The novel role of LDHA/LDHB in the prognostic value and tumor-immune infiltration in clear cell renal cell carcinoma (#83877)

First submission

Guidance from your Editor

Please submit by 1 May 2023 for the benefit of the authors (and your token reward) .

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

If this article is published your review will be made public. You can choose whether to sign your review. If uploading a PDF please remove any identifiable information (if you want to remain anonymous).

Files

Download and review all files from the <u>materials page</u>.

- 12 Figure file(s)
- 2 Table file(s)
- 2 Raw data file(s)

Custom checks

Human participant/human tissue checks

- Have you checked the authors <u>ethical approval statement?</u>
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Cell line checks

Is the correct provenance of the cell line described?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Т	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

The novel role of LDHA/LDHB in the prognostic value and tumor-immune infiltration in clear cell renal cell carcinoma

Jie Chen¹, Fei Wu^{2,3}, Yuanxin Xing⁴, Qingyong Liu Corresp., 3, Zuohui Zhao Corresp. 5

Corresponding Authors: Qingyong Liu, Zuohui Zhao Email address: lqylbc@163.com, zhaozuohui@126.com

Lactate dehydrogenase (LDH), a crucial glycolytic enzyme, mediates the metabolic plasticity of cancer cells, whereas its clinical significance in renal cell carcinoma (RCC) is poorly understood. Herein, we examined the prognostic significance of the two primary components of LDH, i.e., LDHA and LDHB, in clear cell RCC (ccRCC) patients and further explored their association with immune infiltration in ccRCC. In this study, the expression levels of LDHA and LDHBwere examined in ccRCC and adjacent normal tissues by Gene Expression Profiling Interactive Analysis 2 (GEPIA2), UALCAN, and western blotting (WB) analyses, and their prognostic values were estimated in 150 ccRCC and 30 adjacent normal tissues by immunohistochemistry (IHC) analysis. The relationship to immune infiltration of LDHA and LDHB genes was further investigated using tumor immune estimation resource 2 (TIMER2) and Tumor-Immune System Interactions and DrugBank (TISIDB) databases, respectively. Public databases and WB analyses demonstrated higher LDHA and lower LDHB in ccRCC than in non-tumor tissues. IHC analysis revealed that LDHA and LDHB expression profiles were significantly associated with tumor grade, stage, size, and overall survival (OS). Univariate survival analysis displayed that high grade, advanced stage, large tumor, metastasis, high LDHA, and low LDHB expression were significantly associated with a poorer OS, and multivariate analysis revealed tumor stage and LDHB were identified as independent predictors for OS in patients with ccRCC. Further TIMER and TISIDB analyses demonstrated that LDHA and LDHB expression was significantly related to multiple immune cells and immune inhibitors in over 500 ccRCC patients. These findings revealed that LDHB was an independent favorable predictor, and LDHA and LDHB correlated with tumor immune infiltrates in ccRCC patients, which indicated LDHA/LDHB

¹ Department of Urology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China

Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, Shandong, China

³ Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China

⁴ Central Laboratory, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China

⁵ Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China

could be implicated in the tumorigenesis of ccRCC and might be potential therapeutic targets for patients with ccRCC.

1 The novel role of LDHA/LDHB in the prognostic value

2 and tumor-immune infiltration in clear cell renal cell

3 carcinoma

4 5

6 Jie Chen¹, Fei Wu^{2,3}, Yuanxin Xing⁴, Qingyong Liu^{3*}, Zuohui Zhao^{5*}

7

- 8 ¹ Department of Urology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong
- 9 University, Jinan, Shandong, China
- 10 ² Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical
- 11 University, Shandong First Medical University & Shandong Academy of Medical Sciences,
- 12 Jinan, Shandong, China.
- 13 ³ Department of Urology, The First Affiliated Hospital of Shandong First Medical University &
- 14 Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- ⁴ Central Laboratory, Jinan Central Hospital, Cheeloo College of Medicine, Shandong
- 16 University, Jinan, Shandong, China
- 17 ⁵ Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical
- 18 University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China

19

- 20 Corresponding Author:
- 21 Qingyong Liu¹
- 22 Jingshi Road, No. 16766, Jinan, Shandong, 250014, China
- 23 Email address: lqylbc@163.com
- 24 Zuohui Zhao²
- 25 Email address: zhaozuohui@126.com, zhaozuohui@sdhospital.com.cn

26

27

Abstrac

28	Lactate dehydrogenase (LDH), a crucial glycolytic enzyme, mediates the metabolic plasticity of
29	cancer cells, whereas its clinical significance in renal cell carcinoma (RCC) is poorly understood.
30	Herein, we examined the prognostic significance of the two primary components of LDH, i.e.,
31	LDHA and LDHB, in clear cell RCC (ccRCC) patients and further explored their association
32	with immune infiltration in ccRCC. In this study, the expression levels of LDHA and
33	LDHB were examined in ccRCC and adjacent normal tissues by Gene Expression Profiling
34	Interactive Analysis 2 (GEPIA2), UALCAN, and western blotting (WB) analyses, and their
35	prognostic values were estimated in 150 ccRCC and 30 adjacent normal tissues by
36	immunohistochemistry (IHC) analysis. The relationship to immune infiltration of LDHA and
37	LDHB genes was further investigated using tumor immune estimation resource 2 (TIMER2) and
38	Tumor-Immune System Interactions and DrugBank (TISIDB) databases, respectively. Public
39	databases and WB analyses demonstrated higher LDHA and lower LDHB in ccRCC than in non-
40	tumor tissues. IHC analysis revealed that LDHA and LDHB expression profiles were
41	significantly associated with tumor grade, stage, size, and overall survival (OS). Univariate
42	survival analysis displayed that high grade, advanced stage, large tumor, metastasis, high LDHA,
43	and low LDHB expression were significantly associated with a poorer OS, and multivariate
44	analysis revealed tumor stage and LDHB were identified as independent predictors for OS in
45	patients with ccRCC. Further TIMER and TISIDB analyses demonstrated that LDHA and LDHB
46	expression was significantly related to multiple immune cells and immune inhibitors in over 500
47	ccRCC patients. These findings revealed that LDHB was an independent favorable predictor, and
48	LDHA and LDHB correlated with tumor immune infiltrates in ccRCC patients, which indicated
49	LDHA/LDHB could be implicated in the tumorigenesis of ccRCC and might be potential
50	therapeutic targets for patients with ccRCC.
5 1	

PeerJ

52

Introduction

- Renal cell carcinoma (RCC) is the most common type of kidney cancer, with an estimated
- 54 79,000 newly diagnosed cases and 13,920 cancer-related deaths in the USA in 2022 (Siegel et al.
- 55 2022). Clear cell RCC (ccRCC) accounts for approximately 75 % of RCC and is refractory to
- 56 <u>traditional chemotherapy</u> and radiotherapy (Posadas et al. 2017). Radical nephrectomy is the
- 57 gold standard for localized RCC, which exhibits a good prognosis (about 80% five-year survival
- 58 rate). However, the prognosis for patients with advanced RCC, especially metastatic RCC
- 59 (mRCC), remains dismaying, due to their prone to relapse and resistance to conventional
- 60 therapeutic approaches (Posadas et al. 2017). Although molecular targeted therapy could prolong
- 61 the survival of advanced RCC patients, further exploration of the molecular mechanisms
- 62 underlying RCC progression is urgently needed.
- 63 Metabolic reprogramming, or altered metabolism, is a critical hallmark of cancers, which
- 64 facilitates accumulating metabolic intermediates as sources of building blocks (Jafari et al. 2019).
- 65 In addition to aberrant metabolic pathways which cause lipid droplet (LDs) accumulation in
- 66 ccRCC, recent evidence indicates a link between obesity and ccRCC, and ccRCC has been
- 67 recognized as a chronic metabolic disease (Wettersten et al. 2017). Due to the paradox between
- 68 uncontrolled cell proliferation and a limited supply of nutrients, cancer cells always reprogram
- 69 their metabolism, including glucose, protein, nucleic acids, and lipids (Heravi et al. 2022). The
- 70 first recognized and well-known metabolic reprogramming is aerobic glycolysis, which provides
- 71 bulk intermediated products (including lactate and ATP) for the rapidly proliferating cancer cells
- even under normoxia (Wettersten et al. 2017). Delineating the mechanisms underlying metabolic
- 73 reprogramming would facilitate understanding RCC's pathophysiology and provide a promising
- 74 therapy for this heterogeneous tumor.
- 75 Lactate dehydrogenase (LDH), a nicotinamide adenine dinucleotide (NAD+) -dependent
- 76 enzyme, is the crucial glycolytic enzyme involved in tumor initiation and metabolism. LDH is a
- 77 tetrameric enzyme that catalyzes the reversible conversion of pyruyate to lactate, coupled with
- 78 the oxidation of NADH to NAD+, in the glycolytic pathway (Urbanska & Orzechowski 2019).
- 79 There are four subtypes of LDH, i.e., LDHA, LDHB, LDHC, and LDHD. Among them, LDHA
- and LDHB are the significant components of LDH, which mediate the metabolic plasticity of
- 81 tumor cells. LDHA is abundant in skeletal muscle, which converts pyruvate to lactate and
- 82 produces NAD+. In contrast, LDHB is predominantly expressed in the brain and heart, which

pyrmate LOMM NAD+ Cartate

83	converts lactate to pyruvate for further oxidization (Ding et al. 2017; Urbanska & Orzechowski
84	2019). LDHC is mainly limited to the testis, while LDHD is universally found in various tissues
85	(Urbanska & Orzechowski 2019).
86	Please include which study was the analysis done in? Our previous proteomic analysis identified numerous dysregulated proteins, such as hydroxy
87	acyl-CoA dehydrogenase alpha subunit (HADHA), LDHA, and LDHB, which might be
88	implicated in RCC pathogenesis (Zhao et al. 2015). Recent literature reported that the
89	isoenzymes of LDH, including LDHA, LDHC, and LDHD, were significantly correlated with the
90	clinical outcomes of RCC (Girgis et al. 2014; Hua et al. 2017; Wang et al. 2018; Zhao et al. tumor immune?
91	2017). At the same time, the role of LDHB in RCC remains elusive. In addition, increasing This sentence feels incomplete
92	evidence demonstrated the tight connection between LDH and tumor immune (Ding et al. 2017),
93	which still needs further exploration. In the current study, we compared the differential
94	expression of LDHA and LDHB between ccRCC and their adjacent kidney tissues using Gene
95	Expression Profiling Interactive Analysis 2 (GEPIA2), UALCAN and western blotting (WB)
96	analyses, detected their expression in 150 ccRCC and 30 normal kidney samples using
97 98	immunohistochemistry (IHC) analysis with tissue microarray (TMA), assessed their prognostic Please mention if this was in the same set of patients or a seprate validation cohort of 150 patients. role in the 150 ccRCC patients, and explored the relationship between <i>LDHA/LDHB</i> gene
99	expression and immune infiltration in ccRCC using Tumor Immune Estimation Resource 2
100	(TIMER2) and Tumor-Immune System Interactions and DrugBank (TISIDB) databases, which
101	aimed to investigate the clinical significance of LDHA and LDHB in patients with ccRCC (Fig.
102	1).
103	
104	Materials & Methods
105	Tissue samples and data collection
106	The ethical committees of The First Affiliated Hospital of Shandong First Medical University
107	approved the research (2017-S007), and the participants signed the informed consent. Totally
108	157 ccRCC patients who underwent nephrectomy were enrolled in this study. All the ccRCC
109	samples were primary lesions verified using hematoxylin and eosin (HE) staining after surgery.
110	Cohort #1 was used to compare LDHA and LDHB expression by WB analysis, which consisted
111	of 7 cases of ccRCC and their adjacent kidney tissues between March 2017 and January 2019
112	[including five males and two females, aged from 43 to 73, International Society of Urological
113	Pathology (ISUP) grading with 1 G1 + 4 G2 + 2 G3, American Joint Committee on Cancer

- (AJCC) pathological staging with 4 TI + 3 TII]. Cohort #2 was used to examine the expression 114
- and prognosis of LDHA and LDHB by IHC assay. TMA was provided by Outdo (Shanghai, 115
- China), which included 150 primary ccRCC and 30 adjacent normal tissues. The samples were 116
- collected between February 2008 and March 2010. The clinicopathological parameters of the 117
- 150 ccRCC patients were recorded, including tumor grade, stage, sizes, metastasis status, follow-118
- up period, and the patient's sex and age (Table 1). The median follow-up period was 32.0 months 119
- (4 to 90 months). 120
- 121 LDH expression analysis
- 122 GEPIA2 (http://gepia2.cancer-pku.cn/) database was used to analyze the gene expression of the
- four subtypes of LDH, i.e., LDHA, LDHB, LDHC, and LDHD, in 523 ccRCC and 100 standard 123
- kidney samples from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression 124
- 125 (GTEx), as previously described (Huo et al. 2021; Tang et al. 2019). For correlation analysis,
- GEPIA2 was also used to validated the relationship between LDHB and the four 126
- immunoinhibitors, i.e., VTCN1, TGFBR1, ADORA2A and CD160, in the 523 ccRCC tissues. 127
- UALCAN (http://ualcan.path.uab.edu/analysis-prot.html) was used to compare the protein 128
- 129 expression level of LDHA, LDHB, LDHC, and LDHD in ccRCC (Chandrashekar et al. 2022).
- 130 The clinical proteomic tumor analysis consortium (CPTAC) module was used, and the total
- 131 proteins of the four subtypes of LDH were compared between 110 ccRCC and 84 normal tissues,
- respectively. 132

Why did the authors use DAB and not ECL. ECL is much more sensitive than DAB *Immunoblotting analysis* which is alo very toxic. How were the developed Western Blots imaged?

- 133
- As previously described, seven pairs of ccRCC and their adjacent tissues were used for WB 134
- analysis (Li et al. 2021). After incubating with the corresponding primary antibodies: LDHA 135
- 136 (1:1,000, rabbit, #3582; CST, USA), LDHB (1:5,000, rabbit, ab53292; Abcam, USA), anti-
- 137 Tubulin (1:2,000, rabbit, 11224-1-AP; Proteintech, China), horseradish peroxidase (HRP)
- 138 conjugated secondary antibodies (1:5,000, rabbit, SA00001-2; Proteintech, China) were used to
- visualize the desired proteins. The protein bands were developed by 3,3'-diaminobenzidine 139
- 140 (DAB, P0202, Beyotime, China) and quantified by Image J software.
- IHC analysis 141

- Can WB data be quantified using ImageJ?
- 142 The IHC analysis was performed on the TMA (n=150) as previously described (Li et al. 2021;
- 143 Wu et al. 2022a). The slides were stained with primary antibodies: LDHA (1:400, CST) and
- 144 LDHB (1:200, Abcam), developed with DAB (ZLI-9017; Zhongshan, China). The

What was configuration of the microscope, year, model, etc.

- immunohistochemical staining was analyzed and reviewed on a microscope (Olympus, Tokyo,
- 146 Japan) by two pathologists unaware of the disease outcome. As LDHA and LDHB were
- primarily located in the cytoplasm, immunoexpression was scored by evaluating the cytoplasmic
- staining intensity $(0\sim3)$ and frequency $(0\sim4)$ as previously described (Yuan et al. 2020).
- According to their expression, they were classified into two groups: low group (cancer scores < 5)
- for LDHA, <6 for LDHB) and high group (scores ≥ 5 for LDHA, ≥ 6 for LDHB).
- 151 The prognosis analysis
- Kaplan–Meier (K-M) plotter (www.kmplot.com) was used to validate the prognosis (recurrence-
- free survival, RFS) of LDHA in 530 ccRCC patients (Nagy et al. 2021). After being loaded into
- the database, the log-rank *P*-value and hazard ratio (HR) with 95% confidence intervals (CI)
- were calculated accordingly.
- Human Protein Atlas (HPA) database (http://www.proteinatlas.org) was utilized to analyze and
- 157 confirm the prognosis (OS) of *LDHB* in 528 ccRCC patients as previously reported (Fan et al.
- 158 2020). In the HPA database, the best expression cut-off was set as the default, and the prognosis
- indexes, i.e., K-M plot and log-rank *P*-value, were calculated after ≤150 months follow-up.
- 160 Immune infiltration analysis
- TIMER2 (http://timer.cistrome.org/) and TISIDB (http://cis.hku.hk/TISIDB) databases were
- performed to reveal the relationship of LDHA/LDHB with immune infiltration in ccRCC, as
- previously described (Li et al. 2020; Ru et al. 2019). TIMER2 evaluated the abundance of eight
- tumor-infiltrating immune cells (TIIC) subsets, i.e., B cells, cancer-associated fibroblast, CD4+
- 165 T cells, CD8+ T cells, dendritic cells, endothelial cells, macrophages, and neutrophils, in the
- 166 ccRCC cohort (n = 533). The expression data were log2 transcripts per million (TPM)
- transformed, Spearman was selected for correlation analysis, and multiple algorithms, including
- 168 TIMER, OBERSORT, XCELL, and EPIC, were applied for immune infiltration estimations.
- TISIDB elucidated the correlations between LDHA/LDHB expression and abundance of tumor-
- 170 infiltrating lymphocytes (TILs) & immune inhibitors in ccRCC (n = 534).
- 171 Statistical analysis
- 172 SPSS 21.0 software (SPSS Inc., Chicago, IL, USA) was used for statistical analysis. Student's t-
- test was performed for WB analysis to evaluate LDHA and LDHB expression. For IHC analysis,
- the Pearson chi-square test was used to assess the associations between LDHA/LDHB expression
- and clinicopathological parameters, the K-M survival curve was utilized to calculate overall

176	death, and Cox proportional hazard regression analysis was used to analyze the risk factors for
177	ccRCC patient. For TIMER and TISIDB analyses, Spearman's correlations analysis was
178	performed to estimate the correlation between LDHA/LDHB and tumor immune infiltrates. P
179	< 0.05 was considered statistically significant.
180	In some cases, patients have paired data; did authors use paired tests to assess statistical differences
181	Results
182	LDHA and LDHB expression in ccRCC Please specify that the GEPIA2 database uses TCGA datasets. Please also include appropriate citations and links to the publicly available dataset.
183	First, we detected LDH expression levels between ccRCC and adjacent or normal kidney tissues.
184	GEPIA2 database was performed to compare the transcriptional profile of the four subtypes of
185	LDH, i.e., LDHA, LDHB, LDHC, and LDHD, in 523 ccRCC and 100 normal kidney tissues. The
186	result demonstrated that <i>LDHA</i> mRNA was higher in cancerous than normal tissues ($P < 0.05$),
187	<i>LDHB</i> and <i>LDHD</i> mRNA was lower ($P < 0.05$, and $P < 0.05$, respectively), and <i>LDHC</i> was
188	unchanged in cancerous compared with normal tissues ($P > 0.05$, Fig. 2a, Fig. S1a). In addition,
189	we assessed their protein expression using the CPTAC dataset. Consistently, it demonstrated
190	higher LDHA, lower LDHB and LDHD, and stable LDHC expression in 110 ccRCC than 84
191	normal kidney tissues $(P < 0.001, P < 0.001, P < 0.001, P > 0.05, Fig. 2b, Fig. S1b)$. LDHC is
192	the testis-specific isoform, LDHD is universally expressed in various tissues, and their
193	prognostic values in ccRCC have been reported previously (Hua et al. 2017; Wang et al. 2018).
194	Herein, we focused on the significant components of LDH, i.e., LDHA and LDHB, in ccRCC.
195	WB analysis showed that LDHA was significantly up-regulated and LDHB was down-regulated
196	in the seven pairs of ccRCC than their non-cancerous specimens $(P < 0.001, P < 0.001,$
197	respectively, Fig. 2c), which was consistent with GEPIA2 and ULACAN analyses.
198	Enhanced LDHA and decreased LDHB are associated with tumor aggressiveness of ccRCC
199	Subsequently, we evaluated LDHA/LDHB expression and its correlation with
200	clinicopathological features in ccRCC patients (Table 1). IHC analysis showed that solid
201	cytoplasm staining for LDHA expression was seen in the malignant cells of the kidney. In
202	contrast, relatively weak staining for LDHB expression was seen in the neoplastic cells,
203	compared with the adjacent kidney epithelial cells (Fig. 3). Specifically, more important positive
204	signaling with LDHA was monitored in 94 (62.67 %) cases of ccRCC tissues, and weaker
205	staining was examined in 56 (37.33 %) cases, respectively. The expression level of LDHA was
206	<u>higher in large tumors</u> (≥ 7.0 cm) than in small ones (<7 cm); the difference was statistically
	What cancer markers were used to confirm the tissues imaged were indeed cancerous?

Similarly, what markers were used to confirm that adjacent kidney cells were non-cancerous

include statistical test next to P values. Authors can also include expression level averages with SD in the parentheses

- significant (P < 0.001). Simultaneously, enhanced LDHA expression (≥ 5 scores) was positively
- associated with high grade (grade 3-4, <0.001), advanced stage (stage II-III, P=0.001), older age
- 209 (\geq 60 years, P = 0.023) and low overall survival (OS) rate (P < 0.001), which was constraint the association with metastatic status is
- a previous study (Girgis et al. 2014). There was no significant association between LDHA not statistically-significant,
- expression and patients' sex or metastatic status (P = 0.724, P = 0.064, respectively). As for
- 212 LDHB, its reduced expression (<6 scores) was significantly associated with tumor grade of the authors
- 213 0.001), stage (P < 0.001), size (P = 0.001), metastasis (P < 0.001), and survival rate (P < 0.001),
- 214 instead of patients' sex or age (P=0.618, P = 0.111, respectively). The further bioinformatic
- 215 analysis demonstrated that LDHA showed a trend of positively associated with RFS (P = 0.100,
- Fig. S2a, K-M plotter) and *LDHB* expression was inverse associated with OS (P = 0.004, Fig.
- 217 S2b, HPA), which validated our prognostic analysis using IHC. Collectively, these data revealed
- 218 that high LDHA / low LDHB expression was positively associated with malignant behaviors
- such as pathological stage and tumor size, and negatively associated with OS, which indicated
- 220 that high LDHA / low LDHB could be an indicator of tumor aggressiveness for patients with
- 221 ccRCC. Furthermore, this is the first time to evaluate LDHB prognosis in ccRCC.
- 222 LDHB, but not LDHA, is an independent predictor of OS in patients with ccRCC.
- 223 To investigate the impact of LDHA/ LDHB expression on tumor prognosis, survival analysis
- 224 was utilized to evaluate the correlation of their expression with the survival of ccRCC patients
- 225 (n=150). During the follow-up period, K-M survival analysis manifested that the OS rate with
- 226 high LDHA expression was significantly lower than that with low expression (log-rank=16.154,
- 227 P < 0.001), while low LDHB expression was markedly correlated with high OS rate (log-
- 228 rank=53.048, *P*< 0.001, Fig. 3).
- 229 Then univariate Cox regression analysis manifested that high LDHA expression was associated
- 230 with poor prognosis for OS in ccRCC patients (HR 18.653, 95% CI = 2.534-137.309, P = 0.004,
- Table 2). Simultaneously, it demonstrated that large tumors (HR 5.004, 95% CI = 2.380-10.520,
- 232 P < 0.001), high histological grade (HR 4.911, 95% CI = 2.264-10.650, P < 0.001), advanced
- pathological stage (HR 8.346, 95% CI = 3.931-17.722, P < 0.001), metastasis (HR 9.046, CI =
- 234 3.803-21.515, P < 0.001) and low LDHB expression (HR 0.017, 95% CI = 0.002-0.128, P < 0.001)
- 235 0.001), were all correlated with a shorter OS rate. Moreover, no association existed between OS
- and patients' sex or age (P = 0.078, P = 0.128, respectively). Furthermore, multivariate Cox
- regression analysis identified that pathological stage (HR 3.918, 95% CI = 1.827-8.400, P<

Peer J

```
0.001) and LDHB (HR 0.025, 95% CI = 0.003-0.186, P < 0.001) were recognized as independent
238
239
      prognostic indicators for OS in ccRCC patients. In contrast, sex, age, grade, tumor size,
      metastasis, and LDHA expression were not identified as independent predictors.
240
      TIMER and TISIDB analyses reveal the close relationship between LDHA/LDHB and
241
      immune infiltrates in ccRCC Would it be prudent to use a multiple testing correction here? Clearly, CD4+T cells correlate highly with LDHB, more than any other immune cell type
242
243
      We further performed data mining based on the expression and prognosis analysis of LDHA and
244
      LDHB in ccRCC. We investigated the correlation between the two subtypes of LDH, especially
245
      LDHB, and immune features, such as immune cells and immunomodulators, in ccRCC using
      TIMER and TISIDB databases. TIMER analysis displayed that LDHB gene expression was
246
      significantly associated with infiltration of seven TIIC subsets, i.e., B cell (rho = 0.109, P =
247
      0.019), cancer-associated fibroblast (rho = -0.116, P = 0.013), CD4+ T cell (rho = 0.411, P < 0.013)
248
249
      (0.001), CD8+ T cell (rho = -0.249, P < 0.001), endothelial cell (rho = -0.234, P < 0.001),
      macrophage (rho = 0.247, P = 0.001), and neutrophil (rho = 0.167, P < 0.001), except dendritic
250
251
      cell (rho = 0.021, P = 0.651) in the 533 ccRCC samples (Fig. 4). There was also a tight
      connection between LDHA and infiltration of TIICs, including B cell (rho = 0.129, P = 0.006),
252
253
      cancer-associated fibroblast (rho = -0.150, P = 0.001), CD4+ T cell (rho = -0.201, P < 0.001),
      CD8+ T cell (rho = -0.243, P < 0.001), endothelial cell (rho = 0.136, P = 0.003), dendritic cell
254
255
      (rho = 0.162, P < 0.001), and neutrophil (rho = 0.164, P < 0.001), except macrophage (rho =
                                                                                                 How do authors
      0.086, P = 0.066) in the same ccRCC samples (Fig. S3). Simultaneously, TISIDB analysis reconcile the conflicting
256
                                                                                                 results of the correlation
257
      revealed that LDHB expression was associated with the abundance of numerous TILs in the 5348+ T cells
                                                                                                 and LDHA expression
      ccRCC cases (Fig. 5). To be specific, LDHB expression was positively correlated with thebetween TISIDB and
258
                                                                                                  TIMER analysis
259
      abundance of immature dendritic cells (iDC, rho=0.363, P<0.001) and activated dendritic cell
260
      (Act DC, rho=0.192, P<0.001), and inversely associated with the abundance of effector memory
261
      CD8+ T cell (Tem CD8, rho=-0.366, P<0.001) and natural killer T cell (NKT, rho=-0.228,
262
      P<0.001). Similarly, LDHA expression was positively related to the abundance of immature
263
      dendritic cells (iDC, rho=0.383, P<0.001) and central memory CD8<sup>+</sup>T cell (Tcm CD8,
264
      rho=0.301, P<0.001), and negatively correlated with the abundance of eosinophil cell (rho=-
      0.273, P<0.001) and activated B cell (Act B, rho=-0.124, P=0.004, Fig. S4).
265
266
      Moreover, we investigated the relationship between LDHB expression and the abundance of 24
      immune inhibitors in ccRCC (Fig. 6). Specifically, the greatest positively correlated
267
```

immunoinhibitors included B7 homolog 4 (B7-H4, or VTCN1, rho=0.235, P<0.001),

268

269	transforming growth factor- β receptor type I (IGFBR1, rho=0.112, P =0.009), and the negatively
270	associated immunoinhibitors were adenosine A2a receptor (A2AR, ADORA2A, rho=-0.387,
271	P<0.001) and CD160 (rho=0.339, P <0.001) in ccRCC. As for LDHA, the four immunoinhibitors
272	with the greatest correlations included interleukin-10 receptor B (IL10RB, rho=0.412, P<0.001),
273	indoleamine 2,3-dioxygenase 1 (IDO1, rho=0.154, P<0.001), CD112 (PVRL2, rho=0.090,
274	P=0.039) and CD160 (rho=0.083, P =0.055) in ccRCC (Fig. S5). Furthermore, GEPIA2 analysis
275	validated the tight relationship between <i>LDHB</i> and the four immunoinhibitors in 523 ccRCC
276	tissues (Fig. S6). The above results implied that both LDHA and LDHB might be involved in
277	regulating the immune infiltrates in ccRCC patients, which was consistent with previous reports
278	(Ding et al. 2017).
279	
280	Discussion
281	Aerobic glycolysis, or the Warburg effect, is the well-known and continually validated metabolic
282	reprogramming of cancer. LDH is a critical enzyme involved in glycolysis and carcinogenesis,
283	while its clinical significance in RCC has yet to be fully elucidated. Our previous study found
284	numerous differentially expressed metabolic enzymes, such as HADHA, LDHA, and LDHB, in
285	ccRCC tissues, implying the dysregulated metabolic pathways in the pathogenesis of ccRCC
286	(Zhao et al. 2015). In the present study, we recapitulated that the major components of LDH, i.e.,
287	LDHA and LDHB, were promising indicators for prognosis and immune infiltration in ccRCC
288	(Fig. 1). Our study validated the aberrant expression of LDHA and LDHB in ccRCC tissues, i.e.,
289	LDHA was up-regulated, and LDHB was down-regulated in ccRCC, consistent with previous
290	reports (Girgis et al. 2014). Then retrospective IHC analysis revealed that the expression levels
291	of LDHA and LDHB were significantly associated with tumor grade, stage, size, and OS, which
292	indicated that enhanced LDHA and decreased LDHB were positively correlated with ccRCC
293	aggressiveness. Subsequently, survival analysis revealed that LDHB, instead of LDHA, was
294	recognized as an independent prognostic indicator for OS in 150 ccRCC patients. Further
295	TIMER and TISIDB databases analysis manifested the close relationship between LDHA/LDHB
296	expression and immune infiltrates (including immune cells and immune inhibitors) in >500
297	ccRCC patients, which indicates the complex tumor microenvironment (TME) of ccRCC. To our
298	knowledge, this is the first time to elucidate the clinical significance of LDHB in ccRCC
299	patients, which revealed that LDHB could be a favorable prognostic factor and might regulate

300	multiple immune features in ccRCC. Further studies are needed to explore the detailed
301	mechanism underlying LDHB in ccRCC carcinogenesis.
302	Metabolic reprogramming, or metabolic plasticity, is an essential hallmark of cancers. It enables
303	rapidly proliferating cancer cells to meet their needs for augmented energetics and building
304	components. Emerging evidence illuminates the perturbed metabolic pathways which could
305	control tumor energetics and biosynthesis in cancer, especially in ccRCC (Wettersten et al.
306	2017). Such aberrant metabolic pathways in ccRCC could provide opportunities to discover
307	novel diagnostic biomarkers and therapeutic targets, which might improve the overall prognosis
308	of ccRCC patients (Wettersten et al. 2017). In non-neoplastic or normal cells, glucose is
309	converted to pyruvate, which undertakes oxidative phosphorylation (OXPHOS) for energy
310	production under normoxia. Cancer cells predominantly produce energy and lactate by aerobic
311	glycolysis, regardless of oxygen availability. ccRCC, characterized by high glucose uptake and
312	enhanced levels/activities of glycolytic enzymes, such as hexokinase and LDHA, has been aptly
313	labeled as a metabolic disease (Wettersten et al. 2017).
314	LDH isoenzymes are NAD+-dependent metabolic enzymes that are reportedly linked to RCC
315	pathogenesis (Girgis et al. 2014; Hua et al. 2017; Wang et al. 2018; Zhao et al. 2017). LDH is the
316	critical enzyme involved in aerobic glycolysis, which mediates metabolic plasticity through the
317	bidirectional conversion of pyruvate and lactate. LDHA converts pyruvate to lactate and NADH
318	to NAD+ in anaerobic conditions, whereas LDHB possesses a higher affinity for lactate,
319	preferentially converting lactate to pyruvate when oxygen is abundant. As LDHA and LDHB
320	participate in tumor cell metabolism and adaptation to detrimental cellular conditions, these
321	enzymes are reportedly involved in tumor pathogenesis and progression (Urbanska &
322	Orzechowski 2019). Except for LDHA and LDHB, LDHC and LDHD are expressed in various
323	cancers (Urbanska & Orzechowski 2019). Previous studies showed elevated serum LDH was an
324	unfavorable prognostic factor in RCC, especially metastatic RCC (Zhang et al. 2020). LDHA is
325	overexpressed in various neoplastic tissues, and enhanced LDHA expression is associated with
326	worse prognosis of patients with brain, liver, lung, and kidney tumors (Urbanska & Orzechowski
327	2019). Through IHC analysis, Girgis reported that overexpressed LDHA was associated with
328	poor prognosis (including disease-free survival and OS) in 385 ccRCC patients, which validated
329	its OS in an independent 170 ccRCC patients from TCGA databases (Girgis et al. 2014). This
330	was a large-scale specimen, but it only evaluated the prognosis of LDHA. Zhao observed that

Did authors explore other methods of testing tumor tissue for LDHA/LDHB which have higher sensitivity?

331	elevated LDHA predicted worse survival in 43 ccRCC patients using IHC staining. LDHA
332	knockdown attenuated tumor metastasis by inhibiting epithelial-mesenchymal transition (EMT)
333	(Zhao et al. 2017). Similarly, Wang demonstrated the oncogenic role of LDHA in RCC cells,
334	which indicated that LDHA might be a potential therapeutic target in RCC (Wang et al. 2017).
335	As for LDHB, Wang observed that LDHB expression was higher in pancreatic cancer tissues
336	using IHC analysis, and its expression was negatively correlated with prognosis (OS) in 50
337	pancreatic cancer patients (Wang et al. 2022). Interestingly, Wu found that LDHB expression
338	was lower in glioma, and LDHB was identified as a protective factor using Chinese Glioma
339	Genome Altas (CGGA) and TCGA databases (Wu et al. 2022b). The expression and prognosis
340	of LDHB in cancer are controversial, and the clinical value of LDHB in ccRCC is unclear.
341	Cancer-testis antigens (CTAs) are expressed in the testis and various cancers, and they are
342	considered promising targets for early diagnosis and immunotherapy for cancers. As a member
343	of CTAs, LDHC level was significantly up-regulated in RCC tissues, and the patients with
344	positive LDHC expression had a shorter progression-free survival (PFS) in 133 RCC. Further in
345	vitro experiments displayed that LDHC could promote RCC progression through EMT,
346	indicating the oncogenic role of LDHC in RCC (Hua et al. 2017). Wang found that $LDHD$ genes
347	expression was considered to be a favorable predictive of the prognosis (OS) of ccRCC patients
348	from TCGA (n=509) and Fudan University Shanghai Cancer Centre (FUSCC, n=192) cohorts,
349	which indicated <i>LDHD</i> might be involved in ccRCC pathogenesis (Wang et al. 2018). Herein we
350	identified LDHB as a favorable prognostic marker that closely correlated with immune infiltrates
351	in ccRCC, and this is the first time to elucidate the clinical significance of LDHB in ccRCC to
352	the best of our knowledge. LDHB converts lactate to pyruvate and produces NADPH, thus
353	providing sufficient energy for tumor cell proliferation while avoiding the accumulation of
354	lactate, which indicates it could be the potential therapeutic target for ccRCC, especially
355	metastatic ccRCC.
356	Recent literature elaborates that the intermediates of cancer metabolism could be essential in
357	regulating the proliferation, differentiation, and function of immune cells, which gives birth to
358	immunometabolism (Shyer et al. 2020). Cancer cells, immune cells, secreted factors, and
359	extracellular matrix proteins collectively constitute the complex dynamics of TME. Cancer cells
360	can suppress the anti-tumor immune response by competing for and depleting essential nutrients
361	and reducing the metabolic fitness of TIICs. Like cancer cells, TIICs require nutrients derived

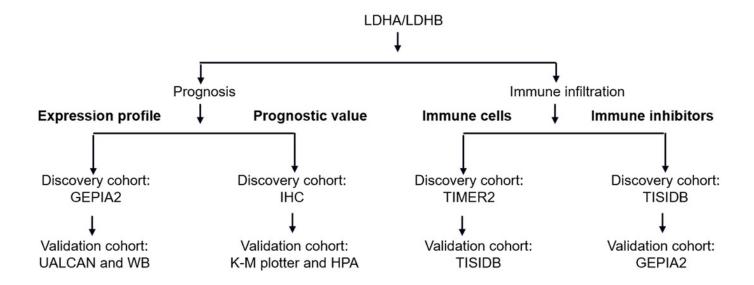
362	from the TME to support their proliferation and differentiation. They also undergo metabolic
363	reprogramming. During aerobic glycolysis, hypoxia, low pH, high levels of reactive oxygen
364	species (ROS), and lactate accumulation are prevalent in the TME, which have a deleterious
365	effect on the immune function (Harmon et al. 2020). Thus, the higher lactate content and the
366	accompanying acidified TME will suppress immune cell function and abrogate
367	immunosurveillance of cancer, ultimately leading to immune escape and cancer progression (Xia
368	et al. 2021). In particular, lactate accumulation could deplete Teff cells and affect Treg cell
369	infiltration, thus promoting the formation of an inhibitory immune microenvironment (Wang et
370	al. 2021). Interestingly, Singer found that the increased GLUT-1 expression was correlated with
371	a decrease in the numbers of infiltrating CD3+ and CD8+ T cells in 80 cases of ccRCC,
372	suggesting that GLUT-1 might suppress the immune system in ccRCC (Singer et al. 2011). In
373	the current study, we found there was a close correlation between LDHA and LDHB expression
374	levels and multiple TIIC subsets, i.e., B cells, cancer-associated fibroblast, CD4+ T cells, CD8+
375	T cells, endothelial cells, and neutrophils, and massive immunoinhibitors such as VTCN1 (Fig.
376	4, 6). We identified LDHB as a favorable prognostic marker, and LDHA/LDHB was correlated
377	with immune infiltrates in ccRCC, which confirmed the tight connection between immune and
378	metabolism. Furthermore, the underlying molecular mechanism of immunometabolism still
379	needs further investigation. Which limited sample size are the authors referring to? Please be specific.
380	There are some limitations of this study. The first one is the limited sample size. Most of them
381	are localized lesions, which need more specimens and prolonged follow-up periods to validate
382	our results. The second shortcoming is that only one primary outcome, i.e., OS, is analyzed in the
383	enrollment; CSS and RFS are also needed to clarify the clinical role of LDHA/LDHB in ccRCC.
384	Finally, it should be marked that the detailed mechanism between LDHA/LDHB and tumor
385	immune needs further clarification.
386	Another limitation is the lack of independent validation at protein level either through IHC or IF or flow cytometry of LDHA/LDHB levels in tissue with immune cell subtypes. Authors should address this in Discussion.
387	Conclusions
388	In the current study, we detected LDHA and LDHB expression using public databases and WB
389	analyses, explored their prognostic role in ccRCC using TMA, then revealed the tumor-immune
390	interaction of LDHA/LDHB in ccRCC using TIMER and TISIDB databases. These findings
391	revealed that LDHB was an independent predictor of favorable survival. Both LDHA and LDHB
392	were associated with tumor immune infiltrates in ccRCC patients, which suggested

Manuscript to be reviewed

393	LDHA/LDHB could be implicated in the tumorigenesis of ccRCC and might be potential
394	therapeutic targets for patients with ccRCC.
395	
396	

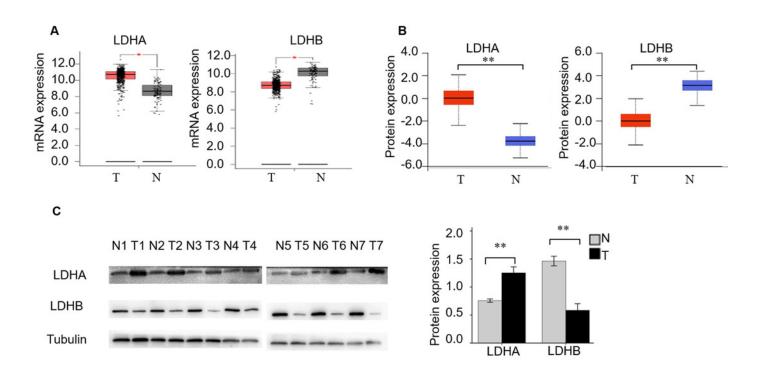
397	References
398	Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin
399	ZS, Kumar S, Manne U, Creighton CJ, and Varambally S. 2022. UALCAN: An update to
100	the integrated cancer data analysis platform. Neoplasia 25:18-27.
101	10.1016/j.neo.2022.01.001
102	Ding J, Karp JE, and Emadi A. 2017. Elevated lactate dehydrogenase (LDH) can be a marker of
103	immune suppression in cancer: Interplay between hematologic and solid neoplastic
104	clones and their microenvironments. Cancer Biomark 19:353-363. 10.3233/CBM-160336
105	Fan D, Liu Q, Wu F, Liu N, Qu H, Yuan Y, Li Y, Gao H, Ge J, Xu Y, Wang H, Liu Q, and Zhao
106	Z. 2020. Prognostic significance of PI3K/AKT/ mTOR signaling pathway members in
107	clear cell renal cell carcinoma. PeerJ 8:e9261. 10.7717/peerj.9261
108	Girgis H, Masui O, White NM, Scorilas A, Rotondo F, Seivwright A, Gabril M, Filter ER, Girgis
109	AH, Bjarnason GA, Jewett MA, Evans A, Al-Haddad S, Siu KM, and Yousef GM. 2014.
110	Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell
111	carcinoma. Mol Cancer 13:101. 10.1186/1476-4598-13-101
112	Harmon C, O'Farrelly C, and Robinson MW. 2020. The Immune Consequences of Lactate in the
113	Tumor Microenvironment. Adv Exp Med Biol 1259:113-124. 10.1007/978-3-030-43093-
114	1_7
115	Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, and Liu W. 2022. Lipid metabolism
116	reprogramming in renal cell carcinoma. Cancer Metastasis Rev 41:17-31.
117	10.1007/s10555-021-09996-w
118	Hua Y, Liang C, Zhu J, Miao C, Yu Y, Xu A, Zhang J, Li P, Li S, Bao M, Yang J, Qin C, and
119	Wang Z. 2017. Expression of lactate dehydrogenase C correlates with poor prognosis in
120	renal cell carcinoma. <i>Tumour Biol</i> 39:1010428317695968. 10.1177/1010428317695968
121	Huo G, Wang Y, Chen J, Song Y, Zhang C, Guo H, Zuo R, Zhu F, Cui J, Chen W, Chen W, and
122	Chen P. 2021. A Pan-Cancer Analysis of the Oncogenic Role of Twinfilin Actin Binding
123	Protein 1 in Human Tumors. Front Oncol 11:692136. 10.3389/fonc.2021.692136
124	Jafari N, Drury J, Morris AJ, Onono FO, Stevens PD, Gao T, Liu J, Wang C, Lee EY, Weiss HL,
125	Evers BM, and Zaytseva YY. 2019. De Novo Fatty Acid Synthesis-Driven Sphingolipid
126	Metabolism Promotes Metastatic Potential of Colorectal Cancer. Mol Cancer Res 17:140-
127	152. 10.1158/1541-7786.MCR-18-0199

428	Li N, Chen J, Liu Q, Qu H, Yang X, Gao P, Wang Y, Gao H, Wang H, and Zhao Z. 2021.
429	Prognostic significance and tumor-immune infiltration of mTOR in clear cell renal cell
430	carcinoma. <i>PeerJ</i> 9:e11901. 10.7717/peerj.11901
431	Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, and Liu XS. 2020. TIMER2.0 for analysis of
432	tumor-infiltrating immune cells. Nucleic Acids Res 48:W509-W514.
433	10.1093/nar/gkaa407
434	Nagy A, Munkacsy G, and Gyorffy B. 2021. Pancancer survival analysis of cancer hallmark
435	genes. Sci Rep 11:6047. 10.1038/s41598-021-84787-5
436	Posadas EM, Limvorasak S, and Figlin RA. 2017. Targeted therapies for renal cell carcinoma.
437	Nat Rev Nephrol 13:496-511. 10.1038/nrneph.2017.82
438	Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, Chu KC, Wong CY, Lau CY, Chen
439	I, Chan NW, and Zhang J. 2019. TISIDB: an integrated repository portal for tumor-
440	immune system interactions. <i>Bioinformatics</i> 35:4200-4202.
441	10.1093/bioinformatics/btz210
442	Shyer JA, Flavell RA, and Bailis W. 2020. Metabolic signaling in T cells. Cell Res 30:649-659.
443	10.1038/s41422-020-0379-5
444	Siegel RL, Miller KD, Fuchs HE, and Jemal A. 2022. Cancer statistics, 2022. CA Cancer J Clin
445	72:7-33. 10.3322/caac.21708
446	Singer K, Kastenberger M, Gottfried E, Hammerschmied CG, Buttner M, Aigner M, Seliger B,
447	Walter B, Schlosser H, Hartmann A, Andreesen R, Mackensen A, and Kreutz M. 2011.
448	Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1
449	(GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int J Cancer
450	128:2085-2095. 10.1002/ijc.25543
451	Tang Z, Kang B, Li C, Chen T, and Zhang Z. 2019. GEPIA2: an enhanced web server for large-
452	scale expression profiling and interactive analysis. <i>Nucleic Acids Res</i> 47:W556-W560.
453	10.1093/nar/gkz430
454	Urbanska K, and Orzechowski A. 2019. Unappreciated Role of LDHA and LDHB to Control
455	Apoptosis and Autophagy in Tumor Cells. Int J Mol Sci 20. 10.3390/ijms20092085
456	Wang R, Li J, Zhang C, Guan X, Qin B, Jin R, Qin L, Xu S, Zhang X, Liu R, Ye Q, and Cheng
457	L. 2022. Lactate Dehydrogenase B Is Required for Pancreatic Cancer Cell


458	Immortalization Through Activation of Telomerase Activity. Front Oncol 12:821620.
459	10.3389/fonc.2022.821620
460	Wang X, Xu L, Wu Q, Liu M, Tang F, Cai Y, Fan W, Huang H, and Gu X. 2017. Inhibition of
461	LDHA Deliver Potential Anticancer Performance in Renal Cell Carcinoma. Urol Int
462	99:237-244. 10.1159/000445125
463	Wang Y, Li G, Wan F, Dai B, and Ye D. 2018. Prognostic value of D-lactate dehydrogenase in
464	patients with clear cell renal cell carcinoma. Oncol Lett 16:866-874.
465	10.3892/ol.2018.8782
466	Wang Z, He L, Li W, Xu C, Zhang J, Wang D, Dou K, Zhuang R, Jin B, Zhang W, Hao Q,
467	Zhang K, Zhang W, Wang S, Gao Y, Gu J, Shang L, Tan Z, Su H, Zhang Y, Zhang C,
468	and Li M. 2021. GDF15 induces immunosuppression via CD48 on regulatory T cells in
469	hepatocellular carcinoma. J Immunother Cancer 9. 10.1136/jitc-2021-002787
470	Wettersten HI, Aboud OA, Lara PN, Jr., and Weiss RH. 2017. Metabolic reprogramming in clear
471	cell renal cell carcinoma. Nat Rev Nephrol 13:410-419. 10.1038/nrneph.2017.59
472	Wu F, Chen J, Yao K, Fan D, Wang M, Liu Y, Xin S, Sun Z, Li S, Sun Y, and Liu Q. 2022a. The
473	Infiltration of Neutrophil Granulocytes Due to Loss of PTEN Was Associated with Poor
474	Response to Immunotherapy in Renal Cell Carcinoma. J Inflamm Res 15:6553-6567.
475	10.2147/JIR.S388990
476	Wu Z, Wang J, Li Y, Liu J, Kang Z, and Yan W. 2022b. Characterization of a lactate
477	metabolism-related signature for evaluation of immune features and prediction prognosis
478	in glioma. Front Neurol 13:1064349. 10.3389/fneur.2022.1064349
479	Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, Liang J, Tang Y, Su
480	M, Luo X, Yang Y, Shi Y, Wang H, Zhou Y, and Liao Q. 2021. The cancer metabolic
481	reprogramming and immune response. <i>Mol Cancer</i> 20:28. 10.1186/s12943-021-01316-8
482	Yuan Y, Yang X, Li Y, Liu Q, Wu F, Qu H, Gao H, Ge J, Xu Y, Wang H, Wang Y, and Zhao Z.
483	2020. Expression and prognostic significance of fatty acid synthase in clear cell renal cell
484	carcinoma. Pathol Res Pract 216:153227. 10.1016/j.prp.2020.153227
485	Zhang N, Zhang H, Zhu D, JiRiGaLa, Yu D, Wang C, WuYunBiLiGe, Amin, ZhiHong, Yu H,
486	Chen X, and Wang M. 2020. Prognostic role of pretreatment lactate dehydrogenase in
487	patients with metastatic renal cell carcinoma: A systematic review and meta-analysis. Int
488	J Surg 79:66-73. 10.1016/j.ijsu.2020.05.019

PeerJ

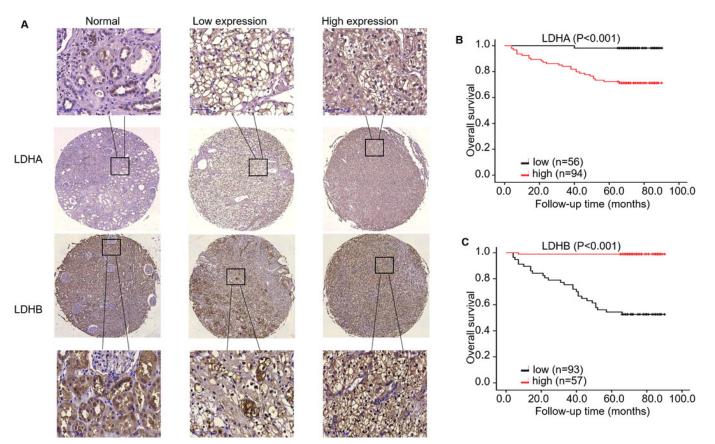
189	Zhao J, Huang X, Xu Z, Dai J, He H, Zhu Y, and Wang H. 2017. LDHA promotes tumor
190	metastasis by facilitating epithelial-mesenchymal transition in renal cell carcinoma. Mol
191	Med Rep 16:8335-8344. 10.3892/mmr.2017.7637
192	Zhao Z, Wu F, Ding S, Sun L, Liu Z, Ding K, and Lu J. 2015. Label-free quantitative proteomic
193	analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumour Biol
194	36:939-951. 10.1007/s13277-014-2694-2
105	


The workflow of prognosis and tumor-immune infiltration of LDHA/LDHB in ccRCC.

The expression profiling of LDHA and LDHB in ccRCC tissues.

Please include the statistical tests performed in Figure 2A, 2B and 2C (which has adjacent normal tissue)

A. The mRNA expression levels of LDHA and LDHB in 523 ccRCC and 100 normal kidney tissues (GEPIA2). B. The protein expression levels of LDHA and LDHB in 100 ccRCC and 84 normal kidney tissues (UALCAN). C. LDHA and LDHB protein expression in seven pairs ccRCC and their adjacent kidney tissues (WB). T: ccRCC, N: normal kidney tissues. *: P<0.05, **: P<0.01.



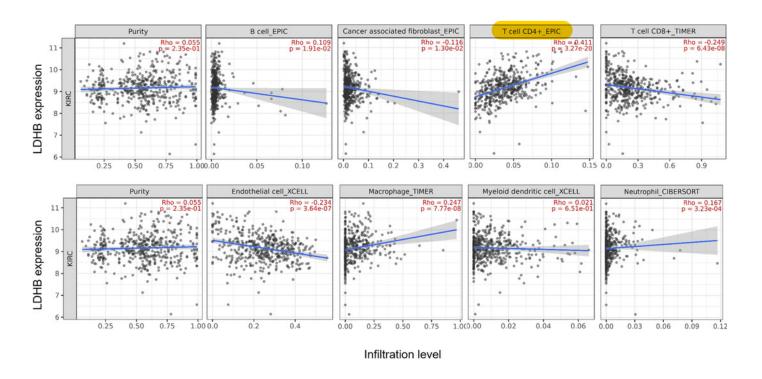
In the supplemental dataset file 1, please mark the lane numbers, the marker being looked at and the molecular weights. Why was the gel membrane cut?

Please include all points in bar plot & box and whisker's plot similar to figure 2A

The expression and prognosis of both LDHA and LDHB in 150 ccRCC tissues.

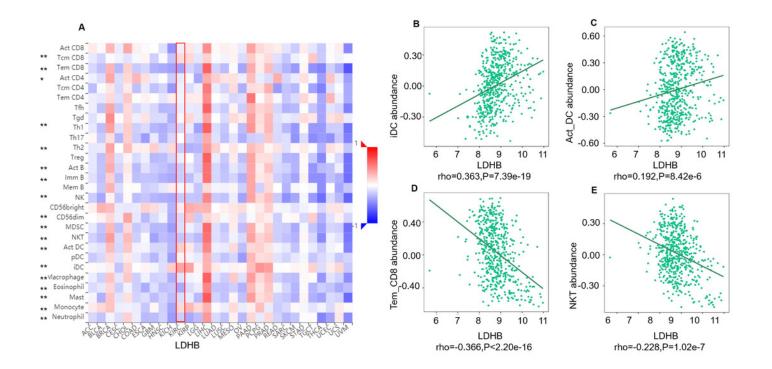
A. Representative immunostaining photomicrographs of LDHA and LDHB expression in ccRCC tissues (IHC). Staining signals displayed cytoplasmic localization of LDHA and LDHB in adjacent normal kidney and ccRCC tissues. Original magnification $200\times$; bars, $50~\mu m$. Kaplan–Meier survival curves demonstrated overall survival of 150 patients with ccRCC, according to LDHA (B) and LDHB (C) staining.

Please label tissue type in each of the three IHC panels

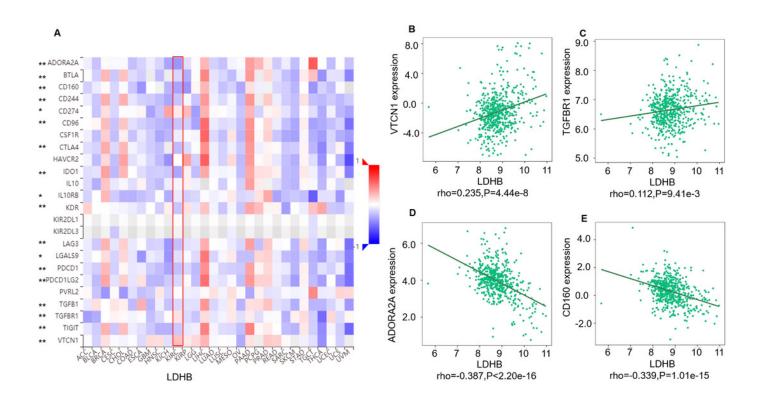

I observe a variation in the tissue types imaged. Particular, the low expression group from the LDHA, it appars only fat cells have been imaged.

Please also comment on the morphological changes ocurrin due to the tumor itself. But for IHC comparisons, please try to image similar renal tissue as much as possible

Correlation between LDHB expression and tumor-infiltrating immune cells in 533 ccRCC patients (TIMER2).


The infiltration levels of the eight TIIC subsets, i.e., B cell (EPIC), Cancer associated fibroblast (EPIC), CD4+ T cell (EPIC), CD8+ T cell (TIMER), Endothelial cell (XCELL), Macrophage (TIMER), Myeloid dendritic cell (XCELL) and Neutrophil (OBERSORT).

Correlation between LDHB expression and lymphocytes in 534 ccRCC patients (TISIDB).


A: The pan-cancer analysis of relationship between LDHB expression and abundance of the 28 tumor-infiltrating lymphocytes (TILs). The top four lymphocytes either positive (B: iDC cell, C: Act_DC cell) or negative (D: Tem_CD8 cell, E: NKT) correlation with LDHB expression in ccRCC patients. *P < 0.05, **P < 0.01.

Correlation between LDHB expression and immunoinhibitors in 534 ccRCC patients (TISIDB).

A: The pan-cancer analysis of relationship between LDHB expression and abundance of the 24 immunoinhibitors. The top four immunoinhibitors [VTCN1 (B), TGFBR1 (C), ADORA2A (D) and CD160 (E)] either positively or negatively correlated with LDHB expression in ccRCC patients. *P< 0.05, **P< 0.01.

Table 1(on next page)

Correlation between LDHA and LDHB expression and clinical characteristics of ccRCC (n=150).

1 Table 1: Correlation between LDHA and LDHB expression and clinical characteristics of ccRCC

2 (n=150)

	LDHA staining				LDHB staining			
Parameters	Low (%)	High (%)	χ^2	P value	Low (%)	High (%)	χ^2	P value
Sex	Low (70)	111511 (70)			Low (70)	111811 (70)		
Male (n=107)	39(36.45)	68(63.55)			42(39.25)	65(60.75)		
Female (n=43)	17(39.53)	26(60.47)	0.125	0.724	15(34.88)	28(65.12)	0.246	0.618
Age	17(05.00)	20(00.17)	0.120	0.,2.	10(0)	20(00:12)	0.2.0	
<60yrs (n=73)	34(46.58)	39(53.42)			23(31.51)	50(68.49)		
≥60yrs (n=77)	22(28.57)	55(71.43)	5.192	0.023	34(44.16)	43(55.84)	2.545	0.111
ISUP grade								
G 1-2 (n=103)	52(50.49)	51(49.51)			26(25.24)	77(74.76)		
G 3-4 (n=47)	4(5.41)	43(91.49)	24.305	< 0.001	31(65.96)	16(34.04)	22.708	< 0.001
AJCC stage								
T I (n=122)	54(44.26)	68(55.74)			36(29.51)	86(70.49)		
T II-III (n=16)	1(6.25)	15(93.75)			10(62.50)	6(37.50)		
T III (n=12)	1(8.33)	11(91.67)	13.412	0.001	11(91.67)	1(8.33)	22.480	< 0.001
Tumor size								
<7.0 cm (n=119)	55(46.22)	64(53.78)			37(31.09)	82(68.91)		
\geq 7.0 cm (n=31)	1(3.23)	30(96.77)	19.430	< 0.001	20(64.52)	11(35.48)	11.661	0.001
Metastasis								
Negative	<i>55(</i> 20, 20)	05(60.71)			49(24.20)	02(65.71)		
(n=140)	55(39.29)	85(60.71)			48(34.29)	92(65.71)		
Positive (n=10)	1(10.00)	9(90.00)	3.421	0.064	9(90.00)	1(10.00)	12.297	< 0.001
Survival rate								
Alive (n=122)	55(45.08)	67(54.92)			30(24.59)	92(75.41)		
Dead (n=28)	1 (3.57)	27(96.43)	16.773	< 0.001	27(96.43)	1(3.57)	49.884	< 0.001

³ Statistical analyses were performed using Pearson chi-square tests.

6

⁴ Please include what the staining values mean, and how they were obtained in the table footer.

⁵ Do the LDHA and LDHB staining values correlate with ccRCC stage. If so, can authors include a figure showing that.

Table 2(on next page)

Univariate and multivariate survival analysis of overall survival (n=150).

1 Table 2: Univariate and multivariate survival analysis of overall survival (n=150).

2

Parameters Parameters	Univariate ^a HR (95% CI) ^b	<i>P</i> -value	Multivariate ^a HR (95% CI) ^b	P-value
5Sex	0.386 (0.134-1.111)	0.078		
6 _{Age}	1.823 (0.841-3.949)	0.128		
Grade (G3-4) °	4.911 (2.264-10.650)	< 0.001		
Stage (TII-III) d	8.346 (3.931-17.722)	< 0.001	3.918 (1.827-8.400)	< 0.001
Size (≥7.0 cm)	5.004 (2.380-10.520)	< 0.001		
Metastasis	9.046 (3.803-21.515)	< 0.001		
High LDHA	18.653 (2.534-137.309)	0.004		
High LDHB	0.017 (0.002-0.128)	< 0.001	0.025 (0.003-0.186)	< 0.001

Note: a Statistical analysis by Cox proportional hazards regression model.

^b Abbreviation: HR: hazard ratio, CI: confidence interval.

^c For grade: 1, 2 vs 3-4. ^d For stage: I vs II-III.