# Evolutionary insights on critically endangered Kashmir red deer or hangul (Cervus hanglu hanglu) through a mitogenomic lens 

Khursheed Ahmad ${ }^{1, *}$, Ankit Shankar Pacha ${ }^{2, *}$, Rashid Yahya Naqash ${ }^{3}$, Sathish Kumar Peddamma ${ }^{4}$, Srinivas Yellapu ${ }^{4}$, Shenu Hudson ${ }^{4}$, Dushyant Singh Baghel ${ }^{4}$, Parag Nigam ${ }^{2}$ and Samrat Mondol ${ }^{2}$<br>${ }^{1}$ Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India<br>${ }^{2}$ Animal Ecology and Conservation Biology, Wildlife Institute of India, Dehradun, Uttarakhand, India<br>${ }^{3}$ Department of Wildlife Protection, Jammu \& Kashmir Government, Srinagar, Jammu and Kashmir, India<br>${ }^{4}$ Nucleome Informatics Pvt. Ltd., Hyderabad, Telangana, India<br>* These authors contributed equally to this work.

Submitted 7 October 2022
Accepted 22 June 2023
Published 19 October 2023
Corresponding authors
Parag Nigam, nigamp@wii.gov.in
Samrat Mondol, samrat@wii.gov.in
Academic editor Mahendra Tomar
Additional Information and Declarations can be found on page 13
DOI 10.7717/peerj. 15746
(c) Copyright

2023 Ahmad et al.
Distributed under
Creative Commons CC-BY 4.0


#### Abstract

\section*{ABSTRACT}

Background: The Kashmir red deer or Hangul (Cervus hanglu hanglu) is the only Tarim red deer species endemic to India. With a current estimated population size of fewer than 200 individuals, this critically endangered species is confined to the greater Dachigam landscape in Jammu and Kashmir. Poaching, habitat loss and fragmentation, resource competition with livestock, and small population size are the major conservation challenges for this species. Methods: Blood sampling was conducted from two wild Hangul individuals during radio-collaring operations at Dachigam National Park, Kashmir in 2013 and 2020, respectively. Using next-generation sequencing approach, we sequenced the 16,351 bp long mitogenome of two wild-caught Hangul individuals ( $1 \mathrm{M}: 1 \mathrm{~F}$ at $\sim 14 \times$ and $\sim 10 \times$ coverage, respectively) from Dachigam National Park. Results: The annotated sequences were identical with an AT-rich composition, including 13 protein-coding genes ( $11,354 \mathrm{bp}$ ), 22 tRNA genes ( $1,515 \mathrm{bp}$ ), two ribosomal genes ( $2,526 \mathrm{bp}$ ) and a non-coding control region ( 917 bp ) in a conserved order like other red deer species. Bayesian phylogenetic reconstruction of the red deer complex revealed two major groups: the elaphoid and the wapitoid clades. Hangul formed a distinct clade with its other subspecies C. hanglu yarkandensis and is sister to the Hungarian red deer (C. elaphus hippelaphus). Divergence time analyses suggested that the Tarim deer species group separated $\sim 1.55$ Mya from their common ancestors and Hangul diverged $\sim 0.75$ Mya from closely related C. yarkandensis, corroborating with the known paleobiogeographic events related to refugia during glaciations in the Pleistocene era. This study provides baseline information on Hangul mitogenome for further research on phylogeography and other population parameters and helps in developing suitable conservation plans for this species.


Subjects Conservation Biology, Evolutionary Studies, Molecular Biology, Taxonomy, Zoology Keywords Tarim red deer, Endemism, Next-generation sequencing, Phylogeny, Divergence time, Large herbivore conservation

## INTRODUCTION

The Kashmir red deer or Hangul (Cervus hanglu hanglu) is the only member of the Tarim red deer complex that is endemic (Brook et al., 2017) to the Indian subcontinent. Historically distributed across high altitudes of Kashmir, valleys of Chenab River and upper Himachal Pradesh, this subspecies is currently confined to the greater Dachigam landscape in the north-east of Srinagar, Jammu and Kashmir (Ahmad, Sathyakumar \& Qureshi, 2009; Ahmad \& Nigam, 2014) with only viable population found in Dachigam National Park (Ahmad, Sathyakumar \& Qureshi, 2009; Ahmad \& Nigam, 2014; Mukesh et al., 2015). With a current global population size of <200 individuals (reduced from $\sim 3,000-5,000$ animals during 1990s) and decreasing trend, Hangul is currently considered as 'Critically endangered' by IUCN (under C1 criteria) (Brook et al., 2017) and 'Schedule 1' under the Indian Wildlife (Protection) Act, 1972 (i.e., the highest protection status). The major concerns for this subspecies across its distribution are small population size, low fawn-female ratio, reduced calf survival (biological factors) and poaching, habitat loss and fragmentation, and competition for resources from livestock (anthropogenic factors) (Ahmad, Sathyakumar \& Qureshi, 2009; Ahmad \& Nigam, 2014; Mukesh et al., 2015).

Phylogenetically Hangul belongs to the red deer complex which has been extensively studied because of their global distribution (Ludt et al., 2004; Lorenzini \& Garofalo, 2015; Kumar et al., 2017; Meiri et al., 2018; Mackiewicz et al., 2022). Recent genetic analyses suggest existence of two red deer groups: the eastern/Wapiti (consisting of species distributed across eastern Asia and North America) and western/Tarim deer (species ranging across Europe, North Africa, Middle East, and central Asia) (Lorenzini \& Garofalo, 2015; Kumar et al., 2017; Meiri et al., 2018; Mackiewicz et al., 2022). Hangul, despite being genetically identified as a separate group within this species complex till date has not been studied in detail. While information on population status, distribution and conservation challenges is available (Ahmad, Sathyakumar \& Qureshi, 2009; Ahmad \& Nigam, 2014; Mukesh et al., 2015), genetic analyses related to their phylogenetic position and divergence is confined to single marker-based studies, single species within group (Cervus hanglu yarkandensisr) or inconclusive (Ludt et al., 2004; Lorenzini \& Garofalo, 2015; Kumar et al., 2017; Meiri et al., 2018; Hu et al., 2019; Doan et al., 2022; Mackiewicz et al., 2022), possibly due to lack of sufficient data. In this study, we present next generation sequencing based whole mitogenome data and combine the information with already available genetic data to assess phylogenetic position of Hangul among central Asian red deer clade and its sister groups. In addition, we also provide insights on its divergence period and compare our results with available information. We believe that such detailed analyses with mitogenome would help us in generating valuable information on its evolution, genetic health and therefore assist in developing appropriate conservation plans for the isolated and small populations of this species.

## METHODS

## Research permits and ethical considerations

All required research permissions towards fieldwork and biological sampling were accorded by the Chief Wildlife Warden, Department of Wildlife Protection, Jammu and Kashmir (Permit Nos. WLP/TECH/116-19, WLP/TECH/871-74/2013, and WLP/F-101/ Res/2019-20/424-27). Blood samples $(n=2)$ were collected as part of an ongoing study titled "Long-term conservation plan for Hangul: movement pattern study using satellite telemetry", where invasive sampling was conducted during radio-collaring operations at Dachigam National Park, Kashmir in 2013 and 2020, respectively. Ethical permissions were provided by the Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India (letter no. AU/FVS/PS-23/22/8553).

## Sampling

Apparently healthy adult Hangul ( $n=2,1 \mathrm{M}: 1 \mathrm{~F}$ ) individuals captured for satellite collaring were sampled in this study. The male was captured in 2013 (estimated weight of $\sim 150 \mathrm{~kg}$ ) whereas the female was captured in 2020 (estimated weight of $\sim 120 \mathrm{~kg}$ ). In both cases, the animals were lured into an open forest patch using green fodder and salt and were chemically immobilized using a combination of medetomidine ( $10 \mathrm{mg} / \mathrm{ml}$, Wildlife Pharmaceuticals Inc., Fort Collins, CO, USA) and ketamine hydrochloride ( $100 \mathrm{mg} / \mathrm{ml}$, Troy laboratories Pvt. Ltd., Glendenning, NSW, Australia) at dose rates of $90 \mu \mathrm{~g} \mathrm{~kg}^{-1}$ and $1.45 \mathrm{mg} \mathrm{kg}^{-1}$ for male and $120 \mu \mathrm{~g} \mathrm{~kg}^{-1}$ and $2.08 \mathrm{mg} \mathrm{kg}^{-1}$ for female, respectively (Jalanka, 1988; Jalanka \& Roeken, 1990). Drug delivery was carried out remotely from a hide using Dan-inject syringe projector (Model-IM) from a distance of $30-40 \mathrm{~m}$. The animals were approached after achieving sedation safe for handling, and blood sampling was conducted. Blood was collected aseptically ( 5 ml from each animal) by jugular vein puncture in EDTA BD Vacutainer (BD Diagnostics, Franklin Lakes, NJ, USA) and transported to the laboratory within 2 h and stored at $-20^{\circ} \mathrm{C}$ till further processing. Drug reversal was assisted by administering $5 \mathrm{mg} / \mathrm{ml}$ atipamezole (Dechra, Northwich, United Kingdom) intramuscularly at a dose rate of $0.2 \mathrm{mg} \mathrm{kg}^{-1}$ body weight following completion of necessary procedures.

## DNA extraction and mitogenome sequencing

Mitogenome sequencing of Hangul was performed using next-generation sequencing (NGS) approach. Genomic DNA was extracted from two blood samples using MN NucleoSpin Blood kit (Macherey-Nagel, Duren, Germany) following manufacturers' instructions. DNA quality was checked through 1\% agarose gel electrophoresis and Qubit 3.0 fluorometer (Invitrogen, Life Technologies, Waltham, MA, USA). Following this, paired-end libraries were prepared using NEBNext Ultra DNA Library Prep kit (New England Biolabs, Ipswich, MA, USA) where the genomic DNA was enzymatically fragmented, end-polished, A-tailed, and ligated with full length Illumina sequencing adapters. The PCR amplification was conducted using universal P5 and indexed P7 oligos with following conditions: initial denaturation at $98^{\circ} \mathrm{C}$ for 30 s , followed by four cycles of denaturation ( $98{ }^{\circ} \mathrm{C}$ for 10 s ), annealing ( $65{ }^{\circ} \mathrm{C}$ for 75 s ) and final extension $\left(65{ }^{\circ} \mathrm{C}\right.$ for

5 min ). The constructed libraries were checked for purity, size, and concentration using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Finally, the qualified libraries ( $2 \times 150 \mathrm{bp}$ ) were sequenced on Illumina NovaSeq6000 (Illumina, San Diego, CA, USA) platform at the Next Generation Genomics Facility of Nucleome Informatics Pvt. Ltd, Hyderabad, India. The raw sequence reads were screened using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for quality assurances and further analysed using FastP ver 0.20.1 (Chen et al., 2018) to remove the adapter sequences, low-quality reads $(\mathrm{Q}<20)$ and reads with $<30 \mathrm{bp}$ length. After quality filtering, high-quality reads were assembled using animal mtDNA database sequences integrated in GetOrganelle ver 1.7.5 (Jin et al., 2020). The process involved following steps: (a) mapping reads to seed sequence against database using Bowtie 2 (Langmead \& Salzberg, 2012), (b) conducting de novo assembly using SPAdes with different k -mer values (Bankevich et al., 2012), and (c) accurate identification of target organelle contigs. The assembled mitogenomes were validated by mapping against the red deer (Cervus elaphus) mitogenome (CerEla 1.0, OU343111.1).

## Data analysis

## Hangul mitogenome annotation

The sequenced Hangul mitogenomes ( $n=2$ ) were annotated using MITOS2 web (Bernt et al., 2013) for structural information (coding regions, incomplete stop codons, overlaps etc.). Mitogenome map was generated using OGDRAW (Greiner, Lehwark \& Bock, 2019) while skew analysis was performed using the following formula: GC skew $=(\mathrm{G}-\mathrm{C}) /(\mathrm{G}+\mathrm{C})$; AT skew $=(\mathrm{A}-\mathrm{T}) /(\mathrm{A}+\mathrm{T})$ to assess any possible nucleotide composition bias.
Two sequences were aligned using MEGA v7 (Kumar, Stecher \& Tamura, 2016) to check any differences between the male and female mitogenome data. Further, nucleotide percentages and codon usages were calculated in MEGA v7 (Kumar, Stecher \& Tamura, 2016).

## Comparative mitogenome analyses and hangul phylogeny

To ascertain Hangul's phylogenetic position and estimate its divergence time, all available mitogenomes of Hangul (MW430050 and MW430051), other cervids ( $n=13$ species) and one sequence each of Muntiacini and Odocoileini were downloaded (Wada, Nishibori \& Yokohama, 2007; Pan et al., 2014; Frank et al., 2016) from GenBank (see Table 1). Upon scrutiny, it was observed that both Hangul mitogenomes from GenBank were identical and therefore only one of the sequences (MW430051) was used in all analyses. Three sequences from Bovidae group: wild buffalo (Bubalus arnee) (Pacha et al., 2021), Indian gaur (Bos gaurus) (Hassanin et al., 2012) and Cape buffalo (Boselaphus tragocamelus) (Hassanin et al., 2012) were used as outgroup in this analysis. MEGA v7 was used to estimate inter-sequence mean pairwise genetic distance (Kumar, Stecher \& Tamura, 2016).

A two-parameter substitution model (GTR+G, decided using jModelTest (Darriba et al., 2012)) along with a gamma distribution of evolutionary rates (across sites), and default shape parameter setting were used in the phylogenetic done via MrBayes v 3.2.7 (Ronquist et al., 2012). The MCMC parameters incorporated two runs of four chains

(1 million generations each with sampling after 1,000 generations) till split frequencies were less than 0.01 . For each node posterior probabilities were calculated. To estimate clade-specific divergence of Cervus hanglu, birth-death speciation was considered as tree prior with uncorrelated relaxed $\log$ normal clock (Ritchie, Lo \& Ho, 2017; Steiner, Houck \& Ryder, 2018) in BEAST v.2.3.0 (Drummond \& Rambaut, 2007). During analysis, four fossil based internal node calibration points were employed with normal distribution priors: (i) root age for the split of Cervidae and Bovidae at $18 \pm 2$ Mya, (ii) Cervini-Muntiacini split around $9 \pm 1 \mathrm{Mya}$, and (iii) oldest fossil of tribe Odocoileini to be $5 \pm 1 \mathrm{Mya}$ (Zhang e Zhang, 2012). The Cervini group was considered under monophyletic constraints. MCMC runs for tMRCA (the Most Recent Common Ancestor) inference involved 100 million generations, sampled at every 10,000 states with $10 \%$ burn-in. Data convergence was analysed using Tracer v. 1.5 (Rambaut \& Drummond, 2007) and the divergence time tree which showed maximum clade credibility was inferred with TreeAnnotator (Helfrich et al., 2018) and visualised in FigTree v.1.4.2 (Rambaut, 2009). To assess the effects of data size in determining the patterns of phylogenetic relationship and divergence time the entire analyses were conducted using two additional data set: (a) with complete Cyt b and (b) complete Control region as these two markers have earlier been used in Hangul phylogeny work.

## RESULTS

## Mitogenome organisation

A total of 215.84 million (female sample) and 284.22 million (male sample) sequence reads were generated through NGS approach. For mitogenome assembly, following paired and unpaired mapped reads were used: female-50,466 and 3,070; male-114,948 and 5,152. After data filtering, 213.7 million (female, $99.02 \%$ ) and 281.78 million (male, $99.1 \%$ ) of quality reads were obtained. The assembly lead to $\sim 10 \times$ (female, 29.8 GB data) and $\sim 13.74 \times$ (male, 39.3 GB data) coverage of Hangul mitogenome. The assembled mitogenome of Hangul generated in this study was of $16,351 \mathrm{bp}$ length and matched with the available Hangul and other species reference sequences. The GenBank accession numbers for the sequences are ON416884 (female) and ON416885 (male), respectively.

The annotated Hangul mitogenome showed conserved gene order like other red deer species i.e. protein-coding genes (PCGs, $n=13$ ), tRNA genes ( $n=22$ ), ribosomal genes ( $n=2$ ) and a non-coding control region (Table 2). Out of these, 29 genes are encoded on the heavy strand (H-strand) and remaining nine (NADH6 and eight tRNA genes: $\mathrm{tRNA}^{\mathrm{Gln}}, \mathrm{tRNA}^{\text {Asn }}, \mathrm{tRNA}^{\text {Ala }}, \mathrm{tRNA}^{\mathrm{Cys}}, \mathrm{tRNA}^{\text {Tyr }}, \mathrm{tRNA}^{\text {Ser }}, \mathrm{tRNA}^{\text {Glu }}$ and $\mathrm{tRNA}{ }^{\text {Pro }}$ ) are encoded on the light strand (L-strand). The number of overlapping regions ( $n=13$ ) and intergenic spaces ( $n=15$ ) were also consistent with other red deers (Table 2). NADH1, NADH2, NADH4L, NADH5, two cytochrome oxidases (COII and COIII), ATP8 and ATP6 and $\mathrm{O}_{\mathrm{L}}$, showed overlaps ranging from 1 to 40 bp . The tRNA ${ }^{\text {Leu }}$ gene showed the largest overlap ( 9 bp ) with NADH5 whereas three tRNA genes (tRNA ${ }^{\text {Ile }}$, RRNA $^{\mathrm{Thr}}$, tRNA ${ }^{\text {Gly }}$ ) showed the smallest overlap ( $1-3 \mathrm{bp}$ ) (Table 2). Similarly, the intergenic spaces ranged between $1-7 \mathrm{bp}$, with the longest between $\mathrm{tRNA}{ }^{\text {Ser }}$ and $\mathrm{tRNA}{ }^{\text {Asp }}$, respectively. The $\mathrm{O}_{\mathrm{L}}$ was 31 bp long and found in the WANCY region between $\mathrm{RRNA}^{\text {Asn }}$ and $t \mathrm{RNA}{ }^{\mathrm{Cys}}$.

Overall, the nucleotide composition comprised of $28.8 \% \mathrm{~T}, 24.5 \%$ C, $33.3 \% \mathrm{~A}$ and $13.5 \% \mathrm{G}$, with a positive AT value ( 0.072 ) (and a negative GC value of -0.289 ), indicating a AT-rich Hangul mitogenome (Table 1).

## Protein coding genes

Hangul mitochondrial protein-coding genes (PCGs) was $11,354 \mathrm{bp}$ in length with an AT-skewed base composition of $29.7 \%$ T, $25.9 \%$ C, $32.3 \%$ A and $12.2 \%$ G (Table 1). Out of the 13 coding genes majority ( $n=12$ ) were on the H-stand. These included six NADH genes (NADH1, NADH2, NADH3, NADH4, NADH5, NADH6 and NADH4L), ATPases (ATP6 and ATP8), cytochrome c oxidases (COI, COII and COIII) and cytochrome b (Cyt b). NADH4L was coded on the L-strand consistent with mitogenome organisation of other red deer species. NADH2, NADH3 and NADH5 have ATA start codon compared to others that have ATG. Only Cyt b (AGA), NADH2 (TAG), NADH4 and COIII had incomplete stop codon ( $\mathrm{T}_{-}$_) at the $5^{\prime}$ terminal of the adjacent gene to be completed during post transcription modification i.e. polyadenylation process. The Relative Synonymous Codon Usage (RSCU) for all PCGs consist of 3,784 codons.

## rRNA, tRNA genes and control region

Hangul mitogenome has two rRNA genes: 12s rRNA (located between tRNA ${ }^{\text {Phe }}$ and tRNA ${ }^{\mathrm{Val}}$ ) and 16 s rRNA (between $\mathrm{tRNA}^{\mathrm{Val}}$ and tRNA ${ }^{\text {Leu }}$ ) (Fig. 1). The total length of these genes is $2,526 \mathrm{bp}$ with an average positive AT skew (0.218) and negative GC skew ( -0.097 ) (Table 1). In addition, it also contains 22 tRNA genes (total length of $1,515 \mathrm{bp}$ ) with length varying from $60 \mathrm{bp}\left(\mathrm{tRNA}^{\text {Ser }}\right.$ ) to $75 \mathrm{bp}\left(\right.$ tRNA $\left.^{\text {Leu }}\right)$ (Table 1). Most of these tRNAs ( $n=14$ ) are located on H -strand and majority ( $n=21$ ) showed the typical secondary cloverleaf structures. Leucine and Serine have two tRNAs each and tRNA ${ }^{\text {Ser }}$ (GCT) lacks the D-paired arm. The Control region (CR) is 917 bp long and located between $t R N A^{\text {Pro }}$ and tRNA ${ }^{\text {Phe }}$. The base composition of CR was $31.7 \% \mathrm{~T}, 23.6 \% \mathrm{C}, 29.4 \% \mathrm{~A}$ and $15.3 \% \mathrm{G}$ with average negative AT ( -0.038 ) and GC $(-0.213)$ skew (Table 1).

## Phylogenetic analysis and divergence time estimate

Mitogenome-based Bayesian phylogenetic reconstruction of the red deer complex (with 18 available species sequences including outgroups) reveals four mitochondrial lineages: C. elaphus, C. hanglu, C. canadensis and C. nippon. These lineages can be broadly divided into two major groups: the elaphoid clade (C. hanglu and C. elaphus) and the wapitoid clade (C. canadensis and C. nippon). The C. elaphus and C. hanglu forms the basal clade, followed by the C. canadensis and C. nippon as sister groups. The Hangul (C. hanglu hanglu) sequences (both generated in this study and the already available one) formed a distinct clade with its other subspecies C. hanglu yarkandensis and sister to the Hungarian red deer (C. elaphus hippelaphus). The tMRCA analysis suggested a divergence period spanning from 2.36 (Height Posterior Density (HPD) 4.23-1.06 million years ago (Mya)) to 0.16 (HPD $0.35-0.03 \mathrm{Mya}$ ) Mya (Fig. 2) for the red deer species complex. Our results indicated the divergence of the elaphoid group from the wapitoid group $\sim 2.36$ Mya (HPD $4.23-1.06 \mathrm{Mya}$ ), corresponding to the early Pleistocene period (Kиwayama \& Ozawa,

Table 2 Organisation of mitochondrial genome in Cervus hanglu hanglu.

| Genes |  | Position |  |  |  | Codons |  | Strand |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Start | Stop | Length | Spaces ${ }_{\text {loverlap }}$ | Start | Stop |  |
| tRNA ${ }^{\text {Phe }}$ | (GAA) | 1 | 69 | 69 | 0 |  |  | H |
| rrnS |  | 70 | 1,025 | 956 | 0 |  |  | H |
| $\mathrm{tRNA}^{\mathrm{Val}}$ | (TAC) | 1,026 | 1,092 | 67 | 0 |  |  | H |
| rrnL |  | 1,093 | 2,662 | 1,570 | 1 |  |  | H |
| tRNA ${ }^{\text {Leu }}$ | (TAA) | 2,664 | 2,738 | 75 | 2 |  |  | H |
| nad1 |  | 2,741 | 3,697 | 957 | -1 | ATG | TAA | H |
| tRNA ${ }^{\text {Ile }}$ | (GAT) | 3,697 | 3,765 | 69 | -3 |  |  | H |
| tRNA ${ }^{\text {Gln }}$ | (TTG) | 3,763 | 3,834 | 72 | 2 |  |  | L |
| tRNA ${ }^{\text {Met }}$ | (CAT) | 3,837 | 3,905 | 69 | 0 |  |  | H |
| nad2 |  | 3,906 | 4,949 | 1,044 | -2 | ATA | TAG | H |
| tRNA ${ }^{\text {Trp }}$ | (TCA) | 4,948 | 5,015 | 68 | 2 |  |  | H |
| tRNA ${ }^{\text {Ala }}$ | (TGC) | 5,018 | 5,086 | 69 | 1 |  |  | L |
| tRNA ${ }^{\text {Asn }}$ | (GTT) | 5,088 | 5,160 | 73 | 2 |  |  | L |
| OL |  | 5,163 | 5,193 | 31 | -1 |  |  | H |
| tRNA ${ }^{\text {Cys }}$ | (GCA) | 5,193 | 5,260 | 68 | 0 |  |  | L |
| tRNA ${ }^{\text {Tyr }}$ | (GTA) | 5,261 | 5,329 | 69 | 1 |  |  | L |
| cox 1 |  | 5,331 | 6,875 | 1,545 | -3 | ATG | TAA | H |
| tRNA ${ }^{\text {Ser }}$ | (TGA) | 6,873 | 6,941 | 69 | 7 |  |  | L |
| tRNA ${ }^{\text {Asp }}$ | (GTC) | 6,949 | 7,016 | 68 | 1 |  |  | H |
| $\operatorname{cox} 2$ |  | 7,018 | 7,701 | 684 | 3 | ATG | TAA | H |
| tRNA ${ }^{\text {Lys }}$ | (TTT) | 7,705 | 7,772 | 68 | 1 |  |  | H |
| atp8 |  | 7,774 | 7,974 | 201 | -40 | ATG | TAA | H |
| atp6 |  | 7,935 | 8,615 | 681 | -1 | ATG | TAA | H |
| cox 3 |  | 8,615 | 9,399 | 785 | -1 | ATG | TA(A) | H |
| tRNA ${ }^{\text {Gly }}$ | (TCC) | 9,399 | 9,467 | 69 | 0 |  |  | H |
| nad3 |  | 9,468 | 9,814 | 347 | -10 | ATA | TA(A) | H |
| tRNA ${ }^{\text {Arg }}$ | (TCG) | 9,815 | 9,883 | 69 | 0 |  |  | H |
| nad4l |  | 9,884 | 10,180 | 297 | -7 | ATG | TAA | H |
| nad4 |  | 10,174 | 11,551 | 1,378 | 0 | ATG | T(AA) | H |
| tRNA ${ }^{\text {His }}$ | (GTG) | 11,552 | 11,620 | 69 | 0 |  |  | H |
| tRNA ${ }^{\text {Ser }}$ | (GCT) | 11,621 | 11,680 | 60 | 1 |  |  | H |
| tRNA ${ }^{\text {Leu }}$ |  | 11,682 | 11,751 | 70 | -9 |  |  | H |
| nad5 |  | 11,743 | 13,572 | 1,830 | -17 | ATA | TAA | H |
| nad6 |  | 13,556 | 14,083 | 528 | 0 | ATG | TAA | L |
| $\mathrm{tRNA}^{\mathrm{Glu}}$ | (TTC) | 14,084 | 14,152 | 69 | 4 |  |  | L |
| cytb |  | 14,157 | 15,296 | 1,140 | 3 | ATG | AGA | H |
| $\mathrm{tRNA}^{\mathrm{Thr}}$ | (TGT) | 15,300 | 15,369 | 70 | -1 |  |  | H |
| $\mathrm{tRNA}^{\text {Pro }}$ | (TGG) | 15,369 | 15,434 | 66 | 167 |  |  | L |
| OH |  | 15,602 | 16,145 | 544 | 206 |  |  | H |
| D-Loop |  | 15,435 | 16,351 | 916 | 1 |  |  | H |



Figure 1 Complete mitochondrial genome of Hangul (Cervus hanglu hanglu) with location of genes. The genes in the heavy strands are shown outside. The inner grey circle depicts the GC content on each strand.

Full-size DOI: 10.7717/peerj.15746/fig-1
2000). The Tarim deer species group separated $\sim 1.55$ Mya (HPD $2.88-0.58 \mathrm{Mya}$ ), overlapping with the Grünz glacial period in Europe (Kurten, 1968; Kuwayama \& Ozawa, 2000). At Hangul group level, results suggest a coalescence of 0.75 Mya (HPD $1.51-0.18$ Mya) between C. hanglu and C. yarkandensis.

The Hangul sequences generated from the male and female individuals were almost identical with five variable sites ( $n=3$ in PCGs and $n=2$ in noncoding region). However, the Hangul mitogenome from GenBank showed 15 variable sites ( $n=6$ in the coding and $n=9$ in the non-coding regions with three insertions in the rRNA region) with the sequences generated in this study. The mitogenomes of Hangul and closely related Cervus


Figure 2 Phylogenetic relationship and assessment of divergence time in red deer species group. The right pane shows the phylogenetic relationship among different red deer species. For all nodes posterior probability values were $\geq 0.9$. Three bovid species were used as outgroups. The left pane indicates the divergence times of this entire group. Node-specific ages are marked (with posterior probability values $\geq 0.9$ ) along with the HPD intervals.

Full-size DOI: 10.7717/peerj.15746/fig-2
h. yarkandensis showed 345 variable sites. The highest difference was found with Cervus n. yakushimae ( 795 variable sites), but during annotation it was found that part of the mitogenome was missing and therefore was removed from further genetic distance analyses. While the protein coding regions among all the deer remained consistent ( $11,354 \mathrm{bp}$ ), major differences were found in the non-coding regions which varied from 913 bp for Cervus h. yarkandensis to $1,231 \mathrm{bp}$ for Cervus n. centralis. One to seven base pair differences were seen for both tRNA ( $1,515-1,517 \mathrm{bp}$ ) and rRNA ( $2,525-2,532 \mathrm{bp}$ ) regions across the species (Table 1). As expected, the Hangul mitogenomes were genetically much closer (genetic distance $=0.001$ ) than all other red deer species (genetic distance value varied from 0.022 to 0.052 ) (Table S1).

## DISCUSSION

The Ministry of Environment, Forests and Climate Change, Government of India has listed Hangul as one of the 22 important Indian species that require immediate attention for future survival and recovery (https://wiienvis.nic.in/Database/SRP_8555.aspx). As part of this long-term initiative, the government has initiated a species recovery plan for this critically endangered species, especially focusing on creating a second population outside Dachigam national park (largest viable population), Jammu and Kashmir and establishing a conservation breeding facility. However, the conservation breeding program is facing challenges in selecting appropriate founder animals from the existing small and isolated hangul population in Kashmir (Ahmad \& Nigam, 2014; Mukesh et al., 2015), specifically
with limited knowledge on certain aspects of its biology including the patterns of genetic variation and evolutionary history. Earlier Hangul phylogeny research indicated contradictory patterns of its relationship with other species of the red deer group, mostly due to lack of data from Hangul. Comparative analyses of all published research on the species phylogeny suggest different outcomes. For example, Cytochrome b, control regions and whole mitogenome based phylogenetic research have shown similar sister-group relationships between the European red deer and Hangul (Ludt et al., 2004; Lorenzini \& Garofalo, 2015; Meiri et al., 2018; Doan et al., 2018; Olivieri et al., 2014; Mackiewicz et al., 2022). However, Doan et al. (2022, complete cytochrome b) and Kumar et al. (2017, partial cytochrome b) (Kumar et al., 2017) have inferred Hangul as a basal group to the entire red deer complex. The most informative phylogenetic relationship among the Tarim red deers were presented by Lorenzini \& Garofalo (2015) (cytochrome b and partial control region) and Meiri et al. (2018) (partial cytochrome b and control region) where all the species (C. h. hanglu, C. h. bactrianus and C. h. Yarkandensis) showed sister-group relationship with European red deer (Elaphoid group). Other studies involving C. h. Yarkandensis (closely related to C. h. hanglu and C. h. bactrianus) also showed similar relationship with the Elaphoid group (Doan et al., 2018; Mackiewicz et al., 2022). Based on genomic SNP markers, Hu et al. (2019) suggested a different phylogenetic relationship where Tarim deer (represented by C. h. Yarkandensis) formed a sister clade with Cervus canadensis, which was later explained as a result of frequent hybridisation amongst the Cervus group members (Heckeberg, 2020). Our complete mitogenome-based phylogeny supports the inferences arrived from the cytochrome b-based phylogeny as well as other studies involving four species of red deer (C. nippon, C. elaphus, C. canadensis and C. hanglu) (Zhang \& Zhang, 2012; Frank et al., 2016; Li, Ba \& Yang, 2016; Świsłocka et al., 2020; Mackiewicz et al., 2022). Given the support from the other studies, we believe that the mitogenome-based phylogeny of Hangul provides a clear relationship status within the Tarim red deer group. One noteworthy point is the non-availability of whole mitogenome sequence of $C$. h. bactrianus in this study, and when the mitogenome information is available it will provide the complete picture for the group's phylogenetic relationship.

Another important outcome of this study is the assessment of Hangul divergence time within the existing Tarim red deer members (except C. h. bactrianus). The divergence period analyses are dependent on various factors such as molecular marker, mutation rate, node calibration points etc., Ritchie, Lo \& Ho (2017). Overall, the red deer group divergence period varied between 7-1 Mya across different studies (Doan et al., 2022), probably due to differences in marker selection and analytical settings. For example, mitogenome-based divergence time estimation between European red deer and Tarim red deer (C. h. Yarkandensis) was found to be $\sim 1.65 \mathrm{Mya}$ (Frank et al., 2016) and $\sim 1.88 \mathrm{Mya}$ (Mackiewicz et al., 2022). Doan et al. (2018) reported a divergence period of $\sim 1.54 \mathrm{Mya}$ between the western (consisting of C. elaphus and C. hanglu) and the eastern (C. nippon and C. canadensis) red deer groups, whereas Zhang \& Zhang (2012) along with Mackiewicz et al. (2022) suggested that $\sim 2$ Mya divergence period between the same groups.
Our analyses provide a similar divergence period of $\sim 2.36 \mathrm{Mya}$ ( $4.03-1.06 \mathrm{Mya}$ ) between western and eastern groups of red deer. Within the western clade the Tarim deers diverged
~1.55 Mya from the European red deers (similar to Zhang \& Zhang, 2012; Świsłocka et al., 2020 and Mackiewicz et al., 2022). Hangul diverged from C. h. Yarkandensis $\sim 0.75$ (1.51-0.18) Mya (supported by Meiri et al. (2018) where the most recent common ancestor of the C. hanglu group was reported as 0.23 Mya$)$. These molecular dates were also supported by known paleobiogeographic events reported by other studies, specifically refugia during glaciations in the Pleistocene era ( $2.58-0.0117 \mathrm{Mya}$ ) (Kuwayama \& Ozawa, 2000). Our divergence time estimates corroborate with known timelines of diversification and movement of four red deer lineages indicating their central Asian ancestry (Mahmut et al., 2002; Lorenzini \& Garofalo, 2015; Frank et al., 2016; Mackiewicz et al., 2022).
Diverged from a common ancestor, the eastern group (C. nippon and C. canadensis) moved towards south-eastern Asia and subsequently America via Berrings land bridges since pre-LGM times (1.68-0.16 mya) (Meiri et al., 2018). The western group, on the other hand, moved towards Middle East and then to Europe (Mahmut et al., 2002; Lorenzini \& Garofalo, 2015; Kumar et al., 2017; Mackiewicz et al., 2022). The Tarim red deer (C. h. yarkandensis) separated from the European red deers due to geographic barriers (Taklimakan desert, Pamir plateau and then glacier covered Tein Shan mountains (Mahmut et al., 2002) ~1.55 Mya and adapted to the local arid habitats (Ababaikeri et al., 2020)). We speculate that Hangul might have migrated down towards the Hindu Kush Mountain ranges ( $\sim 0.75 \mathrm{Mya}$ ), followed by upward movement (using the riparian corridors like it's close related species C. h. bactrianus (Pereladova, 2013)) to its historical distribution across valleys of Chenab River to high altitudes of Kashmir. The Greater Himalayan (Zanskar mountain range) and Hindu Kush range (physical barrier) and the glaciation events during mid-Pleistocene could have acted as barriers, making it an endemic species to India. Further fossil evidences and historical genetic data are required to confirm this hypothesis.

The evolutionary history (in terms of diversification) of this species group is also evident in the mitogenome composition as well as genetic distance values. Hangul mitogenome sequence showed significant compositional similarities with the other species (Table 1). For example, while the length of the mitogenome varied between $16,351 \mathrm{bp}$ (C. h. hanglu and C. h. yarkandensis) to $16,663 \mathrm{bp}$ (C. n. centralis), majority of the length variations among these species were found in the control region. The total protein coding regions were identical in length amongst the red deer species ( $11,354 \mathrm{bp}$ ). Similarly, consistent amongst all red deers, except for the control region whole mitogenome, PCGs, tRNA and rRNA showed positive AT skew values, indicating an overall AT rich mitogenome. As expected, the phylogenetically close C. h. yarkandensis was genetically much closer than other red deer species (Table S1). Although earlier reports have suggested a low genetic variation in this species (Mukesh et al., 2015; Kumar et al., 2017), the genetic variability found in the three Hangul mitogenomes indicate more variations present within the species. As the origin of the available GenBank data is unknown, future studies need to collect more samples from different geographic locations to ascertain levels of genetic variation by generating mitogenome data. It is important to point out that only after extensive population-level study combining mitogenome and other nuclear markers (STR,

SNPs etc.) it will be possible to identify suitable founder animals with appropriate genetic variations for any conservation breeding and reintroduction programs.

## CONCLUSION

The results of this study focus on the phylogenetic position of Hangul within the Tarim deer group and gives an insight over its evolutionary history in comparison to its sister species. We believe that wild Hangul mitogenome would act as a baseline information to augment our knowledge on its phylogeography and other population parameters and help in conserving this endemic and critically endangered species currently confined to the greater Dachigam landscape of Kashmir, India.

## ACKNOWLEDGEMENTS

We thank the Department of Wildlife Protection, Jammu and Kashmir Government for providing all logistic support during fieldwork. We are thankful to the Vice-Chancellor, Director Research and Deans of Veterinary and Forestry Faculties of SKUAST-Kashmir for all help, support and cooperation. We also thank the Director, Dean and Research Coordinator of Wildlife Institute of India for their support. Our sincere thanks to the WFCGC lab members for their constant support. We greatly appreciate the constructive suggestions from the Editor and the reviewers of this manuscript.

## ADDITIONAL INFORMATION AND DECLARATIONS

## Funding

This study was funded by the Department of Wildlife Protection, Jammu and Kashmir Government and the Ministry of Environment, Forests and Climate Change, Government of India. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

## Grant Disclosures

The following grant information was disclosed by the authors:
Department of Wildlife Protection.
Jammu and Kashmir Government and the Ministry of Environment.
Forests and Climate Change, Government of India.

## Competing Interests

The authors declare that they have no competing interests. Sathish Kumar Peddamma, Yellapu Srinivas, Shenu Hudson \& Dushyant Singh Baghel are employed by Nucleome Informatics Pvt. Ltd. but have no conflict of interest in this study.

## Author Contributions

- Khursheed Ahmad conceived and designed the experiments, authored or reviewed drafts of the article, fieldwork and sample collection, and approved the final draft.
- Ankit Shankar Pacha analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Rashid Yahya Naqash performed the experiments, authored or reviewed drafts of the article, fieldwork and sample collection, and approved the final draft.
- Sathish Kumar Peddamma performed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Srinivas Yellapu performed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Shenu Hudson analyzed the data, authored or reviewed drafts of the article, and approved the final draft.
- Dushyant Singh Baghel performed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Parag Nigam conceived and designed the experiments, authored or reviewed drafts of the article, fieldwork and sample collection, and approved the final draft.
- Samrat Mondol conceived and designed the experiments, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.


## Animal Ethics

The following information was supplied relating to ethical approvals (i.e., approving body and any reference numbers):

Ethical permissions were provided by the Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India (letter no. AU/ FVS/PS-23/22/8553).

## Field Study Permissions

The following information was supplied relating to field study approvals (i.e., approving body and any reference numbers):

All required permissions for fieldwork and sampling were provided by the Chief Wildlife Warden, Department of Wildlife Protection, Jammu and Kashmir (permit nos. WLP/TECH/116-19, WLP/TECH/871-74/2013, and WLP/F-101/Res/2019-20/424-27).

## Data Availability

The following information was supplied regarding data availability:
The sequences are available at GenBank: ON416884 and ON416885.

## Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/ peerj.15746\#supplemental-information.

## REFERENCES

Ababaikeri B, Abduriyim S, Tohetahong Y, Mamat T, Ahmat A, Halik M. 2020. Whole-genome sequencing of Tarim red deer (Cervus elaphus yarkandensis) reveals demographic history and adaptations to an arid-desert environment. Frontiers in Zoology 17(1):1-15 DOI 10.1186/s12983-020-00379-5.
Ahmad K, Nigam P. 2014. Kashmir red deer or Hangul Cervus elaphus hanglu at the brink of Extinction-Conservation Action, the need of an Hour. DSG Newsletter IUCN-DSG Newsletter 26:37-47.

Ahmad K, Sathyakumar S, Qureshi Q. 2009. Conservation status of the last surviving wild population of hangul or Kashmir deer Cervus elaphus hanglu in Kashmir, India. Journal of the Bombay Natural History Society 106(3):245.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19(5):455-477 DOI 10.1089/cmb.2012.0021.
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69(2):313-319 DOI 10.1016/j.ympev.2012.08.023.
Brook SM, Thakur M, Ranjitsinh MK, Donnithorne-Tait D, Ahmad K. 2017. Cervus hanglu ssp. hanglu. The IUCN red list of threatened species 2017: e.T113259123A113281791.
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ pre-processor. Bioinformatics 34(17):i884-i890 DOI 10.1093/bioinformatics/bty560.
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8):772 DOI 10.1038/nmeth.2109.
Doan K, Mackiewicz P, Sandoval-Castellanos E, Stefaniak K, Ridush B, Dalén L, Węgleński P, Stankovic A. 2018. The history of Crimean red deer population and Cervus phylogeography in Eurasia. Zoological Journal of the Linnean Society 183(1):208-225 DOI 10.1093/zoolinnean/zlx065.
Doan K, Niedziałkowska M, Stefaniak K, Sykut M, Jędrzejewska B, Ratajczak-Skrzatek U, Piotrowska N, Ridush B, Zachos FE, Popović D, Baca M, Mackiewicz P, Kosintsev P, Makowiecki D, Charniauski M, Boeskorov G, Bondarev AA, Danila G, Kusak J, Rannamäe E, Saarma U, Arakelyan M, Manaseryan N, Krasnodębski D, Titov V, Hulva P, Bălăşescu A, Trantalidou K, Dimitrijević V, Shpansky A, Kovalchuk O, Klementiev AM, Foronova I, Malikov DG, Juras A, Nikolskiy P, Grigoriev SE, Cheprasov MY, Novgorodov GP, Sorokin AD, Wilczyński J, Protopopov AV, Lipecki G, Stanković A. 2022. Phylogenetics and phylogeography of red deer mtDNA lineages during the last 50,000 years in Eurasia. Zoological Journal of the Linnean Society 194(2):431-456 DOI 10.1093/zoolinnean/zlab025.
Drummond AJ, Rambaut A. 2007. BEAST: bayesian evolutionary analysis by sampling trees. $B M C$ Evolutionary Biology 7(1):214 DOI 10.1186/1471-2148-7-214.
Frank K, Barta E, Bana NÁ, Nagy J, Horn P, Orosz L, Stéger V. 2016. Complete mitochondrial genome sequence of a Hungarian red deer (Cervus elaphus hippelaphus) from high-throughput sequencing data and its phylogenetic position within the family Cervidae. Acta Biologica Hungarica 67(2):133-147 DOI 10.1556/018.67.2016.2.2.
Greiner S, Lehwark P, Bock R. 2019. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47(W1):W59-W64 DOI 10.1093/nar/gkz238.
Hassanin A, Delsuc F, Ropiquet A, Hammer C, Jansen van Vuuren B, Matthee C, RuizGarcia M, Catzeflis F, Areskoug V, Nguyen TT, Couloux A. 2012. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. Comptes Rendus Biologies 335(1):32-50 DOI 10.1016/j.crvi.2011.11.002.
Heckeberg NS. 2020. The systematics of the Cervidae: a total evidence approach. PeerJ 8(1-3):e8114 DOI 10.7717/peerj. 8114.

Helfrich P, Rieb E, Abrami G, Lüking A, Mehler A. 2018. TREEANNOTATOR: versatile visual annotation of hierarchical text relations. In: Proceedings of the 11th Edition of the Language Resources and Evaluation Conference, LREC 2018. Miyazaki, Japan.
Hu P, Shao Y, Xu J, Wang T, Li Y, Liu H, Rong M, Su W, Chen B, Cui S, Cui X, Yang F, Tamate H, Xing X. 2019. Genome-wide study on genetic diversity and phylogeny of five species in the genus Cervus. BMC Genomics 20(1):1-13 DOI 10.1186/s12864-019-5785-z.
Jalanka HH. 1988. Evaluation of medetomidine and ketamine induced immobilization in markhors (Capra falconeri megaceros) and its reversal by atipamezole. Journal of Zoo Animal Medicine 19:95-105.
Jalanka HH, Roeken BO. 1990. The use of medetomidine, medetomidine-ketamine combinations, and atipamezole in nondomestic mammals: a review. Journal of Zoo and Wildlife Medicine 21:259-282.

Jin JJ, Yu WB, Yang JB, Song Y, DePamphilis CW, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21(1):1-31 DOI 10.1186/s13059-020-02154-5.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870-1874 DOI 10.1093/molbev/msw054.
Kumar VP, Thakur M, Rajpoot A, Joshi BD, Nigam P, Ahmad K, Goyal SP. 2017. Resolving the phylogenetic status and taxonomic relationships of the Hangul (Cervus elaphus hanglu) in the family Cervidae. Mitochondrial DNA Part A 28(6):835-842
DOI 10.1080/24701394.2016.1197217.
Kurten B. 1968. Pleistocene mammals of Europe. London: Weidenfeld ans Nicolson, 317.
Kuwayama R, Ozawa T. 2000. Phylogenetic relationships among European red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 15(1):115-123 DOI 10.1006/mpev.1999.0731.
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9(4):357-359 DOI 10.1038/nmeth. 1923.
Li Y, Ba H, Yang F. 2016. Complete mitochondrial genome of Cervus elaphus songaricus (Cetartiodactyla: Cervinae) and a phylogenetic analysis with related species. Mitochondrial DNA Part A 27(1):620-621 DOI 10.3109/19401736.2014.908373.
Lorenzini R, Garofalo L. 2015. Insights into the evolutionary history of Cervus (Cervidae, tribe Cervini) based on Bayesian analysis of mitochondrial marker sequences, with first indications for a new species. Journal of Zoological Systematics and Evolutionary Research 53(4):340-349 DOI 10.1111/jzs. 12104.
Ludt CJ, Schroeder W, Rottmann O, Kuehn R. 2004. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Molecular Phylogenetics and Evolution 31(3):1064-1083 DOI 10.1016/j.ympev.2003.10.003.
Mackiewicz P, Matosiuk M, Świsłocka M, Zachos FE, Hajji GM, Saveljev AP, Seryodkin IV, Farahvash T, Rezaei HR, Torshizi RV, Mattioli S, Ratkiewicz M. 2022. Phylogeny and evolution of the genus Cervus (Cervidae, Mammalia) as revealed by complete mitochondrial genomes. Scientific Reports 12(1):16381 DOI 10.1038/s41598-022-20763-x.
Mahmut H, Masuda R, Onuma M, Takahashi M, Nagata J, Suzuki M, Ohtaishi N. 2002. Molecular phylogeography of the red deer (Cervus elaphus) populations in Xinjiang of China: comparison with other Asian, European, and North American populations. Zoological Science 19(4):485-495 DOI 10.2108/zsj.19.485.

Meiri M, Kosintsev P, Conroy K, Meiri S, Barnes I, Lister A. 2018. Subspecies dynamics in space and time: a study of the red deer complex using ancient and modern DNA and morphology. Journal of Biogeography 45(2):367-380 DOI 10.1111/jbi. 13124.
Mukesh T, Kumar VP, Sharma LK, Shukla M, Sathyakumar S. 2015. Pragmatic perspective on conservation genetics and demographic history of the last surviving population of Kashmir Red Deer (Cervus elaphus hanglu) in India. PLOS ONE 10(2):e0117069
DOI 10.1371/journal.pone.0117069.
Olivieri C, Marota I, Rizzi E, Ermini L, Fusco L, Pietrelli A, Bellis GD, Rollo F, Luciani S. 2014. Positioning the red deer (Cervus elaphus) hunted by the Tyrolean Iceman into a mitochondrial DNA phylogeny. PLOS ONE 9(7):e100136 DOI 10.1371/journal.pone. 0100136.
Pacha AS, Nigam P, Pandav B, Mondol S. 2021. Sequencing and annotation of the endangered wild buffalo (Bubalus arnee) mitogenome for taxonomic assessment. Molecular Biology Reports 48(2):1995-2003 DOI 10.1007/s11033-021-06165-8.
Pan HC, Fang HY, Jin C, Liu L. 2014. The complete mitochondrial genome of sika deer Cervus nippon (Cetartiodactyla: Cervinae) South Anhui population. Mitochondrial DNA 25(2):85-86 DOI 10.3109/19401736.2013.784748.
Pereladova O. 2013. Restoration of Bukhara deer (Cervus elaphus bactrianus Lydd.) in Central Asia in 2000-2011. Deer Specialist Members Welcome to the New Quadrienium 25:19-30.
Rambaut A. 2009. FigTree v1. 3.1. Available at http://tree.bio.ed.ac.uk/software/figtree/.
Rambaut A, Drummond AJ. 2007. Tracer. Available at http://beast.bio.ed.ac.uk/tracer.
Ritchie AM, Lo N, Ho SY. 2017. The impact of the tree prior on molecular dating of data sets containing a mixture of inter-and intraspecies sampling. Systematic Biology 66(3):413-425 DOI 10.1093/sysbio/syw095.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3):539-542 DOI 10.1093/sysbio/sys029.
Świsłocka M, Matosiuk M, Ratkiewicz M, Borkowska A, Czajkowska M, Mackiewicz P. 2020. Phylogeny and diversity of moose (Alces alces, Cervidae, Mammalia) revealed by complete mitochondrial genomes. Hystrix 31(1):1-9 DOI 10.4404/hystrix-00252-2019.
Steiner CC, Houck ML, Ryder OA. 2018. Genetic variation of complete mitochondrial genome sequences of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Conservation Genetics 19(2):397-408 DOI 10.1007/s10592-017-1011-1.
Wada K, Nishibori M, Yokohama M. 2007. The complete nucleotide sequence of mitochondrial genome in the Japanese Sika deer (Cervus nippon), and a phylogenetic analysis between Cervidae and Bovidae. Small Ruminant Research 69(1-3):46-54 DOI 10.1016/j.smallrumres.2005.12.002.
Zhang WQ, Zhang MH. 2012. Phylogeny and evolution of Cervidae based on complete mitochondrial genomes. Genetics and Molecular Research 11(1):628-635
DOI 10.4238/2012.March.14.6.

