 0.17 0.60 1.72

Seeds weight (g)

Max 3.24 4.51 3.24 1.67 4.01 4.51
Pulp dry mass
(g)

m± sd
cv
Min
Max

0.85b±0.08
59.91
0.17
3.24

2.51a±0.33
37.55
0.60
4.51

1.15c±0.21
53.01
0.39
3.24

0.69d±0.09
52.85
0.17
1.67

1.96b±0.35
37.77
0.60
4.01

3.13a±0.60
23.84
1.72
4.51

Limb length
(cm)

m± sd 9.83a±1.03 9.04b±1.19 9.50b±1.73 10.00b±1.29 7.26c±1.32 11.01a±2.11

cv 17.82 25.73 1.72 19.26 18.21 12.89
Min 1.19 5.23 6.78 1.19 5.23 8.36
Max 13.94 14.34 12.29 13.94 10.04 14.34
m± sd 7.10a±0.74 6.66a±0.88 6.54c±1.19 7.38b±0.95 5.00d±0.91 8.50a±1.63
cv 17.63 34.66 13.33 17.91 34.53 14.24
Min 4.23 2.54 4.65 4.23 2.54 6.17

Leaf length (cm)

Max 11.37 11.77 8.20 11.37 9.27 11.77
(continued on next page)
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Table 6 (continued)

Parameters Statistics Populations Sub-populations

Northern
(Benin)

Southern
(Mozambique)

Northern (Benin) Southern (Mozambique)

Ben_BGN Ben_MPE Moz_MEC Moz_MAV

m± sd 3.82a±0.40 3.58a±0.47 3.57b±0.65 3.94ab±0.50 2.99c±0.54 4.23a±0.81
cv 21.77 26.33 23.84 20.31 22.52 17.74
Min 1.40 1.88 1.40 2.34 1.88 2.82

Leaf width (cm)

Max 5.77 6.22 5.70 5.777 4.39 6.22
Petiole length
(cm)

m± sd
cv
Min
Max

1.19a±0.12
75.39
0.77
9.48

0.88b±0.11
30.60
0.20
1.53

1.09a±0.20
17.91
0.79
1.54

1.25ab±0.16
87.79
0.77
9.48

0.76b±0.14
35.86
0.20
1.53

1.02ab±0.19
19.39
0.56
1.42

Ratio leaf length
to petiole length

m± sd
cv
Min
Max

6.70b±0.70
23.83
0.93
10.58

10.27a±1.36
64.74
3.25
41.67

6.41b±1.17
22.58
4.23
9.35

6.85b±0.88
24.23
0.93
10.58

10.54a±1.92
84.77
3.25
41.67

9.96a±1.91
24.48
6.82
16.53

m± sd 0.62a±0.06 0.43b±0.05 0.47c±0.08 0.70a±0.09 0.23d±0.04 0.65b±0.12
Leaf weight (g)

cv 60.07 81.01 70.95 65.04 55.74 58.60
Min 0.15 0.08 0.15 0.18 0.08 0.15
Max 2.35 1.70 2.15 2.35 0.65 1.70

Notes.
Ben_BGN, North Borgou population from Benin; Ben_MPE, Mekrou pendjari population from Benin; Moz_MEC, Mecula population from Mozambique; Moz_MAV,
Mavago population from Mozambique.

Figure 4 Dendrogram of morphological data. The blue color indicates cluster 1, the red indicates cluster
2, the black indicates cluster 3 and the green, cluster 4.

Full-size DOI: 10.7717/peerj.15767/fig-4

Table 7 Overlap between genetic andmorphological clusters.

Morpho Gen_Cluster1 Gen_Cluster2 Gen_Cluster3 Gen_Cluster4

Morpho_Cluster1 86.67% 3.33% 10.00% 0.00%
Morpho_Cluster2 98.33% 1.67% 0.00% 0.00%
Morpho_Cluster3 3.33% 6.67% 70.00% 20.00%
Morpho_Cluster4 3.70% 85.19% 11.11% 0.00%
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83.44% of the total variance and was the combination of isothermality (chelsa_b_2);
temperature seasonality (chelsa_b_3); mean daily minimum air temperature in the coldest
month (chelsa_b_5); mean daily air temperature of the wettest quarter (chelsa_b_7); mean
daily air temperature of the driest quarter (chelsa_b_8 ); annual precipitation (chelsa_b_11);
amount of precipitation in the wettest month (chelsa_b_12); amount of precipitation in the
driest month (chelsa_b_13); precipitation seasonality (chelsa_b_14); and mean monthly
precipitation in the wettest quarter (chelsa_b_15). The second axis (RDA2) explained
6.19% of the variation and only considered the mean daily air temperature in the warmest
quarter (chelsa_b_9). However, some of these bioclimatic variables such as mean annual air
temperature, temperature seasonality, mean monthly precipitation in the coldest quarter,
annual range of air temperature, and the mean monthly precipitation in the wettest quarter
were not statistically significant in these different models (Table 8).

In the Western population, DBH, total height, bole height, crown height, crown
diameter, crown shape, fruit length, fruit width, fruit shape, fruit dry weight, number of
seeds per fruit, seeds weight, pulp dry mass, leaf width, petiole length, the ratio leaf length
to petiole length, leaf dry weight and limb length were all loaded on RDA1, while only
leaf length was loaded in RDA2 (Table 9). Based on the scores of morphological traits and
bioclimatic variables on RDA axes (Tables 8, 9), leaf length was positively influenced by
annual precipitation (chelsa_b_11). DBH, total height, bole height, crown height, crown
diameter, fruit length, fruit width, fruit dry weight, number of seeds per fruit, seeds weight,
and pulp dry mass were negatively influenced by mean diurnal air temperature range
(chelsa_b_1), mean daily maximum air temperature in the warmest month (chelsa_b_4),
annual range of air temperature (chelsa_b_6), and the mean daily air temperature of the
wettest quarter (chelsa_b_7).

In Southern populations, all morphological parameters were loaded on RDA1 except
bole height, crown diameter, crown shape, and the ratio leaf length to petiole length, which
were loaded in RDA2. Crown diameter and the ratio leaf length to petiole length were
negatively influenced by the mean annual air temperature (chelsa_bio), mean diurnal air
temperature range (chelsa_b_1), temperature seasonality (chelsa_b_3), and the mean daily
maximum air temperature in the warmest month (chelsa_b_4) (Tables 8, 9).

Considering the global set of sub-populations, morphological parameters were all loaded
in RDA 1 except limb length, leaf width, the ratio leaf length to petiole length, and leaf
weight. The DBH, total height, bole height, crown height, crown diameter, crown shape,
fruit length, fruit width, fruit shape, fruit weight, number of seeds per fruit, seeds weight,
pulp mass, and leaf length were positively influenced by the mean daily minimum air
temperature in the coldest month (chelsa_b_5) and mean daily air temperature of the
driest quarter (chelsa_b_8 ) (Tables 8, 9). The petiole length and the ratio leaf length to
petiole length were negatively influenced by the isothermality (chelsa_b_2); temperature
seasonality (chelsa_b_3); mean daily air temperature of the wettest quarter (chelsa_b_7);
annual precipitation (chelsa_b_11) precipitation in the wettest month (chelsa_b_12);
precipitation in the driest month (chelsa_b_13) precipitation seasonality (chelsa_b_14)
mean monthly precipitation in the wettest quarter (chelsa_b_15) and the mean daily air
temperature in the warmest quarter (chelsa_b_9), respectively (Tables 8, 9).
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Table 8 Significance of bioclimatic variables from permutation ANOVA test and scores on RDA axes.

Bioclimatic variable Permutation Anova Scores on axis

Df Variance F Pr (>F) RDA1 RDA2

Western populations
chelsa_bio 1 2.057 2.6707 0.062. ns 0.310 0.378
chelsa_b_1 1 5.625 7.3027 0.001*** −0.238 0.162
chelsa_b_3 1 2.633 3.4183 0.052 ns −0.423 −0.287
chelsa_b_4 1 4.705 6.1084 0.004** −0.555 −0.090
chelsa_b_6 1 5.108 6.6314 0.005** −0.635 0.100
chelsa_b_7 1 5.7 7.3998 0.003** −0.685 −0.185
chelsa_b_9 1 3.782 4.9095 0.012* 0.573 0.013
chelsa__11 1 4.524 5.8731 0.009** −0.209 0.325
chelsa__18 1 1.965 2.5512 0.079. ns 0.743 0.332
Residual 80 61.623

Southern populations
chelsa_bio 1 13.211 2.9011 0.043* −0.776 0.303
chelsa_b_1 1 13.244 2.9083 0.043* −0.717 0.311
chelsa_b_3 1 13.077 2.8716 0.043* −0.947 0.106
chelsa_b_4 1 12.875 2.8273 0.045* −0.878 −0.114
chelsa_b_6 1 12.198 2.6787 0.052. ns 0.053 0.535
Residual 51 232.246

All populations
chelsa_b_2 1 8.434 8.2079 0.001*** −0.835 0.244
chelsa_b_3 1 6.8 6.6181 0.002** −0.367 −0.140
chelsa_b_5 1 5.431 5.2851 0.007** 0.505 −0.256
chelsa_b_7 1 8.876 8.6378 0.001*** −0.352 −0.045
chelsa_b_8 1 7.183 6.9908 0.002** 0.552 −0.249
chelsa_b_9 1 3.96 3.8541 0.024* 0.068 −0.199
chelsa__11 1 3.762 3.661 0.019* −0.732 0.282
chelsa__12 1 5.285 5.1433 0.006** −0.812 0.248
chelsa__13 1 5.899 5.7414 0.006** −0.515 0.218
chelsa__14 1 8.476 8.2486 0.001*** −0.781 0.250
chelsa__15 1 2.205 2.1457 0.09. ns −0.878 0.235
Residual 135 138.716

Notes.
ns, non-significant.
*P value < 0.05.
**P value < 0.01.
***P value < 0.001.

DISCUSSION
The genetic diversity in the studied populations was overall very high, with 156 alleles
recorded among the 154 Annona senegalensis samples. This is much higher than the values
reported by Kwapata et al. (2007) that found only a total of 23 alleles in 135 A. senegalensis
samples collected in nine Malawi populations, and using a limited number of molecular
markers. Heterozygosity values varied between 0.22 and 0.62 being attributed to changes
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Table 9 Scores of morphological traits on RDA axes.

Morphological trait Western population Southern population All populations merged

RDA1
(80.77%)***

RDA2
(8.56%)

RDA1
(67.17%)***

RDA2
(21.74%)*

RDA1
(83.44%) ***

RDA2
(6.19%).

DBH −2.825 −0.899 2.198 −2.093 5.014 −1.251
Total height −0.844 −0.340 0.325 0.026 1.400 −0.382
Bole height −0.265 −0.156 0.053 0.137 0.502 −0.147
Crown height −0.579 −0.183 0.272 −0.111 0.897 −0.235
Crown diameter −1.404 −0.558 0.689 −0.818 0.837 −0.265
Crown size shape 0.085 0.049 −0.119 0.247 0.147 −0.013
Fruit length −2.429 −0.259 1.423 0.042 2.938 −0.376
Fruit width −2.632 −0.279 0.691 −0.117 1.527 −0.238
Fruit shape 0.014 −0.001 0.017 0.003 0.051 −0.010
Fruit dry weight −0.718 −0.430 0.974 −0.265 1.743 −0.233
Number of seeds
per fruit

−3.664 1.514 4.573 1.404 6.331 1.653

Seeds weight −0.226 −0.128 0.374 −0.067 0.752 −0.105
Pulp dry mass −0.226 −0.128 0.374 −0.067 0.752 −0.105
Limb length 0.085 0.202 1.076 −0.680 0.110 0.172
Leaf length 0.166 0.194 0.955 −0.724 0.163 0.100
Leaf width 0.112 0.060 0.356 −0.254 0.001 0.011
Petiole length 0.042 0.007 0.083 −0.003 −0.103 0.043
Ratio leaf length
to petiole length.

0.126 0.000 −0.426 −1.506 0.964 −1.188

Leaf dry weight 0.087 0.014 0.130 −0.094 −0.042 0.042

Notes.
∗P value <0.05; ∗∗P value < 0.01; ∗∗∗P value < 0.001; ns non-significant.

in population size and habitat heterogeneity. The values reported in this study were
even higher than those observed in Anona cherimola Mill, another edible tree that has
economic importance in many Mesoamerican countries, where wild and cultivated trees
grow (Escribano, Viruel & Hormaza, 2007). Using 16 simple sequence repeat (SSR) loci in
279 A. cherimoya accessions from a worldwide ex situ field germplasm collection, Escribano,
Viruel & Hormaza (2007) reported an average expected and observed heterozygosities of
0.53 and 0.44, respectively. An analysis of 20 Annona accessions belonging to four different
species (Annona reticulata L., Annona muricata L., Annona atemoya Mabb., and Annona
squamosa L.) collected from various locations and based on 11 RAPD and 12 SSRs markers,
identified similar levels of heterozygosity. The high genetic diversity may be explained
by protogynous dichogamy, a common breeding characteristic in Annonaceae, where
female and male structures do not mature simultaneously (González & Cuevas, 2011).
This mechanism prevents self-fertilization, encourages cross-pollination, and has clear
implications for genetic diversity, both within and between species, but depends on the
action of pollinators. For instance, in the Brazilian Cerrado, Annona coriacea Mart. has
night anthesis producing a marked smell to attract several beetles that act as pollinators
during the asynchronous female and male flowering periods (Costa et al., 2017). Annona
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crassifloraMart., another species from the BrazilianCerrado also exhibits the same behavior,
being the beetles responsible to promote cross-pollination, while visiting both female- and
male-phase flowers (Saravy, Marques & Schuchmann, 2022). These breeding features would
explain the high levels of genetic diversity found for A. senegalensis in this study.

Our results further showed a higher diversity and percentage of polymorphic loci in
Western than in Southern populations. The center of origin of A. senegalensis could explain
the higher level of diversity detected inWestern populations. AlthoughmostAnnona species
are originated from South America and the Antilles, A. senegalensis is thought to have
originated in Africa (Pinto et al., 2005). The species name is derived from Senegal (Western
Africa) where the reference specimen was collected (Lizana & Reginato, 1990). Indeed, the
number of specimens was predominant inWestern populations. Small-size populations can
lead to low heterozygosity values, which could imply inbreeding between trees as reported
by several authors (Angeloni, Ouborg & Leimu, 2011; Ellegren & Galtier, 2016; Rosenberger
et al., 2021). However, despite the lower FIS values observed in Western populations, they
were negative in all sub-populations, suggesting a number of heterozygotes higher than
expected according to the Hardy-Weinberg principle. This suggests the existence of gene
flow between non-related individuals, supporting the cross-breeding pollination model
described above.

Our results showed a high level of genetic differentiation in the studied populations. The
Bayesian clustering program STRUCTURE presented the highest LnP(D) and 1K values
for K = 2 differentiating the samples collected in the Western from those collected in the
Southern region. STRUCTURE also revealed secondary high LnP(D) and 1K values at
K = 4 differentiating the four sub-populations Ben_BGN, Ben_MPE (from the Western
Region), Moz_MEC, and Moz_MAV (from the Southern region) into four different
genetic clusters. These findings were supported by the PCoA which showed a clear spatial
separation between Western and Southern populations and also between sub-populations
within each geographical region. This genetic structure could be explained by the wide
geographical distance that occurs between the two countries, which does not favour gene
flow between them (Yang et al., 2019). This explains the high genetic differentiation found
in AMOVA between the two regions (69.1%), than among (21.3%) or within (9.6%)
sub-populations. Furthermore, the Mantel test confirmed the existence of a significant
positive correlation between Nei’s genetic distance and geographic distance for all pairwise
sub-populations, suggesting that the geographical distribution contributed significantly
to the observed genetic diversity. Still, some signs of genetic admixture were observed
within sub-populations. Although floral heat production can attract pollinators over
long distances, especially during the night (Gottsberger, 1990), beetles usually fly at close
distances, which could explain the results found here. However, we should point that
the degree of separation was lower between the two Southern sub-populations than the
Western ones. This was probably due to a higher level of admixture in the former. Being
from a protected area, and therefore from a relatively closed area with the availability of
many dispersers, gene flow might be more facilitated in the studied Southern populations.

Likewise, high variation in morphological traits was observed between populations.
Individuals from the two sub-populations from the Western region and the two from the
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Southern region were grouped into four different clusters. The chi-square test performed
on morphological and genetic data confirmed a significant association between the two,
showing that the studied populations were morphologically and genetically connected,
i.e., the distribution of trees in genetic clusters was not independent of the morphological
clusters. The strong association with genetic andmorphological data might therefore reflect
a high local adaptation of the species.

Morphological traits were also found to be highly influenced by the environment, mainly
by temperature and precipitation indexes (Tables 8 and 9). In the Western region, the
diameter at breast height (DBH), total height, bole height, crown height, crown diameter,
fruit length, fruit width, fruit dry weight, number of seeds per fruit, seed weight, and pulp
dry mass were negatively influenced by air temperature index, suggesting that increases
in air temperature can lead to a reduction in those growth parameters. In the Southern
region, similar trends were observed in temperature index, which negatively influenced
other growth parameters such as the crown diameter and the ratio leaf length to petiole
length. In the Western region, leaves were longer when the amount of annual precipitation
increased. However, when combining both Western and Southern populations, petiole
length was negatively influenced by some bioclimatic variables including the annual
precipitation. This observation suggests that bioclimatic variables can have a contrasting
effect on themorphological traits of the plants depending on the environmental conditions.
These results suggest an important phenotypic plasticity in the surveyed A. senegalensis
populations to different environments, in agreement with the findings of Guerin, Wen &
Lowe (2012) that reported amorphological shift consistent with a response to contemporary
climate change. However, the extent of the contribution of the environment should be
further studied, since soil and other environmental variables such as topography were
not included in the analysis (Ouédraogo et al., 2019). Therefore, studies considering data
from additional environmental parameters are required to better estimate the effect of
the genetic background vs. the environment on the variation of morphological traits of
A. senegalensis. Yet the availability of high genetic diversity in the studied populations is a
sign of biological adaptability that can enable A. senegalensis to respond in various ways to
changes in the environment.

CONCLUSIONS
The present study reported the morpho-genetic diversity in populations of A. senegalensis
from Western (Benin) and Southern Africa (Mozambique). Strong differences were
observed in the morphological traits scored in whole plants, fruits, and leaves between
Western and Southern populations. Moreover, high genetic diversity was found in the
studied populations. A significant association was found between morphological traits
and genetic parameters. Precipitation and temperature extremes were found to be the
most important climate factors, influencing A. senegalensismorphological traits. Our study
provides crucial information for the sustainable management of this species.
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