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ABSTRACT
Introduction. The fast, intuitive and autonomous system 1 along with the slow,
analytical and more logical system 2 constitute the dual system processing model of
decisionmaking.Whether acting independently or influencing each other both systems
would, to an extent, rely on randomness in order to reach a decision. The role of
randomness, however, would be more pronounced when arbitrary choices need to be
made, typically engaging system 1. The present exploratory study aims to capture the
expression of a possible innate randomness mechanism, as proposed by the authors, by
trying to isolate system 1 and examine arbitrary decisionmaking in autistic participants
with high functioning Autism Spectrum Disorders (ASD).
Methods. Autistic participants withhigh functioning ASD and an age and gender
matched comparison group performed the random number generation task. The task
was modified to limit the contribution of working memory and allow any innate
randomness mechanisms expressed through system 1, to emerge.
Results. Utilizing a standard analyses approach, the random number sequences
produced by autistic individuals and the comparison group did not differ in their ran-
domness characteristics. No significant differences were identified when the sequences
were examined using a moving window approach. When machine learning was used,
random sequences’ features could discriminate the groups with relatively high accuracy.
Conclusions. Our findings indicate the possibility that individual patterns during
random sequence production could be consistent enough between groups to allow for
an accurate discrimination between the autistic and the comparison group. In order to
draw firm conclusions around innate randomness and further validate our experiment,
our findings need to be replicated in a bigger sample.

Subjects Psychiatry and Psychology
Keywords ASD, Autism, Randomness, Dual process theory

INTRODUCTION
One well established model of thinking in cognitive psychology proposes a distinction of
the decisionmakingmechanisms in the fast, intuitive and autonomic system 1 and the slow,
analytical and more logical system 2 (Kahneman, 2003). Activities such as detecting that
one object is more distant than another or performing simple mathematical calculations
are usually attributed to system 1 while other behaviours where attention and cognitive
processes are actively employed, like filling out a tax form, are attributed to system 2 (Evans
& Stanovich, 2013; Kahneman, 2003; Wason & Evans, 1974). The two systems can operate
independently but they can also interact and influence one another. Emotions, memories
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and impulses generated by system 1 can inform system 2 which, in its turn, can silence,
guide or train system 1 (Evans & Stanovich, 2013).

In this paper and based on the dual-systemmodel, we will briefly analyse the role of these
systems in arbitrary decision making. We will then talk about the concept of randomness
and how we believe that would come into play when such decisions are attempted and
explain why we are interested in arbitrary choices in autism. Finally, we will talk about the
experimental procedure via which we try to examine arbitrary decision making in autism.

Dual-system model and arbitrary decision making
In our everyday life, when confronted with dilemmas that can be analysed with rational
criteria, either one or both thinking systems can be recruited to reach a decision (Kahneman,
2003). What happens however, when arbitrary decisions need to be made? In situations
where arbitrary decisions need to be made no clear reason exists as to why one choice
should be preferred over the other one, since from all available choices none is more
advantageous than the others. This scenario might seem extreme but almost every day we
are faced with such choices. Which apple would you pick from the pile in the store, when
all apples placed in front of you are of the same quality? When exactly will you choose
to schedule your first appointment, during working hours, when your calendar is free, at
10:15 am or 10:20 am?Which pencil would you peak from a box of identical pencils? These
and many other similar decisions raise the question of how a ‘‘thinking’’ system that is
based on reason, can actually make such arbitrary choices?

Depending only on system 1, an arbitrary decision can be made automatically, without
active consideration, and it could be ‘biased’ or not. By ‘biased’ we mean any decision that
would not be considered random by the system. System 1, for example, may be guided
from our habits to make such a decision. In that case and in the aforementioned example
we would choose the apple that is on the left side of the pile, because we always do so but
may not consciously remember. When not ‘biased’, our arbitrary decisions could be the
result of a random function that could be expressed per se or influence system 1 (Hogarth,
2005).

When the slower system 2 is involved in arbitrary decisions, this can happen through
aroused emotions, memories and attention to environmental nudges that are provoked
by system 1 (e.g., recognize the outline of a beloved person on the surface of the apple),
by substituting the question we are faced with, with a rational one that could be answered
easily (e.g., which apple is more red), by consciously following or deviating from a set
of rules (e.g., always choose apples from the bottom row or decide to actively avoid this
pattern), or by depending on our environment either passively (e.g., pick the apples that will
remain untouched by other customers) or actively (e.g., coin flipping or asking someone
else to make a decision for us) (Hogarth, 2001; Moulton et al., 2007). Our efficiency and
ability to make such decisions, can impact our everyday functioning. If we actively need
to consider all our choices, that would require the involvement of system 2 and this could
impact our performance especially in relation to the time and effort we spend in decision
making (Croskerry & Nimmo, 2011;Moulton et al., 2007). Moreover, if the responsibility of
making a decision has to be transferred to someone else, then that will result in a dependent
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behaviour. Alternatively, when certain rules need to be strictly followed that can lead to a
stereotypical behaviour.

Randomness in arbitrary decision making
Randomness as a concept is by itself a complicated one, and the way humans perceive
randomness might differ from the actual physical notion of the concept (Bar-Hillel &
Wagenaar, 1991). Many attempts to define randomness have been made. Each one focuses
on different concepts that events which could be considered random should entail,
including equal probability, sequential independence and unpredictability (Nickerson,
2002). As the most widely accepted characteristic of a random sequence of events would
be that of equal probability, for the purpose of this paper, we define a sequence of infinite
events as random when all possible events have equal probability to occur at each time
point of this sequence (Borowski, n.d).

Several theories have been stated and experiments conducted in order to examine
how humans perceive randomness. Many of these theories and experiments support that
humans are very poor in recognizing sequences that are the result of random processes
(for review of earlier experiments Tune, 1964). When the production of random number
sequences is concerned, literature findings are conflicting as some studies show that they
produce number sequences that very well resemble those of a random process (Persaud,
2005) while other studies indicate that humans have a relatively poor performance in
this task (e.g., Bains, 2008; Figurska, Stańczyk & Kulesza, 2008). Some of these findings
could be due to the fact that our cognitive capacity is limited (Bains, 2008; Persaud, 2005).
Moreover, when no instructions are provided to participants as to what is considered
random or no indication is provided that a random approach would be needed to execute a
task, participants can produce random sequences approaching them as arbitrary decisions
and thus successfully engage in tasks where a random approach is the best strategy (Rapoport
& Budescu, 1992; Sharifian, 2016).

Randomness exists in nature and can behaviourally be expressed as an ability to avoid
predictability, thus linked to an evolutionary advantage (Riotte-Lambert & Matthiopoulos,
2020) . Experiments in animals have shown that their brain can turn on a ‘random mode’
when rules and settings change and there is no prior knowledge to guide decisions (Tervo
et al., 2014). In the same context, when infants are placed in a novel environment, for
example with toys they have never seen before, the decision around which one they would
pick, is arbitrary. To reach that decision, they have to obviously recruit a randomness
mechanism. The choice they make, under an evolutionary perspective, if proven a safe one,
would shape their future preferences (Silver et al., 2020).

Randomness in decision making is a rather difficult concept to examine experimentally.
We can identify three ways randomness can be expressed in arbitrary decision making.
True randomness when uncontrolled and unpredictable phenomena are utilized (e.g., coin
flipping, rolling dice), imitated randomness when decisions are made based on a set of rules
(e.g., making a conscious unprecedented choice to avoid following a pattern) and innate
randomness through a possible innate mechanism of randomness production. Finally, a
combination of the last two ways of randomness expression could serve arbitrary decision
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making, especially when a set of rules is not fully descriptive. For example, a decision to
produce a number that cannot be a repetition of the last two numbers produced, can
comply both with imitated and innate randomness. The first two ways, rely heavily on
system 2 while the last mechanism would be part of system 1. The concept of innate
randomness is one proposed by the authors of this paper, based on previous research
findings and observations (for example, Wong, Merholz & Maoz, 2021; Tervo et al., 2014;
Schulz et al., 2012; Laskaris, Zafeiriou & Garefa, 2009; Tune, 1964). The characteristics of
an innate randomness mechanism remain largely unknown, although some observations
have been made in animal and human studies (Tervo et al., 2014). In this study, we try to
examine the possibility of innate randomness existence by trying to ‘‘force’’ its expression
by favoring system 1.

Autism and the dual-system thinking model
Autism is one of the most common neurodevelopmental disorders (CDC, 2016). Its
symptomatology includes persistent impairments in reciprocal communication and
social interactions as well as restricted, repetitive patterns of behaviours, interests or
activities (APA, 2013). Different autism phenotypes are characterized by a diversity of traits
(Geschwind, 2009).

As far as decision making is concerned, autistic individuals are faced with difficulties,
and are generally slower in taking decision and show less intuitive and more deliberate
reasoning (Brosnan, Lewton & Ashwin, 2016; Farmer, Baron-Cohen & Skylark, 2017; Luke et
al., 2012; Vella et al., 2018). To account for those characteristics and based on experimental
knowledge, De Martino et al. (2008) proposed a model according to which autism would
more heavily rely on system 2 when decision making is concerned.

Although helpful to interpret certain autistic behaviours during decision making, the
De Martino model, does not offer any insight concerning the role of system 1. It is possible
that autistic individuals heavily rely on system 2 as a counterbalancing strategy to a
compromised system 1. Alternatively, system 1 could be intact but system 2 is overactive
and dominant. Additionally, autistic individuals experience difficulties in using emotional
or attentional cues in order to make decisions (Gaigg, 2012), indicating that the way
by which system 1 could influence system 2 is even further limited and this could lead
to stereotypical behaviour (Cunningham & Schreibman, 2008; Farmer, Baron-Cohen &
Skylark, 2017) and dependency and would point towards autism being characterized by
difficulties in abstract decision making. Reports of autistic individuals and their caregivers
highlight the difficulties of these individuals to decide, especially when new choices need
to be made or when decisions need to be taken on the spot (Frith, 2001; Vella et al., 2018).
A recent study has indeed shown that autistic individuals that have high functioning ASD
experience difficulties in routine everyday decisions, including what clothes to wear and
when to shower but these difficulties are not present when crucial life decisions are involved
(Levin et al., 2015). This difficulty could be a limiting factor to their everyday functionality
which is of paramount importance and a major factor to consider in the diagnosis of
autism.
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The Random Number Generation (RNG) task
The RNG task is commonly used to examine the concept of randomness in humans
(Matsukawa et al., 2006; Rosenberg et al., 1990; Shinba et al., 2000; Spatt & Goldenberg,
1993; Williams et al., 2002). During the task, participants are asked to produce a sequence
of numbers that adheres to predefined rules that would make a sequence random, such
as avoid patterns, repetitions of the same digits or use all digits available before recycling
them. This could lead to responses that would imitate randomness. All the different ways
that the RNG task has been employed, are based on the definition of what constitutes a
random number sequence, that is either provided to participants or is based on how they
perceive randomness themselves.

In that sense, the RNG and similar tasks, become heavily dependent on cognitive
and attentional processes (Towse, 1998; Williams et al., 2002). Each choice of number
is not an entirely arbitrary choice but a well thought decision which would depend on
processes that are employed by system 2. In these types of experiments, participants’
performance improves with training and feedback, however, these experiments deviate
from a concept of innate randomness and treat randomness as a skill that could be
improved with practice (Biesaga, Talaga & Nowak, 2021; Gauvrit et al., 2017). Indeed, a
recent experiment by Biesaga, Talaga & Nowak (2021) has shown that when cognitive
demands and contextual task conditions are optimal, participants can produce sequences
that could be considered more random, highlighting the importance of providing task
instructions to participants to achieve that effect. The cognitive demands of such tasks
become apparent however, as participants tire with time and the randomness of the
sequences they produce decreases. The significant contribution of cognitive processes to
the typical RNG task, also becomes apparent when the task is performed by individuals
who experience cognitive difficulties. Patients with Alzheimer’s disease, schizophrenia as
well as autistic individuals (low functioning) tend to produce shorter number sequences
with more digit cycling and repetitions than the comparison groups and these differences
have been attributed to attentional deficits, difficulties in working memory and executive
functions (Brugger et al., 1996; Proios, Asaridou & Brugger, 2008; Williams et al., 2002).

Study aims
The primary aim of this exploratory study is by silencing system 2, to show the contribution
of system 1 and innate randomness in arbitrary decision making in autism. In order to
achieve that, we modified the RNG task to limit the contribution of cognitive processes,
such as working memory and consequently the contribution of system 2 to the task. That
would allow us to examine the role of system 1 in arbitrary decision making in autism. The
RNG task has not, to our knowledge, been administered to autistic participants with high
functioning ASD before. However, given that autistic individuals rely heavily on system
2 to make decisions (De Martino et al., 2008; Levin et al., 2015) and considering that in
our task the contribution of system 2 is reduced, we hypothesize that the autism and the
comparison group would differ in both the quality of the randomness features and the
quantity of the numbers produced.
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Table 1 Demographics. Summary of the age, gender balance and IQ scores of the ASD and the compari-
son groups.

ASD Control p-value*

Age (years) mean (std) 27 (6.8) 26 (5.7) 0.368
Gender n (%) 0.842
Male 30 (84) 34 (85)
Female 6 (16) 6 (15)
IQmean (std) 107 (11.6) 111 (10.8) 0.077

Notes.
*Mann–Whitney U was used when non-normality could not be excluded, else ANOVA. For Gender% comparison Chi-square
was used.

METHODS
Participants
This study recruited autistic adults (36 adults, 30 male) and an age and IQ-matched
comparison group (40 adults, 34 male). For details see Table 1.

The autistic participants were recruited from a larger cohort of volunteers (Pehlivanidis
et al., 2020) who participated in a research project on the de novo diagnosis of adults with
neurodevelopmental disorders. ASDdiagnosis was based onDSM-5 criteria and everyone in
the autism group had fluent phrase speech and more than 12 years of education. Exclusion
criteria included the presence of acute psychopathology, systematic psychopharmacological
treatment up to 30 days prior to taking part in the study, current substance abuse disorder,
IQ<70 assessed with Wechsler Adult Intelligence Scale (WAIS-IV), any known genetic
condition (Wechsler, 2012).

The comparison group was recruited via advertisement and word ofmouth and included
neurotypical individuals with IQ>70 (WAIS-IV) and more than 12 years of education.
Exclusion criteria included the presence of acute psychopathology.

Written informed consent was obtained from all participants and the studywas approved
by the Ethics Committee of the Department of Psychiatry, National and Kapodistrian
University of Athens (IRB 12/7/2018 #517). All experiments were performed in accordance
to relevant guidelines and regulations.

Modified random number generation task
Participants were instructed to pronounce a sequence of numbers, as comes to mind,
with each number ranging from 1 to 10. The task duration was 1 min. Participants were
advised but not obliged to produce numbers at a steady pace of approximately 1 number
per second. No example sequence was given to participants to avoid unwanted influences
from the experimenter.

To ensure minimal distractions and keep the experimental conditions as similar as
possible between participants, individuals were placed in a dark room. The only source
of light was a computer screen which was displaying a progress bar used to count down
the remaining task time and helping participants to keep the pace. Throughout the task,
participants were listening to a track consisting of nature sounds (forest, rain sounds
etc.) at a loud volume through a headset. Nature sounds were chosen as they already are
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familiar to individuals. The sound volume was loud enough to block any surrounding
noise as well as the sound of their own voice and this was confirmed before the start of the
task. The purpose of this modification was to limit the contribution of auditory working
memory—a process mainly employed by system 2, in other words limit the ability of
individuals to choose a number based on the sequence of numbers that have already been
used. The sequence was recorded automatically. The experimenter was present in the room
to ensure proper execution of the task but was out of the participants’ field of view and
did not interact with them in any way. Each participant produced a single random number
sequence and at the end of each session the number sequences were transcribed by the
investigator and the participants’ recording were deleted.

Data analysis
The task data were processed using in house code in R and Python programming languages.
Two groups of variables were calculated using the RandSeq (Oomens et al., 2021) package
in R. The first group of variables included standard measures of randomness: Redundancy
(R), Random Number Generation (RNG), RNG2, Null Score Quotient (NSQ), Adjacency
(see Table S1). The second group included measures that describe the characteristics of
the sequence itself: response frequencies (RF), first order difference (FOD) (Towse, 1998)
as well as the correlation frequency index (Cf) (Barbasz et al., 2008) (Table 2). Given that
in our task sequence lengths were different between participants we computed the relative
equivalent of the second group of variables (Table 2). These are standard variables that have
been widely used in the literature to examine human randomness as expressed through
the RNG task. In order to observe how randomness measures might change over time, an
overlappingmoving window of 20 secs in length (33% of total task time) was also applied to
the sequences and the above variables were calculated for each step. In order to focus more
on any ‘‘pattern’’ characteristics that the task sequences might have we also performed a
recurrence quantification analysis (RQA) in R using casnet package (Hasselman, 2022). All
the variables that were calculated are defined in Table 1 and for the values of each variable
for both groups are summarised in Table 2.

A classification approach was used to examine whether we can distinguish the two
groups based on the characteristics of the sequences that each group produced. The sklearn
Python package for machine learning was used and a decision tree method was followed.
The GridSearchCV was consulted for the hyperparameters selection. The model was tested
for all possible combinations of features, up to three features and leave-one-out cross
validation was applied. For the replication of the results the ‘random_state’ variable in both
splitting the data and the decision tree functions, was set to 1.

RESULTS
The lengths of the number sequences produced during the modified RNG task, did not
differ between the autism group and the comparison group (p= 0.27, comparison group:
mean = 62, median =58, IQR = 49−72, autism group: mean = 59, median = 54, IQR =
40−74). Based on the characteristics of the sequence, both the autism and the comparison
group showed similar profiles in the use of pairs of consecutive numbers and the frequency
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Table 2 Variables description. For the analysis of the RNG task three groups of variables were calculated. The variables that belong to each group
and their definitions are offered here.

Variable Name Variable Definition

Redundancy (R) The measure of inequality in response which determines the
extent of deviation from ideal information generation.

Random Number Generation (RNG) The measure of inequality of response usage between
observed and mathematical digrams for adjacent responses.

Random Number Generation 2 (RNG2) The measure of inequality of response usage between
observed and mathematical digrams for interleaved
responses.

Null Score Quotient (NSQ) The measure of inequality of response usage between
digrams that do not appear in the sequence for adjacent
responses.

Group 1
Measures of
Randomness

Adjacency The measure of frequency of digrams of adjacent responses
Response Frequency (RF) The measure of occurrence of each response per sequence
Relative Response Frequency (r_RF) The measure of occurrence of each response per sequence

length
First Order Difference (FOD) The measure of occurrence of the arithmetic difference

between each response and its preceding value
Relative First Order Difference (r_FOD) The measure of occurrence of the arithmetic difference

between each response and its preceding value per sequence
length

Correlation function index (Cf) The measure of occurrence of repetition of the same digit
for all possible distances

Group 2
Characteristics
of the
sequence

Relative correlation function index (r_Cf) The measure of occurrence of repetition of the same digit
for all possible distances, divided by the maximum possible
Cf value, for the sequence length

Recurrence Rate The percentage of recurrent responses in the sequence
Determinism The measure of quantification of repetitive patterns
Laminarity The measure that represents the proportion of digits that

are repeated monotonously, without any time or digit
interval

Shannon information entropy The measure of the complexity of the deterministic
structures of the sequence

Trapping time The measure of the average length of repetitive patterns of
digits that are repeated monotonously

Recurrence
Quantification
Analysis

Mean The measure of average length of repetitive patterns

of digits (Fig. 1). When the randomness measures were calculated and compared between
the two groups, few significant differences were identified between the two groups for some
of the variables in both groups. For a detailed summary of these results see Table 3.

In the next step, the 20 secs moving window was applied to the data and the randomness
values were plotted for each step. We observe that during the task’s time course, the
differences of the randomness values between the two groups were very small, however, for
three of these measures this difference constantly remained in favor of one group (Fig. 2).
Specifically, the NSQ and redundancy indices were borderline higher for the autism group
while the adjacency combined values were higher for the comparison group.
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Figure 1 The relative FOD and relative RF variables by group. The relative FOD and relative RF vari-
ables as were calculated for the autism group and the comparison group. Both random number sequences
show similar patterns in the use of consecutive pairs (r_FOD) and the frequency of digits (r_RF).

Full-size DOI: 10.7717/peerj.15751/fig-1

No significant differences were identified between autism and the comparison group
when the RQA approach was applied to the data.

Finally, for the decision tree method, when the descriptive measures of randomness
were used as features for classification, there were more than one combinations of up
to three features that could discriminate the groups with relatively high mean accuracy
rate (>75%). In Fig. 3, we present the decision tree for a two features model, FOD_8
and FOD_-8 (hyperparameters: max_depth =5, max_features =1, min_samples_split =7,
min_samples_leaf =1) where the mean classification accuracy reached 82%.

DISCUSSION
The primary aim of this exploratory study is by silencing system 2, to show the contribution
of system1 and innate randomness in arbitrary decisionmaking in autism. For that purpose,
we recruited a sample of autistic individuals with high functioning ASD and a comparison
group, who performed a modified version of the RNG task. Our version differed from
the typical RNG in that the task duration was kept the same for all participants who were
placed in a dark room and were listening to nature sounds at a very high volume while
producing the random number sequence. No definition of randomness and rules for the
production of number sequences were given. Matching our experiment’s characteristics
with Wanegaar’s three features for random processes (Wagenaar, 1991), we provided
participants with a ‘‘fixed set of alternatives’’ (digits from 1 to 10) and tried to make the
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Table 3 Summary of the variables per group. Summary of the variables of the sequences for the ASD group and the comparison group. For the
second group of variables, their relative equivalent was also calculated since our sequences where not equal in length. The relative values are also in-
cluded in the table.

Group Description Name ASDmean (std) Ctrl mean (std) p value*

The measure of inequality of response us-
age between observed and mathematical di-
grams for adjacent responses

RNG 42.095 (16.82) 45.16 (18.41) 0.414

The measure of inequality of response us-
age between observed and mathematical di-
grams for interleaved responses.

RNG2 35.739 (14.62) 35.398 (16.32) 0.839

The measure of inequality of response usage
between digrams that do not appear in the
sequence for adjacent responses.

NSQ 66.778 (8.45) 64.878 (7.71) 0.093

Measure of inequality in response, which
determines the extent of deviation from
ideal information generation.

Redundancy 4.405 (3.8) 4.022 (5.01) 0.31

The measure of frequency of digrams of ad-
jacent responses

Adjacency 34.461 (16.23) 36.37 (19.23) 0.892

Measures of
Randomness

TPI 80.486 (21.48) 81.08 (21.62) 0.65
RF_1 9.277 (6.38) 8.525 (3.48) 0.714
RF_2 7.194 (5.7) 6.375 (2.68) 0.937
RF_3 6.75 (4.53) 6.35 (3.3) 0.862
RF_4 4.75 (2.58) 5.725 (2.88) 0.189
RF_5 6.222 (3.08) 6.525 (3.2) 0.55
RF_6 4.861 (2.36) 5.7 (3.19) 0.343
RF_7 6 (2.72) 5.925 (2.86) 0.689
RF_8 5.527 (3.12) 6.325 (3.22) 0.306
RF_9 5.305 (2.16) 5.925 (2.34) 0.16

The measure of occurrence of each response
per sequence

RF_10 3.472 (2.26) 4.725 (3.02) 0.032
r_RF_1 0.151 (0.04) 0.144 (0.06) 0.589
r_RF_2 0.114 (0.04) 0.104 (0.03) 0.432
r_RF_3 0.107 (0.04) 0.099 (0.03) 0.472
r_RF_4 0.08 (0.03) 0.09 (0.028) 0.145
r_RF_5 0.106 (0.03) 0.103 (0.032) 0.741
r_RF_6 0.082 (0.02) 0.087 (0.03) 0.425
r_RF_7 0.103 (0.03) 0.093 (0.02) 0.173
r_RF_8 0.095 (0.03) 0.099 (0.03) 0.619
r_RF_9 0.095 (0.03) 0.096 (0.03) 0.881

The measure of occurrence of each response
per sequence length

r_RF_10 0.062 (0.03) 0.079 (0.04) 0.094
FOD_-9 0.972 (1.1) 1.375 (1.68) 0.418
FOD_-8 2.027 (1368) 1.75 (1.37) 0.681
FOD_-7 1.361 (1.43) 1.475 (1.55) 0.888
FOD_-6 1.5 (1.25) 1.65 (1.45) 0.776
FOD_-5 1.833 (1.87) 2.125 (1.62) 0.269
FOD_-4 2.222 (1.88) 2.025 (1.64) 0.758
FOD_-3 2.916 (2.07) 2.625 (1.7) 0.755

(continued on next page)
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Table 3 (continued)

Group Description Name ASDmean (std) Ctrl mean (std) p value*

FOD_-2 4.333 (2.54) 4.175 (2.36) 0.779
FOD_-1 9.805 (10.13) 11.525 (6.27) 0.015
FOD_0 3.361 (6.97) 2.6 (3.05) 0.395
FOD_1 21.722 (10.69) 22.2 (16.28) 0.646
FOD_2 5.944 (3.98) 5.65 (3.54) 0.916
FOD_3 1.944 (1.83) 3.275 (2.45) 0.008
FOD_4 2.027 (2) 2.225 (1.68) 0.424
FOD_5 1.166 (1.18) 1.475 (1.06) 0.106
FOD_6 0.861 (0.96) 1 (1.01) 0.551
FOD_7 0.75 (0.9) 0.6 (0.74) 0.577
FOD_8 0.416 (0.64) 0.475 (0.71) 0.798

The measure of occurrence of the arithmetic
difference between each response and its
preceding value

FOD_9 3.194 (2.36) 2.875 (2.62) 0.471
r_FOD_-9 0.013 (0.01) 0.018 (0.02) 0.45
r_FOD_-8 0.03 (0.02) 0.026 (0.02) 0.392
r_FOD_-7 0.02 (0.01) 0.02 (0.02) 0.849
r_FOD_-6 0.023 (0.01) 0.024 (0.02) 0.945
r_FOD_-5 0.028 (0.02) 0.032 (0.02) 0.537
r_FOD_-4 0.036 (0.03) 0.03 (0.02) 0.754
r_FOD_-3 0.046 (0.03) 0.04 (0.02) 0.522
r_FOD_-2 0.067 (0.03) 0.06 (0.03) 0.333
r_FOD_-1 0.128 (0.08) 0.159 (0.07) 0.025
r_FOD_0 0.037 (0.05) 0.035 (0.03) 0.67
r_FOD_1 0.317 (0.09) 0.295 (0.12) 0.083
r_FOD_2 0.088 (0.05) 0.079 (0.04) 0.45
r_FOD_3 0.028 (0.02) 0.046 (0.03) 0.014
r_FOD_4 0.033 (0.03) 0.031 (0.02) 0.979
r_FOD_5 0.018 (0.01) 0.021 (0.01) 0.257
r_FOD_6 0.012 (0.01) 0.015 (0.01) 0.607
r_FOD_7 0.012 (0.01) 0.009 (0.01) 0.544
r_FOD_8 0.007 (0.01) 0.007 (0.01) 0.916

The measure of occurrence of the arithmetic
difference between each response and its
preceding value per sequence length

r_FOD_9 0.046 (0.02) 0.044 (0.04) 0.5
The measure of occurrence of repetition of
the same digit for all possible distances

Cf 3.507 (1.95) 3.494 (1.09) 0.213

Characteristics
of the sequence

The measure of occurrence of repetition of
the same digit for all possible distances, di-
vided by the maximum possible Cf value,
for the sequence length

r_Cf 0.099 (0.01) 0.098 (0.01) 0.946

The percentage of recurrent responses in the
sequence

RR 0.101 (0.01) 0.1 (0.01) 0.847

The measure of quantification of repetitive
patterns

DET 0.317 (0.09) 0.337 (0.12) 0.669

The measure that represents the proportion
of digits that are repeated monotonously,
without any time or digit interval

LAM_hl 0.076 (0.12) 0.071 (0.08) 0.56

(continued on next page)

Mantas et al. (2023), PeerJ, DOI 10.7717/peerj.15751 11/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.15751


Table 3 (continued)

Group Description Name ASDmean (std) Ctrl mean (std) p value*

The measure of average length of repetitive
patterns

MEAN_dl 2.628 (1.4) 2.753 (2.47) 0.818

The measure of the complexity of the deter-
ministic structures of the sequence

ENTrel_dl 0.147 (0.08) 0.149 (0.09) 0.75

Recurrence
Quantification
Analysis

The measure of the average length of repet-
itive patterns of digits that are repeated
monotonously

TT_hl 1.344 (1.03) 1.479 (0.93) 0.99

Notes.
*Mann–Whitney U was used when non-normality could not be excluded, else ANOVA.

digit selection a ‘‘memoriless procedure’’, by mitigating working memory through the very
loud noise manipulation. Finally, by removing the task instructions and feedback, we tried
to make each digit choice an abstract decision thus removing ‘‘preference for any of the
possible outcomes’’.

The task data were analyzed for both groups and we compared the descriptive
characteristics of the sequences, the standard measures of randomness that are calculated
when the RNG task is analyzed and the output indices of the RQA analysis. We did not
identify any differences in the abovemeasures between the two groups with the exception of
certain isolated descriptivemeasures of the number sequence, namely the use of consecutive
numbers with a difference of −1 or +3, FOD_-1 and FOD_3, that were preferred by the
autism group.

Our findings are not in line with our initial hypothesis as we were expecting the autism
group to show reduced production and consequently, sequences that are shorter in length
and less random compared to the comparison group (Rinehart et al., 2006; Williams et al.,
2002). A more repetitive and less original number sequence would have been in line not
only with RNG literature but also research indicating that autistic children produce less
complex and less original color and tone patterns, compared to their non-autistic peers.
Although these color and tone experiments were not conducted with the aim to investigate
the concept of randomness in autism, they indeed indicate that autistic individuals tend to
adhere more strictly to rules and patterns when faced with tasks that resemble the RNG.

Our findings are also in contrast to a study by Williams et al. (2002) which showed
that the autism group produced number sequences with more digit cycling and patterns
in relation to the comparison group. This study, however, recruited a group of autistic
participants with low functioning ASD who were asked to perform a typical RNG task
during which they were instructed to avoid patterns and repetitions of numbers. The
differences in the number sequences that were produced, were attributed to the cognitive
characteristics of the autism group, and specifically to impaired response inhibition that
contributes to participants repeating digits. Such a finding is in line with the RNG recruiting
cognitive processes that primarily are employed by system 2 (Brugger et al., 1996).

In our RNG task and in order to look at how the randomness measures fluctuate over
time we applied an overlapping moving window and the randomness measures were
calculated for every window step. We did not identify any significant fluctuations of
randomness measures over time. Although NSQ, redundancy and adjacency indices were
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Figure 2 Randomness measures’ 20 secs moving window. Randomness measures that differed between
the autistic group and the comparison group, for a 20secs moving window. A 20 s moving window was ap-
plied to the data to examine how randomness measures develop over time, in each group. The values for
the autistic group are represented with the dark grey line, while the control group values are depicted us-
ing a light grey line.

Full-size DOI: 10.7717/peerj.15751/fig-2

almost always in favor of one group, the difference of those measures between the two
groups was not big enough to yield any significant conclusions.

When machine learning was used and the decision tree approach was applied to the
data we were able to discriminate between the autism and the comparison group with
a classification accuracy that reached 82%. We could offer two different viewpoints for
this finding. It is possible that there are differentiating patterns in the number sequences
of the two groups that could not be picked up when the standard randomness indices
were compared one by one, but were reflected when randomness measures were viewed
in combination. Alternatively, both groups could be equally random but random in a
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Figure 3 Machine learning decision tree. The decision tree for the two variables, FOD_8 and FOD_-
8, that returned a classification accuracy of 82% (hyperparameters: max_depth=5, max_features=1,
min_samples_split=7, min_samples_leaf=1).

Full-size DOI: 10.7717/peerj.15751/fig-3

different way, for example number sequences 1 2 3 2 3 and 4 5 6 5 6 are different but
equally random and they even contain the same amount of repetitions.

Recent data suggest that individuals’ responses during random sequence generation
could be considered a fingerprint—a unique biomarker for the individuals’ cognitive
ability—and it could also vary between psychopathological populations (Laskaris, Zafeiriou
& Garefa, 2009; Schulz et al., 2012; Wong, Merholz & Maoz, 2021). Specifically, several
studies have used a classification approach and they have shown that the mechanism by
which individuals generate random sequences is highly unique and consistent enough to
allow a model to predict the next item in the sequence for each individual subject (Schulz et
al., 2012; Schulz et al., 2020). Additionally, Jokar & Mikaili (2012) examine the randomness
of the temporal characteristics of a sequence which appear unique enough to discriminate
between subjects.

Our study indicates the possibility that the individual patterns during random sequence
production are consistent enough between groups to allow for an accurate discrimination
between a clinical population and the comparison group, using machine learning
algorithms. As our study aimed to explore a novel concept, that of innate randomness,
further research and replication of our findings is paramount. This would allow us to
better understand how innate randomness is expressed during arbitrary decision making
and how its mechanisms might present with altered function in autism as well as other
clinical populations. Our findings, if confirmed by future studies and expanded to other
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clinical populations, would indicate that tasks such as the RNG which are likely to recruit
randomness mechanisms, could be useful diagnostic tools and could help expand our
understanding of the unique characteristics of several psychopathological populations.

The study has several limitations. First, concerning the characteristics of our sample,
no information was gathered around our ASD group on whether they had access to
some form of psychotherapy. Despite adjusting our experimental conditions, we cannot
exclude the contribution of system 2 during the RNG task. Specifically, this would be
in line with experiments. Moreover, the RNG task has not been used before in autistic
individuals with high functioning ASD and thus we cannot test the contribution of our
manipulations in our group’s performance. In our version of the RNG task, as well as
the standard task version, participants are asked to produce random sequences using
numbers from 1 to 10. The use of sequential numbers, that can be arranged based on
their value and with which we are familiar since very early in life, would favor biases for
specific numbers and number sequences. Indeed, in our groups we do see a consistent
preference for specific digits, that could be due to cultural or environmental influences.
This may limit the expressed randomness and could partly account for the absence of
significant differences in our groups. To overcome some of these issues, a bigger sample
and/or the use of an alternative task could be of help. Ideally, a task that would minimize
such cultural and environmental influences might be more appropriate to examine the
randomness characteristics of different groups and individuals. Our classification results
need further validation since we cannot attest to the specificity of our findings for autism.
Given our small sample and the hyperparameters (min_samples_leaf =1) that we used
for classification, there is always the danger that our high classification accuracies were
due to overfitting. A bigger sample would allow us to further explore the possibility of
discrimination between different groups, based on their produced sequences.
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