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ABSTRACT
This article proposes a combined prediction model based on a bidirectional long short-
term memory (BiLSTM) neural network optimized by the snake optimizer (SO) under
complete ensemble empirical mode decomposition with adaptive noise. First, complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) was used
to decompose the sea ice area time series data into a series of eigenmodes and perform
noise reduction to enhance the stationarity and smoothness of the time series. Second,
this article used a bidirectional long short-term memory neural network optimized by
the snake optimizer to fully exploit the characteristics of each eigenmode of the time
series to achieve the prediction of each. Finally, the predicted values of each mode are
superimposed and reconstructed as the final prediction values. Our model achieves a
good score of RMSE: 1.047, MAE: 0.815, and SMAPE: 3.938 on the test set.

Subjects Computational Science, Data Mining and Machine Learning, Aquatic and Marine
Chemistry, Environmental Impacts, Biological Oceanography
Keywords Sea ice area, Daily prediction, CEEMDAN, SO, BiLSTM

INTRODUCTION
Sea ice extent is a key observational indicator of climate change and diversity (Serreze,
Holland & Stroeve, 2007) Over the past half-century, satellite observations have revealed
a gradual increase in Arctic temperatures, a gradual decrease in sea ice cover, and the
emergence of Arctic amplification (Holland et al., 2019). At different time scales, sea ice
cover anomalies can have extreme effects on atmospheric circulation and precipitation
patterns, which in turn can further affect the climate at mid- and high latitudes (Screen,
2013), such as the 2021 cold snap in Texas and Oklahoma. Based on current trends, Arctic
sea ice could disappear completely by 2050 (Notz & Stroeve, 2018). In addition, accurate
daily, quarterly and annual monitoring and prediction of changes in sea ice extent have
important implications for human exploitation of maritime resources, navigation activities
in sea ice regions, and global climate analysis and prediction (Smith & Stephenson, 2013;
Choi, De Silva & Yamaguchi, 2019; Cavalieri et al., 1999). Therefore, accurate prediction
of sea ice movement is essential for human activity and climate modeling (Stroeve et al.,
2012).

At present, research on modeling the characteristics of sea ice mainly involves statistical
models and numerical models. Statistical models are constructed based on historical
observations and relationships between atmospheric conditions (e.g., temperature, sea level
pressure, and clouds), ocean conditions (e.g., sea surface temperature), and sea ice variables
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(e.g., concentration, extent, ice type, and thickness). For example, Turner et al. (2013) used
statistical regression to analyze the relationship between the Amundsen Sea low pressure
andAntarctic Sea ice cover, indicating that the deepening of the Amundsen Sea low pressure
is associated with West Antarctic warming and the expansion of the Ross Sea ice cover.
However, Wang, Chen & Kumar (2013) believe that statistical methods do not consider
the interaction between sea ice and the atmosphere, and there are certain limitations.
Numerical models are primarily physically driven models based on the physical equations
of control system dynamics and thermodynamics, such asGent et al. (2011), which describe
all developments in the Community Climate System Model (CCSM) and document fully
coupled preindustrial control operations compared to previous versions of CCSM3.
Guemas et al. (2016) argue that numerical models are generally superior to statistical
models in short-term forecasting. However, while inputs such as atmosphere, oceanic and
ice parameters can be obtained from remotely sensed data, they must be calibrated and
validated through spatially and temporally well-distributed in situ observations, which are
difficult and costly to obtain and therefore often inefficient.

Machine learning and deep learning techniques have developed rapidly in recent years
and have shown significant advantages in sea ice cover prediction. Barnhart et al. (2016)
used support vector machine (SVM) models to analyze the relationship between sea ice
and climate variables, successfully predicting Arctic open water expansion and Arctic
sea ice changes in the coming decades. Deep learning model prediction also solves the
limitation of numerical models in multiparameter accurate acquisition to some extent
(Rasp, Pritchard & Gentine, 2018), but there are still some challenges in capturing temporal
correlations in the time series prediction of nonlinear sea ice area data (Ren, Li & Zhang,
2022). The LSTM model has attracted great attention due to the rapid development of
artificial intelligence and its ability to automatically extract feature modeling (Hochreiter
& Schmidhuber, 1997), and the research of Siami-Namini, Tavakoli & Namin (2019) also
proved that the predictive performance of bidirectional LSTM is due to LSTM. With the
study of time series frequency domain analysis methods, the EMD method (Huang et
al., 1998) was developed, which decomposes noisy data according to its own time scale
characteristics and does not need to set any basis function in advance, which has obvious
advantages in processing nonstationary and nonlinear data. Torres et al. (2011) proposed
the adaptive noise complete set empirical modal decomposition (CEEMDAN) algorithm,
which overcame the defects of EMD and EEMD decomposition loss of completeness and
modal aliasing by adaptive addition of white noise. Hu et al. (2022) integrated CEEMDAN
with LSTM and temporal convolutional networks (TCN) to enable ultra-short-term wind
power forecasting and real-time prediction of wind energy. Similarly, Gao & Zhang (2023)
leveraged a combined approach of variational mode decomposition (VMD) and LSTM
for decomposed prediction. Their research focused on the impact of investor sentiment
on price volatility in China’s capital market. The results from both studies underscore the
efficacy of such combined methodologies in their respective fields.

Therefore, this article explored an optimal data-driven time series model combining
the empirical mode decomposition (EMD) method and optimized deep learning neural
networks to capture the nonlinear and nonstationary characteristics of sea ice area time

Guo et al. (2023), PeerJ, DOI 10.7717/peerj.15748 2/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.15748


series. This combination allows us to better understand the temporal correlations present
in the sea ice area series and overcome the limitations of current time series models.
This article compared the performance of our proposed model with both a benchmark
model and similar approaches and analyze their differences and advantages. Our analysis
demonstrates the superiority and effectiveness of our target model.

THEORETICAL MODEL CONSTRUCTION
Complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN)
Due to the ‘‘mode mixing’’ caused by EMD and the noise residual caused by EEMD, this
article introduces complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), which overcomes the defects of EEMD decomposition in terms of loss of
completeness and mode mixing by adaptively adding white noise. In the algorithm, Ei(·)
is defined as the i-th mode generated by EMD decomposition, Ci(t )represents the ith
mode generated by CEEMDAN decomposition, ε is the standard deviation of the noise, v j

follows N (0,1) and j =1,2, . . . .,N denotes the number of times white noise is added, while
r represents the residue. The specific steps of the CEEMDAN algorithm are as follows:
(A) Add Gaussian white noise to the original signal y(t) to obtain a new signal

y(t )+ (−1)qεv j , where q= 1,2. EMD is performed on the signal to obtain the first-stage
intrinsic mode component C1

E
(
y(t )+ (−1)qεv j(t )

)
=C j

1(t )+ r
j (1)

(B) Taking the overall average of the N generated mode components produces the first
intrinsic mode function of the CEEMDAN decomposition.

C1(t )=
1
N

N∑
j=1

C j
1(t ) (2)

(C) Calculate the residue after removing the first modal component
r1(t )= y(t )−C1(t ) (3)

(D) Add paired positive and negative Gaussian white noise to r1(t) to obtain a new signal,
and perform EMD on the new signal to obtain the first-order modal component D1.
Then, the second intrinsic mode component of the CEEMDAN decomposition can be
obtained.

C2(t )=
1
N

N∑
j=1

Dj
1(t ) (4)

(E) Calculate the residue after removing the second modal component
r2(t )= r1(t )−C2(t ) (5)

(F) The above steps are repeated until the obtained residual signal is a monotonic function
and cannot be further decomposed, and the algorithm ends. The number of intrinsic
mode functions obtained at this time is denoted as K, and the original signal y(t) can
be decomposed as:

y(t )=
K∑
k=1

Ck(t )+ rk(t ) (6)
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Figure 1 Working process of BILSTM.
Full-size DOI: 10.7717/peerj.15748/fig-1

Bidirectional long short-term memory neural network (BiLSTM) and
optimization
BiLSTM
The BiLSTM allows for the transmission and feedback of past and future states of the
hidden layers through a bidirectional network (Fig. 1).
The BiLSTM is interpreted through Eq. (7).
hf = LSTM(xi,hf−1)
hb= LSTM(xt ,hb−1)
ht =wthf +vthb+bt

(7)

where xi is the input, hf is the forward-pass implicit layer state, hb is the reverse-pass
implicit layer state, ht is the implicit layer state, wt is the forward-pass implicit layer output
weight, vt is the reverse-pass implicit layer output weight, and bt is the error value.

Adaptive moment estimation (Adam)
Adam’s algorithm improves model accuracy and network training speed by calculating
the first-order moments and second-order moment estimates that can be adapted to the
corresponding learning rate by computing the gradient of the objective function. Each
iteration of Adam’s update of the BiLSTM parameter θt is

θt = θt−1−α
m̂t
√
n̂t +ε

(8)

where m̂t and n̂t are the corrected first- and second-order moment estimates, respectively,
and ε is a constant 10−8.

BiLSTM for snake optimizer optimization (SO-BiLSTM)
Based on the special mating behavior of snakes, Hashim & Hussien (2022) proposed the
snake optimizer (SO). The algorithm is divided into two stages: global exploration when
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Figure 2 Working process of SO.
Full-size DOI: 10.7717/peerj.15748/fig-2

there is no food and local exploitation when there is food. When food is scarce (Q<0.25),
the snakes search for food and update the location by choosing any random location to
achieve global optimization. When there is sufficient food (Q ≥0.25), snakes move toward
food and update their position if Temp>0.6; if the temperature Temp≤0.6, the snakes enter
combat mode at a random number Rand<0.6 taking the value of [0,1] and enter mating
mode at Rand ≥0.6 and replace the individual snake with the worst fitness value by laying
and hatching eggs.

The prediction accuracy of the BiLSTM neural network is affected by the number
of neurons in the hidden layer, the learning rate and the L2 regularization coefficient.
Considering the randomness of artificially set parameters, the root mean square error
RMSE is selected as the fitness function in this article, and the parameters are optimized
using the SO algorithm (Fig. 2).

CEEMDAN-SO-BiLSTM
Through the above analysis, this article introduces the CEEMDAN module for noise
reduction of the original data based on the advantages of the optimization algorithm
and deep learning and proposes a combined CEEMDAN-SO-BiLSTM prediction model
(Fig. 3).

As seen from the above figure, the prediction model in this article is divided into three
parts. The first part is CEEMDAN decomposition, which decomposes the time series into
K modes for noise reduction; the second part is the SO-BiLSTM neural network model
to train the prediction of K modes; and the third part superimposes and reconstructs the
prediction results of the second part to obtain the prediction results of the original data.
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Figure 3 Working process of CEEMDAN-SO-BILSTM.
Full-size DOI: 10.7717/peerj.15748/fig-3

EXPERIMENTAL ANALYSIS
Data sources
The data set used in this article was obtained from the sea ice data set on the official website
of the National Environmental Information Center (https://www.ncei.noaa.gov/) and the
Grambling Sea Ice area time series data was used for the study in the model analysis. The
time range is from day 272 of 2017 to day 271 of 2022, with a total of 1,824 data points.

Model evaluation criteria
To evaluate the prediction performance of the model, this article selects four indicators:
mean absolute error (MAE), root mean square error (RMSE), determinability coefficient
R2, and symmetric mean absolute percentage error (SMAPE). Equations for calculating
these indicators are provided in Eqs. (9)–(12).

These indicators quantify the accuracy of the model’s predictions. MAE and RMSE
represent the average and root of the squared errors between the predicted and actual
values, respectively, while R2 measures the correlation between the predicted and actual
values. SMAPE calculates the symmetric percentage difference between the predicted and
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actual values.

MAE=
1
n

n∑
i=1

∣∣yi− ŷi∣∣ (9)

RMSE=

√√√√1
n

n∑
i=1

(yi− ŷi)2 (10)

R2
=

∑n
i=1(yi− ŷi)

2∑n
i=1(yi−y)2

(11)

SMAPE=
100%
n

n∑
i=1

∣∣ŷi−yi∣∣
(
∣∣ŷi∣∣+ ∣∣yi∣∣)/2 (12)

where yi is the i-th observation, ŷi is the i-th prediction, y is the mean, and n is the number
of samples.

Experimental analysis
According to the characteristics of the data sets, this article first partitions the original data
into a training set comprising 70% of the data and a testing set consisting of the remaining
30%. Then, using the rolling window method with CEEMDAN decomposition, it predicts
the values within each roll-out window. The noise ratio is set at 0.2, with 500 iterations of
adding noise to the signal and a maximum span of 2000. For example, it shows the different
modalities obtained by decomposing the first prediction window (Fig. 4), including 10
modes representing various frequency dimensions of the ice concentration time series. The
high correlation coefficients of IMF8 and IMF9 with the original sequence, reaching 0.91
and 0.77, respectively, indicate that these twomodes contribute significantly to the periodic
trend of the original signal. IMF1 to IMF3 are considered as noise signals, while IMF10
represents a short-term trend component (Fig. 5). As seen from the figure, compared to
the original sequence, the decomposed modalities are more stable and smooth and exhibit
clear information features, providing a solid foundation for predictions.

The specific process of making predictions using the rolling window method is as
follows: assuming that the model training and test time series data are D, with length T +
k, where the first T data points are used for model training and the last k data points are
used for model testing. It uses the previous 30 data points to predict the next data point in
the testing set. To obtain each predicted value from the testing set, follow these steps:
1. CEEMDAN decomposition is performed on the first T data points to extract multiple

features and train separate models for each feature.
2. Following completion of model training, utilize data from D[T-29:T] to obtain

predicted outputs from each feature model and sum them to acquire the prediction
value for D[T+1].

Guo et al. (2023), PeerJ, DOI 10.7717/peerj.15748 7/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.15748


Figure 4 Results of empirical modal decomposition of the original sequence adaptive noise complete
set.

Full-size DOI: 10.7717/peerj.15748/fig-4

Figure 5 Adaptation curve of SO.
Full-size DOI: 10.7717/peerj.15748/fig-5

3. Execute CEEMDAN1 decomposition on data D[2:T+1] to extract multiple features
once again and train individual models for every feature. Utilizing 30 data points from
D[T-28:T+1], it receives the predicted data from each feature model and aggregate
them to attain the forecast for D[T+2].
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Figure 6 Prediction results of each mode.
Full-size DOI: 10.7717/peerj.15748/fig-6

Repeat actions 1 through 3, sliding the window of 30 data points and performing
decomposition and model training on the enclosed data before making predictions,
ultimately arriving at projections for all future time intervals D[T+1:T+k].

After applying SO-BiLSTM training for predictive outcomes from the preceding splitting
apart, SO adjusts BiLSTM’s primary acquisition pace, opaque node contingent, and L2
regulation factor. Following numerous trials, the versatile extent characteristic ultimately
slopes toward equilibrium (Fig. 6), and the versions for every mode within the initial
estimation aperture are improved as per Table 1.

For each modality, the subsequent predictive value is recreated so that the concluding
forecast can be generated for the initial information. By persistently pushing the
prognostication casement ahead and producing supplementary projections, up to thirty
percent of all estimations have been accomplished (Fig. 7). Evaluation parameters for the
objective model are determined using Table 2.

Model comparison
To verify the superiority of the model proposed in this article, models such as BiGRU and
BiLSTM were tested and compared with the model in this article, and the test results of
each model are shown in Table 3.

Based on our findings (Fig. 8), it appears that the performance of the comparison
model deteriorates during specific periods, particularly around May 2021 and January
2022, characterized by substantial fluctuations and increased prediction bias. Notably, the
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Table 1 Prediction hyperparameters of each mode.

Modal Number
of hidden
layer nodes

Initial
learning
rate

L2
regularization
factor

IMF1 108 0.013 10−9

IMF2 96 0.017 10−10

IMF3 97 0.018 10−8

IMF4 100 0.001 10−8

IMF5 200 0.012 10−10

IMF6 200 0.001 10−10

IMF7 100 10−4 10−10

IMF8 100 10−4 10−10

IMF9 100 10−4 10−10

IMF10 100 10−4 10−10

Figure 7 Reconfiguration results.
Full-size DOI: 10.7717/peerj.15748/fig-7

Table 2 CEEMDAN-SO-BiLSTM prediction effects.

Evaluation
indicators

Indicator
value

MAE 0.815
RMSE 1.047
R2 0.998
SMAPE 3.938%
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Table 3 Comparison of the predicted effects of the original data.

Models MAE RMSE R2 SMAPE

ARIMA 5.029 6.229 0.913 18.456%
SVR 4.467 5.649 0.929 17.154%
BiLSTM 3.323 4.300 0.961 13.231%
BiGRU 3.726 4.739 0.950 14.688%
CEEMDAN-BiGRU 2.930 3.574 0.971 11.986%
CEEMDAN-BiLSTM 2.583 3.248 0.976 11.848%
VMD-BiGRU 2.610 3.586 0.971 13.050%
VMD-BiLSTM 2.605 3.561 0.972 12.944%
VMD-SO-BiLSTM 2.021 4.182 0.981 10.424%
CEEMDAN-SO-BiGRU 1.917 2.783 0.983 10.137%
CEEMDAN-SO-LSTM 1.828 2.416 0.987 9.060%

Figure 8 Comparison of model prediction results.
Full-size DOI: 10.7717/peerj.15748/fig-8

ARIMA model demonstrates a remarkable shortcoming in fitting the original time series
during these periods.

On the other hand, the proposed CEEMDAN-SO-BiLSTM model yields a superior
fitting capability, effectively capturing the variability of the time series. As evidenced
in Tables 2 and 3, the proposed method exhibits remarkable advantages over both the
single-model counterparts and the benchmark SVR model. Specifically, the combined
CEEMDAN-SO-BiLSTM model reduces MAE, RMSE, and SMAPE by approximately
81.8%, 81.5%, and 9.150%, respectively, and raises R2 by approximately 3.9%.

Furthermore, our experimental findings reveal that applying decomposition and
optimization strategies consistently enhances prediction accuracy, with the CEEMDAN-
SO-BiLSTM model outperforming its VMD counterpart. Finally, among the different
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variants of the LSTM and BiLSTM models, CEEMDAN-SO-BiLSTM provides the best
performance. These results underscore the efficacy and robustness of our proposed
framework in accurately predicting sea ice areas in the Greenland Sea.

CONCLUSION
In this article, a combined CEEMDAN-SO-BiLSTM model is proposed for predicting
the daily sea ice area in the Greenland Sea. By decomposing the data into multiple
relatively stable eigenmodes via the CEEMDAN method, the model takes into account
the nonstationarity and nonlinear characteristics of the time series. By optimizing the
hyperparameters of the BiLSTM model using the SO algorithm and training each mode
separately, the final predictions are then merged and reconstituted to yield daily sea ice
area forecasts.

An array of comparative experiments was conducted against alternative hybridmodels to
evaluate the effectiveness and practicability of the proposed approach. Experimental results
indicate that CEEMDAN decomposition considerably enhances the extraction of relevant
features from the time series and leads to reduced RMSE andMAE predictions by 2.201 and
0.297, respectively, compared to the single BiLSTM model. Moreover, the hyperparameter
optimization through SO strengthens the sensitivity of the CEEMDAN-BiLSTM model to
data perturbations, resulting in improved evaluation metrics, including MAE, RMSE, and
SMAPE, with respective reductions of 1.768, 2.201, and 7.910% and an increase of 2.20%
in R2.

Despite these promising findings, there remain some limitations due to insufficient
data leading to suboptimal hyperparameter settings and the lack of interpretability in
deep learning models hindering exhaustive error analysis. Future research directions may
include integrating additional environmental factors, exploiting advanced deep learning
structures such as GNNs or attention mechanisms, enhancing data quality and quantity
through methods such as data fusion and augmentation, and addressing issues related to
interpretability and error diagnosis. Ultimately, advancements along these lines will enable
the development of increasingly accurate and applicable sea ice prediction models.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• QiaoGuo conceived and designed the experiments, performed the experiments, analyzed
the data, prepared figures and/or tables, authored or reviewed drafts of the article, and
approved the final draft.

Guo et al. (2023), PeerJ, DOI 10.7717/peerj.15748 12/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.15748


• Haoyu Zhang conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Yuhao Zhang conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.
• Xuchu Jiang conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data and code are available in the Supplemental Files.
The dataset used in this article is available from the sea ice data set on the official website

of the National Environmental Information Center (https://www.ncei.noaa.gov/).

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.15748#supplemental-information.

REFERENCES
Barnhart KR, Miller CR, Overeem I, Kay JE. 2016.Mapping the future expansion of

Arctic open water. Nature Climate Change 6(3):280–285 DOI 10.1038/nclimate2848.
Cavalieri DJ, Parkinson CL, Gloersen P, Comiso JC, Zwally HJ. 1999. Deriving

long-term time series of sea ice cover from satellite passive-microwave multi-
sensor data sets. Journal of Geophysical Research: Oceans 104(C7):15803–15814
DOI 10.3390/rs11091071.

Choi M, De Silva LWA, Yamaguchi H. 2019. Artificial neural network for the short-
term prediction of arctic sea ice concentration. Remote Sensing 11(9):1071
DOI 10.3390/rs11091071.

Gao Z, Zhang J. 2023. The fluctuation correlation between investor sentiment and stock
index using VMD-LSTM: evidence from China stock market. The North American
Journal of Economics and Finance 66:101915 DOI 10.1016/j.najef.2023.101915.

Gent PR, Danabasoglu G, Donner LJ, HollandMM, Hunke EC, Jayne SR, Lawrence
DM, Neale RB, Rasch PJ, VertensteinM,Worley PH, Yang Z-L, ZhangM.
2011. The community climate system model version 4. Journal of Climate
24(19):4973–4991 DOI 10.1175/2011JCLI4083.1.

Guemas V, Blanchard-Wrigglesworth E, Chevallier M, Day JJ, DéquéM, Doblas-Reyes
FJ, Fučkar NS, Germe A, Hawkins E, Keeley S, Koenigk T, Mélia DS, Tietsche S.
2016. A review on Arctic sea-ice predictability and prediction on seasonal to decadal
time-scales. Quarterly Journal of the Royal Meteorological Society 142(695):546–561
DOI 10.1002/qj.2401.

Guo et al. (2023), PeerJ, DOI 10.7717/peerj.15748 13/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.15748#supplemental-information
https://www.ncei.noaa.gov/
http://dx.doi.org/10.7717/peerj.15748#supplemental-information
http://dx.doi.org/10.7717/peerj.15748#supplemental-information
http://dx.doi.org/10.1038/nclimate2848
http://dx.doi.org/10.3390/rs11091071
http://dx.doi.org/10.3390/rs11091071
http://dx.doi.org/10.1016/j.najef.2023.101915
http://dx.doi.org/10.1175/2011JCLI4083.1
http://dx.doi.org/10.1002/qj.2401
http://dx.doi.org/10.7717/peerj.15748


Hashim FA, Hussien AG. 2022. Snake optimizer: a novel meta-heuristic optimization
algorithm. Knowledge-Based Systems 242:108320 DOI 10.1016/j.knosys.2022.108320.

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation
9(8):1735–1780 DOI 10.1162/neco.1997.9.8.1735.

HollandMM, Landrum L, Bailey D, Vavrus S. 2019. Changing seasonal predictabil-
ity of Arctic summer sea ice area in a warming climate. Journal of Climate
32(16):4963–4979 DOI 10.1175/JCLI-D-19-0034.1.

Hu C, Zhao Y, Jiang H, JiangM, You F, Liu Q. 2022. Prediction of ultra-short-
term wind power based on CEEMDAN-LSTM-TCN. Energy Reports 8:483–492
DOI 10.1016/j.egyr.2022.09.171.

Huang NE, Shen Z, Long SR,WuMC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu
HH. 1998. The empirical mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of
London. Series A: Mathematical, Physical and Engineering Sciences 4541971:903–995
DOI 10.1098/rspa.1998.0193.

Notz D, Stroeve J. 2018. The trajectory towards a seasonally ice-free Arctic Ocean.
Current Climate Change Reports 4:407–416 DOI 10.1007/s40641-018-0113-2.

Rasp S, PritchardMS, Gentine P. 2018. Deep learning to represent subgrid processes in
climate models. Proceedings of the National Academy of Sciences of the United States of
Ameica 115(39):9684–9689 DOI 10.1073/pnas.1810286115.

Ren Y, Li X, ZhangW. 2022. A data-driven deep learning model for weekly sea ice con-
centration prediction of the Pan-Arctic during the melting season. IEEE Transactions
on Geoscience and Remote Sensing 60:1–19 DOI 10.1109/TGRS.2022.3177600.

Screen JA. 2013. Influence of Arctic sea ice on European summer precipitation. Environ-
mental Research Letters 8(4):044015 DOI 10.1088/1748-9326/8/4/044015.

Serreze MC, HollandMM, Stroeve J. 2007. Perspectives on the Arctic’s shrinking sea-ice
cover. Science 315(5818):1533–1536 DOI 10.1126/science.1139426.

Siami-Namini S, Tavakoli N, Namin AS. 2019. The performance of LSTM and BiLSTM
in forecasting time series. In: 2019 IEEE international conference on big data (Big
Data). Piscataway: IEEE, 3285–3292 DOI 10.1109/BigData47090.2019.9005997.

Smith LC, Stephenson SR. 2013. New Trans-Arctic shipping routes navigable by
midcentury. Proceedings of the National Academy of Sciences of the United States of
America 110(13):E1191–E1195 DOI 10.1073/pnas.1214212110.

Stroeve JC, Serreze MC, HollandMM, Kay JE, Malanik J, Barrett AP. 2012. The Arctic’s
rapidly shrinking sea ice cover: a research synthesis. Climatic Change 110(3–4):1005
DOI 10.1007/s10584-011-0101-1.

Torres ME, Colominas MA, Schlotthauer G, Flandrin P. 2011. A complete ensemble
empirical mode decomposition with adaptive noise. In: 2011 IEEE international
conference on acoustics, speech and signal processing (ICASSP). Piscataway: IEEE,
4144–4147 DOI 10.1109/ICASSP.2011.5947265.

Turner J, Phillips T, Hosking JS, Marshall GJ, Orr A. 2013. The amundsen sea low.
International Journal of Climatology 33(7):1818–1829 DOI 10.1002/joc.3558.

Guo et al. (2023), PeerJ, DOI 10.7717/peerj.15748 14/15

https://peerj.com
http://dx.doi.org/10.1016/j.knosys.2022.108320
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1175/JCLI-D-19-0034.1
http://dx.doi.org/10.1016/j.egyr.2022.09.171
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1007/s40641-018-0113-2
http://dx.doi.org/10.1073/pnas.1810286115
http://dx.doi.org/10.1109/TGRS.2022.3177600
http://dx.doi.org/10.1088/1748-9326/8/4/044015
http://dx.doi.org/10.1126/science.1139426
http://dx.doi.org/10.1109/BigData47090.2019.9005997
http://dx.doi.org/10.1073/pnas.1214212110
http://dx.doi.org/10.1007/s10584-011-0101-1
http://dx.doi.org/10.1109/ICASSP.2011.5947265
http://dx.doi.org/10.1002/joc.3558
http://dx.doi.org/10.7717/peerj.15748


WangW, ChenM, Kumar A. 2013. Seasonal prediction of Arctic sea ice extent from a
coupled dynamical forecast system.Monthly Weather Review 141(4):1375–1394
DOI 10.1175/MWR-D-12-00057.1.

Guo et al. (2023), PeerJ, DOI 10.7717/peerj.15748 15/15

https://peerj.com
http://dx.doi.org/10.1175/MWR-D-12-00057.1
http://dx.doi.org/10.7717/peerj.15748

