#### 1. Introduction

- 2 The lionfish (*Pterois volitans / Pterois miles* complex) is considered an invasive alien species
- 3 (IAS), because it is found in territories outside its native area and can become a threat to
- 4 biodiversity in the invaded area, in addition to cause damage to the environment and
- 5 economic losses (Bax et al., 2003; Mendoza-Alfaro et al., 2011). IAS can cause substantial
- 6 changes in recipient ecosystems (Blackburn et al., 2014) and are among the main risks
- 7 associated with the extinction of various organisms (Bellard et al., 2016). For these reasons,
- 8 its study, management and control should be considered a priority.
- 9 Native to the Indo-Pacific, lionfish is established successfully in the western Atlantic Ocean
- and the Caribbean Sea as an invader (Morris and Akins, 2009; Schofield, 2010). The first
- 11 record in the invaded area dates from 1985, in Florida, United States of America (USA)
- 12 (Morris and Akins, 2009). During the following years, was detected its presence on the coasts
- of several countries (Schofield, 2010). The first report of lionfish in Cuba was made in 2007;
- subsequently, observations of lionfish were reported in numerous localities of the country
- 15 (Chevalier-Monteagudo et al., 2008). In 2010 sightings and capture reports already indicated
- its presence on the USA southeast coast, most of the Caribbean, the Gulf of Mexico and some
- areas of South America (Schofield, 2010).
- 18 This IAS has numerous characteristics that guarantee its success in the invaded area, among
- 19 them is the general diet that includes various native fishes and invertebrates (Muñoz et al.,
- 20 2011; Dahl and Patterson III, 2014; Pantoja et al., 2017). Interaction with their preys and
- 21 competitors in non-native habitats is one of the main concerns arising after the invasion.
- 22 Although this species has successfully invaded estuaries, seagrass beds and mangroves, coral
- 23 reefs constitute one of the most affected ecosystems (Morris and Akins, 2009, Kulbicki et
- 24 al., 2012). Coral reefs are subject to numerous stressful factors (Fabricius, 2005; Baker et al.,
- 25 2008; Bruno et al., 2019) and could suffer an accelerated deterioration with this invader
- 26 pressure. For instance, lionfish could harm reef health by affecting native fishes and
- 27 invertebrates through direct predation (Green and Côte, 2010; Cobián-Rojas et al., 2018b)
- and competition for food (Morris and Akins, 2009; Albins, 2013). In addition to possible
- 29 ecological damage, it could also cause serious economic losses in the invaded area, by
- affecting fishing and tourism (Morris and Whitfield, 2009; Morris and Green, 2013).

Comentado [MOU1]: the quote of the descriptor would be good

Con formato: Fuente: Sin Cursiva

Comentado [MOU2]: It cannot become a threat; it is already a

The rapid lionfish spread and its potential impact on the invaded ecosystems have made necessary to carry out new studies that expand the current knowledge about this fish. Therefore, it has been extensively studied in the Atlantic and the Caribbean, even surpassing in quantity and topics addressed, the research developed in its natural range. This fact has conducted to have higher knowledge of the biology and ecology of lionfish than of many native species in the invaded area. The revision and analysis of researches focused on lionfish from a broader vision, has become a necessity. Valuable reviews have been made that address several topics such as invasion, impacts, control, reproduction, life history, phylogeography and genetics (Côté et al., 2013; Rittermann, 2016; Côté and Smith, 2018; Díaz-Ferguson and Hunter, 2019). However, in these reviews the information about lionfish in Cuba is absent or very scarce, despite the importance of the study of lionfish in this country and the existence of numerous Cuban researchers related to the subject. Knowledge of lionfish in Cuba is essential for the comprehensive management of these IAS in the Western Atlantic and the Caribbean Sea, since its geographical location makes it a key country within the invaded area. For instance, Cuba may be the largest exporter of lionfish larvae with high levels of connectivity to all the other precincts (Johnston and Purkis, 2015). The present review aims to analyze the most relevant characteristics of the biology and ecology of lionfish as IAS, with emphasis in Cuba. It provides, for the first time, a comprehensive analysis of lionfish information and results from Cuba, which is adequately contrasted with previous studies of other invaded areas, particularly, from the Greater Caribbean. The information contained in this review may be of great use to researchers in the field of lionfish biology and ecology in the invaded area, and provides greater visibility into the history, characteristics, and impact of this invader in the largest of the Antilles.

# 2. Search Methodology

31

32

33

34

35 36

37

38

39

40

41

42

43

44

45

46 47

48

49

50 51

52

53

54

55

56 57

58

59

60 61 This review is not focused on analyzing all the lionfish scientific knowledge, rather is focused on the comprehensive analysis of the most important aspects of lionfish and the main gaps in the species current knowledge and management. Therefore, this contribution was prepared during five years of exhaustive search of published articles related to the biology and ecology of lionfish, and other aspects of interest that may contribute to its natural history knowledge and management. Google scholar was used with the search terms "lionfish invasion", "lionfish impact", "control of lionfish population", "lionfish biology and

62 ecology", "lionfish diet", "lionfish uses", and other specific terms for the different subjects.

Alternative keywords were also used, e.g., "Pterois volitans", "Pterois", and combined with

64 terms relative to geographic locations: "Caribbean", "invaded areas", "native area".

65 Although researches on lionfish in its native distribution range were also reviewed, most

66 priority was given to articles on lionfish as an invader in the Western Atlantic and the

67 Caribbean Sea. Particular importance was given to the Cuban studies, which also include

68 M.Sc. and Ph.D. thesis. Some articles not directly dealing with lionfish were included, since

69 they provide useful information for the review. Articles in English and Spanish language

vere taken into account, published from 1985 (first report of lionfish in the invaded region)

71 until 2022; with the exception of a key article from 1959 focused on the lionfish venom as

72 the main defense mechanism in these species.

63

89

73 More than 150 articles were consulted, of which 136 contributed to the article main text. In

74 addition, the native distribution of Pterois volitans and Pterois miles was added as

supplemental material, wich is based on the information available in FishBase [AquaMaps:

76 Kaschner et al. (2019)]. The chronology of lionfish invasion in the Atlantic Ocean and the

77 Caribbean Sea was summarized using the maps provided by the USGS web site

78 (https://www.usgs.gov/media/images/1985-2018-lionfish-invasion). Additionally, with

79 information of 18 diet studies from different invaded regions, a graph represents the most

80 common fish families and all the crustaceans, mollusks and algae/seagrass identified on

81 lionfish and the number of studies in which they were observed. The graph was created using

the R language (R Core Team 2020) and the ggplot2 package (Wickham, 2016).

83 A total of 91 research articles were used to summarize the lionfish current knowledgethrough

a figure (map) and a table. These 91 articles were classified into nine themes: Abundance,

85 Toxicology, Control, Diet, Genetic / Phylogenetic, Impact, Invasion, Reproduction /

86 Development, Behavior. Using this later information and the geographic coordinates of each

87 study location, the map with the distribution of studies by subject was produced. The program

88 QGIS, version 3.4.5-Madeira, was used for all the maps creation.

# 3. Original geographic distribution and invasion

90 Natural geographical zone of distribution and geographic zone of invasion,

Con formato: Normal, Interlineado: sencillo

Eliminado:

92 Lionfish are native to the tropical waters of the western Pacific Ocean and the eastern Indian

93 Ocean. The natural distribution of P. volitans includes the Indian and Pacific oceans, and

94 covers a very large area; while P. miles is native to the Red Sea, the Persian Gulf and the

95 Indian Ocean, with the exception of Western Australia (Fig. 1) (Schultz, 1986).

96 Lionfish have spread rapidly across a wide geographic region, mainly from the USA

southeastern coast to the Brazilian coast. Since the early 1990 its presence has been reported

98 in the western Atlantic, however, as of 2010, a significant dispersal of this invader was

99 observed in the region (Fig. 2).

97

101

100 The first sighting of lionfish in the western Atlantic occurred in Florida in 1985 (Morris and

Akins, 2009). Other observations were recorded subsequently in 1992, due to the accidental

102 release of six individuals from a home aquarium in Biscayne Bay, Florida (Courtenay, 1995)

103 cited by Morris and Akins, 2009). During the following years, sporadic appearances of the

species occurred along the USA coasts (Whitfield et al., 2002; Schofield, 2009).

105 Lionfish were reported in the Bermuda Islands in 2000 (Whitfield et al., 2002), in the

Bahamas in 2004, in the Turks and Caicos Islands in 2006, in Colombia, the Cayman Islands,

107 Jamaica, Puerto Rico, Haiti, Belize and the Dominican Republic in 2008 (Guerrero and

108 Franco, 2008; Schoffeld, 2009). In 2009 it was registered in Mexico, Panama, Honduras,

109 Costa Rica (Schofield, 2009) and Nicaragua (Schofield, 2010); and in 2014 in Brazil (Ferreira

110 et al., 2015).

111 Chevalier-Monteagudo et al. (2008) made the first report of lionfish in Cuba in 2007, from

the capture of two specimens of *P. volitans*, in Los Caimanes keys southern coast, Villa Clara.

113 In June 2007, another specimen was captured on the southeast coast of the Baconao

114 Aquarium in Santiago de Cuba. Subsequently, observations of P. volitans / P. miles were

reported in numerous localities of the country (Chevalier-Monteagudo et al., 2008). It is

estimated an initial settlement on the northern coast between late 2006 and early 2007, and

from 2009, when they colonized the southern coast from east to west (Chevalier-Monteagudo

et al., 2014). Lionfish populations were stabilized in 2011 in the northern coast, while in the

south, densities began to stabilize later (Chevalier-Monteagudo et al., 2014). In 2010, the

lionfish was considered as an IAS established throughout the Cuban archipelago.

**Comentado [MOU3]:** In reality, at least 100 organisms are required for the invasion to be successful, so the theory of the intentional release of 6 organisms is not very conclusive.

**Comentado** [MOU4]: The first record in Mexico was on an island (Cozumel), later it was recorded in the continental coastal zone.

Comentado [MOU5]: What is meant by stabilize? rather they were established during the year they mention; The establishment and other processes of succession and evolution could be assessed later and during this period if one could already speak of stabilization of the populations...

### 3.1. Density in its distribution areas

- 122 Along its natural distribution areas, ca. 0.25-0.26 ind./100 m<sup>2</sup> (ind.: lionfish) average
- densities have been recorded, with a range from 0 to 1.11 ind./100 m<sup>2</sup> (Darling et al., 2011;
- 124 Kulbicki et al., 2012) (Table 1). On the contrary, in the Atlantic Ocean its density tends to be
- notably higher, e.g., densities higher than 1 ind./100 m<sup>2</sup> in the Mesoamerican Reef, in Cuba
- 126 (Jardines de la Reina) (Hackerott et al. 2013), and in the Bahamas (Green and Côté, 2008;
- Darling et al., 2011) (Table 1). In artificial reefs in the Gulf of Mexico the densities recorded
- are even higher, e.g. 14.7 ind./100 m<sup>2</sup> (Dahl and Patterson III, 2014) and 32.98 ind./100 m<sup>2</sup>
- 129 (Dahl et al., 2019).

121

- 130 In Cuba, reported lionfish densities are relatively high (2.1 ind./100 m²) (Chevalier-
- Monteagudo, 2017), compared to these documented in the Indo-Pacific (Darling et al., 2011;
- 132 Kulbicki et al., 2012) and in other locations in the western Atlantic (1.1 ind./100 m²; 0.1 3.9
- ind./100 m²) (Table 1). Even higher density values have been reported in the Guanahacabibes
- 134 National Park (GNP) and in the tourist coast of Holguín (Cobián-Rojas et al., 2016; Reynaldo
- et al., 2018). In GNP it is considered one of the most abundant species on coral reefs and
- densities above 5.0 ind./100 m<sup>2</sup> have been recorded (Cobián-Rojas et al., 2016; 2018a), while
- in the tourist coast of Holguín have been recorded lionfish densities of 12.42 ind./100 m<sup>2</sup>
- 138 (Reynaldo et al., 2018). One of the main concerns related to the lionfish invasion in Cuba is
- the ability of their populations to grow rapidly in number. On the coast of Holguín in just one
- year, there was a notable increase in the density of this invader (1.01 ind./100 m² in 2013,
- 141 7.5 ind./100 m<sup>2</sup> in 2014) (Vega et al., 2015; Reynaldo et al., 2018), a fact that shows the need
- 142 to strengthen control strategies.

143

# 4. Factors that have allowed its successful establishment

- 144 The speed and success of the lionfish expansion in the Atlantic Ocean and the Caribbean Sea
- indicate that it has been favored by its biological and ecological traits, as revealed by several
- 146 researches. For instance, it has characteristics that are predictors of the ability of non-native
- 147 fishes to invade territories outside its natural range (Morris and Whitfield, 2009; Côté and
- 148 Smith, 2018): extensive native distribution range (Schultz 1986), wide diet (Morris and
- 149 Akins, 2009; Cure et al., 2012), ability to tolerate long periods of fasting [up to 10 weeks of
- 150 fasting] (Fishelson, 1997), traits that allow to consume large and elusive prey [stomach with
- the ability to expand 30-32 times, large diameter of its mouth, high suction capacity, large

**Comentado [MOU6]:** the densities presented in several countries are not very precise. In the Mexican Caribbean, these have been from 5-10 and up to 60 ind individuals per hectare.

Eliminado: 2016; 2018

protrusion of the premaxilla] (Fishelson, 1997; Rojas-Vélez et al., 2019), and preys that not 153 recognize it as a predator (Albins and Lyons, 2012; Berchtold and Côté, 2020) and lack of 154 defenses against lionfish (Santamaría et al., 2008). In addition, lionfish have: high physical 155 tolerance (Fishelson, 1997; Burford et al., 2019), effective defense mechanisms [spines 156 157 loaded with poison] (Saunders and Taylor, 1959; Cohen and Olek, 1989; Whitfield et al., 158 2006), absence of effective biotic resistance mechanism in the invaded area (Hackerott et al., 159 2013; Valdivia et al., 2014; Cobián-Rojas et al., 2018b), resistance to ectoparasites (Côté and Smith, 2018), rapid growth [growth rate (K) equivalent to 0.42 for an entire population 160 sampled in Little Cayman, with estimates of 0.38 for males, and 0.57 for females (Edwards 161 et al., 2014), although values higher than these have been found by other authors (see Côté 162 and Smith, 2018)]; early sexual maturity (Bustos-Montes et al., 2020), long breeding season 163 [all year] (Morris and Whitfield, 2009; Morris et al., 2011a; Gardner et al., 2015), high 164 fecundity [1800 - 41 945 eggs per laying] (Gardner et al., 2015), larval period with an 165 adequate duration to achieve a wide dispersal [20 - 35 days] (Ahrenholz and Morris, 2010), 166 ability to travel long distances [1.38 km] and even crossing large areas of sand considered 167 barriers to the movement of most reef fishes (Tamburello and Côté, 2014), relatively large 168 body size [45 cm in total length, with sexual dimorphism where the male reaches the largest 169 sizes and presents slower growth] (Whitfield et al., 2006; Morris and Whitfield, 2009; 170 171 Darling et al., 2011; Edwards et al., 2014) and relatively high longevity [ca. 10 years] (Froese 172 and Pauly, 2019). Importantly, a recent research based on a sample of 64 lionfish from the northwestern of Havana (Cuba), provides new knowledge regarding aspects of the 173 174 reproductive biology of lionfish that allow its successful establishment (Cruz-López et al., 2020). In addition to record sexual dimorphism in lionfish [higher length and weight in males 175 than in females], these authors recorded high number of gametes in the gonads, semicystic 176 spermatogenesis and reproductive activity during all year. All these are clear advantage for 177 178 lionfish as species, but particularly as invasive.

Regarding parasitism, lionfish have been shown less quantity and diversity of parasites than other Atlantic fishes found in similar environments (Côté and Smith, 2018). The characterization of the parasitic fauna of the lionfish in Cuba showed that the composition of parasitic species by taxonomic group is poor; the infection parameters have very low values and differ markedly from those reported in native hosts that live in the same sites as the

179

180 181

182 183 Comentado [MOU7]: as an alien and invasive species

lionfish analyzed (Chevalier-Monteagudo et al., 2013). These authors suggest that native parasitic communities have not yet established and consolidate their life cycles in this new host. All the discussed characteristics allow understanding how has been possible the lionfish establishment and dispersion so successfully and rapidly in the Caribbean and the western

188 Atlantic.

# 189 5. Habitats invaded by lionfish

Lionfish have occupy a wide range of habitats, including estuaries, seagrass beds, coral reefs, hard and rocky bottoms, channels, and mangroves. It has been observed taking refuge in association with biotic and abiotic structures present in these habitats, e.g. rocks, coral heads, artificial structures such as concrete blocks, retaining walls and posts, and softer structures such as sponges, walls of blowouts in seagrass beds and in mangrove roots (Barbour et al., 2011; Claydon et al., 2012; Pimiento et al., 2013). The depth range reported for this invader is 2–55 m (Froese and Pauly, 2019); however, it has been repeatedly described in mesophotic reefs more than 60 m deep, in the native and invaded areas (Andradi-Brown et al., 2017; Luiz et al., 2021). [There are records of its presence at more than 245 m depth in Curaçao (247 m), Honduras (250 m), Bahamas (300 m), and Bermuda (304 m) (Andradi-Brown, 2019 and

reference therein).

In Cuba, the presence of lionfish has been observed in shallow coral reefs (Chevalier-Monteagudo, 2017; Cobián-Rojas et al., 2018a, b) and mesophotic reefs at a maximum depth of 188 m (Reed et al., 2018; Cobián-Rojas et al., 2021). Additionally, this invader has been recorded in mangroves (Pina-Amargós et al., 2012; Guardia et al., 2017; Rodríguez-Viera et al., 2018), seagrass beds (del Río et al., 2022), submerged artificial structures and muddy bottoms with stones (Chevalier-Monteagudo et al., 2013), and it is also usually abundant in artificial shelters used in the lobster fishery (Rodríguez-Viera et al., 2018). In Holguín, higher densities of lionfish have been recorded in the fore reefs (0.3 ind./100 m²) compared to other habitats such as seagrass beds (0.1 ind./100 m²) (Vega et al., 2015). Regarding the lionfish size among different habitats, a comparative study between mangrove and coral reefs in Cayos de San Felipe National Park, estimated lower lionfish sizes in mangroves (average size: 126 mm) to those estimated in coral reefs (241-258 mm) (Guardia et al., 2017). In a recent study carried out in the Punta Francés National Park (PFNP), lionfish caught in

seagrass beds had smaller sizes (average length: 212 mm) than those captured in coral reefs

Eliminado: occupied

Eliminado: conquered

Comentado [MOU8]: also, in docks for small boats and in soft corals

Comentado [MOU9]: 0 to 55 m

Comentado [MOU10]: in the bahamas with a submarine, lionfish have been recorded at a depth of 300 m In Puerto Morelos, Mexico we have collected organisms at 60 meters

Eliminado:

- (average length: 252 mm) (del Río et al., 2022). This trend has been observed also in Holguín, 218 where larger individuals have been recorded in coral reef patch and fore reef than those 219 observed in the artificial refuges, seegrass beds and estuaries (Vega et al., 2015). 220 221 6. Predatory behavior and diet The predatory strategy of the lionfish is practically unique among the predatory fishes from 222 223 the western Atlantic and the Caribbean. When the lionfish chooses his target, it corners the 224 prey against a rock or confined space using its large pectoral fins, moving close enough with 225 its fins extended, and attacks quickly (Côté and Maljkovic, 2010; Albins and Hixon, 2011). In addition, it can expel rapid jets of water that cause a disorder in the lateral line system of 226 the prey fishes, and it creates a small current that disorients, causing the prey movement 227 towards the lonfish mouth (Cure et al., 2012). Apparently, lionfish prefer to grab their prey 228 by the head, which allows them to avoid accidents with the spines and limits the possibilities 229 of escape (Albins and Lyons, 2012). Generally, they swallow the whole prey (Morris and 230 Green, 2013). 231 In the Indo-Pacific, lionfish generally feed during dawn and dusk (Cure et al., 2012). 232 However, a study carried out in the Bahamas showed greater predatory activity in the 233 morning, mainly between 07:00 am and 11:00 am, with a significant decrease during the 234 afternoon (Morris and Akins, 2009). In contrast, subsequent research conducted in the 235 Bahamas and Cayman Islands shows twilight feeding behavior (Green et al., 2011; Cure et 236 237 al., 2012). In Cuba, a higher consumption of preys has been observed in the morning, 238 especially in the hours of 8:00 am-10:00 am even until 12:00 m (Chevalier-Monteagudo et
- No. 6002, Playa, Havana, Cuba).

  Numerous studies show that the lionfish is a generalist predator capable of varying the composition of its diet depending on the most available preys in the region where it lives

240

241

al., 2013). However, studies aimed at evaluating the nocturnal diet of lionfish in Cuba have

shown a higher proportion of full stomachs, a more diverse diet, and a greater predominance

of fishes compared to the daytime diet (Chevalier-Monteagudo, pers. comm., ANC, 1st street

- 245 (Arredondo-Chávez et al., 2016; Peake et al., 2018; Sancho et al., 2018). However, some
- studies have shown that lionfish can also exhibit preferences for certain preys, (Ritger et al.,
- 2 to studies have shown that normal can also extract protectioness for certain projet, (ranger of an
- 247 2020; Santamaria et al., 2020). After conducting numerous samplings aimed at studying
- 248 lionfish diet in Cuban locations, a great diversity of food entities was recorded (Chevalier-

Comentado [MOU11]: generalist carnivore

Monteagudo et al., 2013). In addition, it was observed a strong correlation between the 249 number of entities found in the lionfish diet and the densities in the wild, wich includes 250 several fish families and species. This trend suggests that lionfish did not present preferences 251

for specific preys in these localities, but rather feed on the most available preys. 252

## 6.1. Diet components

253

262

263

277

254 Lionfish have a primarily piscivorous diet, supplemented with crustaceans and other 255 invertebrates such as echinoderms and mollusks (Green et al., 2011; Chevalier, 2017, Dahl

et al. 2017). In the invaded area they have a broader diet (Albins and Hixon, 2008; Dahl and 256

257 Patterson III, 2014; Pantoja et al., 2017). For instance, numerous fish families have been

258 recorded in the stomach contents of lionfish (Fig. 3). Among the best represented families

Pomacentridae, Acanthuridae, Blennidae, Labridae, Serranidae,

259

Grammatidae, Apogonidae, Atherinidae, Mullidae, Monacanthidae, Scaridae, Haemulidae 260

and Carangidae (Morris and Akins, 2009; McCleery, 2011; Sandel, 2011; Muñoz et al., 2011; 261

Valdez-Moreno et al., 2012; Arredondo-Chávez et al., 2016; Hackerot et al., 2017). However,

crustaceans may become more important than fishes in the lionfish diet (Dahl and Patterson

264 III, 2014; Villaseñor-Derbez and Herrera-Pérez, 2014). The proportional importance of

265 crustaceans in the diet is inversely related to the size of this predator. Larger lionfish tend to

increase fish consumption and decrease crustacean consumption, in addition to preferring 266

267 larger prey; this ontogenetic change has been observed in numerous studies (Morris and

Akins, 2009; Muñoz et al., 2011; Arredondo-Chávez et al., 2016; Peake et al., 2018; Sancho 268

et al., 2018). 269

270 In Cuba, several studies have been developed aimed at knowing the main components of the

271 lionfish diet (García, 2015; Vega et al., 2015; Pantoja, 2016; Cobián-Rojas et al., 2016;

272 Pantoja et al., 2017; Chevalier-Monteagudo, 2017; del Río et al., 2022). These have analyzed

the stomach content of lionfish from different Cuban locations. The identified food entities 273

274 are included in three main groups: fishes, crustaceans and mollusks, in that order of

275 abundance. The most important fish families for the diet have been Pomacentridae, Gobiidae,

Scaridae, Holocentridae, Mullidae, Labridae and Acanthuridae. In the case of crustaceans, 276

the orders Decapoda, Mysida, Stomatopoda and Isopoda, the infraorder Brachyura and

Comentado [MOU12]: there is a nutritional differentiation based on the state of maturity; adults have a slightly different diet than juveniles or smaller organisms.

In the lionfish invasion zone, there is enough food available, so they wait for their preferred prev before consuming any.

Arredondo-Chávez et al., 2016

Comentado [MOU13]: first molluscs and then echinoderms

Eliminado:

Eliminado:

Comentado [MOU14]: especially in youth stages, not so in

280 shrimps (infraorders Stenopodidea and Caridea, and the superfamily Penaeoidea) have

281 predominated.

282

286

288

290

301 302

306

### 7. Potential impact of lionfish in the invaded area

One of the great concerns that have arisen after the lionfish invasion is its effect on other

native organisms, since its arrival breaks the existing balance in the invaded ecosystem. Once

the invasion has occurred, there is a new predator, a new competitor and perhaps a new prey,

which tends to reach high densities and has characteristics that guarantee its success as an

invader (Fig. 4).

### 7.1. Impact by predation

Numerous studies have shown that the lionfish is capable of producing great effects on coral

reef communities through the direct predation of native fishes and invertebrates (Albins and

291 Hixon, 2008; Morris and Akins, 2009; Valdez-Moreno et al., 2012; Cobián-Rojas et al.,

292 2018b). Some alarming results show that there is the possibility that it could even cause the

293 extinction of endemic native species of limited distribution (Côté and Smith, 2018). As

generalist predator, lionfish include numerous fishes and invertebrate's species from the

295 western Atlantic and the Caribbean (Morris and Akins, 2009; Dahl et al., 2017), and is

296 capable of consuming preys on reefs at a rate higher than that which native populations can

297 assimilate (Green and Côte, 2010). However, Peake et al. (2018) suggest that the fact that

298 lionfish is an opportunistic generalist predator considerably reduces the risk of causing prey

299 extirpation, since it consumes the most abundant and available preys. The deterioration of

300 coral reefs due to the presence of lionfish would also affect other organisms that depend on

these ecosystems, so the consequences could be very serious. One of the greatest information

gaps is its synergistic effect with additional stressing factors already existing in coral reefs

303 [e.g., eutrophication, sedimentation, increase in water temperature, coral bleaching,

overfishing (Loya and Kramarsky-Winter, 2003; Fabricius, 2005; Eakin et al., 2019;

Jackson et al. 2014). These interactions can enhance the deterioration of these ecosystems.

By altering food webs, lionfish could unleash cascading repercussions that affect the entire

307 ecosystem. The possibility of lionfish decimating populations of important herbivores, i.e.

308 parrotfish (Scaridae) and surgeonfish (Acanthuridae), has been raised, as these have been

309 identified as part of their diet in numerous studies (Fig. 3) (Albins and Hixon, 2008; Morris

and Akins, 2009; Cure et al., 2012; Arredondo -Chávez et al., 2016; Chevalier, 2017; Pantoja

**Comentado [MOU15]:** the impacts are no longer potential, they are already a reality throughout the invasion zone and they are occurring now...

Comentado [MOU16]: at least local extinctions

Eliminado: invertebrates

**Comentado [MOU17]:** consumes the prey it wants, if they are not available at moment A, it waits for moment B to consume it and this, which occurs in the natural environment, contradicts what was mentioned by Peake et al, 2018

**Comentado [MOU18]:** and the effect of the massive arrival of sargassum to the greater Caribbean

Comentado [MOU19]:

et al., 2017). By feeding on herbivorous fishes, the control that these key groups carry out 312 313 over macroalgae is compromised, an essential process for maintaining the coral reefs health (Fig. 4) (Morris, 2013; Steneck et al., 2014; Kindinger and Albins, 2017). It has been shown 314 315 that some herbivores such as parrotfish may not recognize the lionfish as a predator, which 316 considerably increases the predation risk (Berchtold and Côté, 2020), or may change their 317 behavior (e.g., decreased general grazing intensity) and produce an increase of algal cover 318 on coral reefs (Eaton et al., 2016; Kindinger and Albins, 2017). Lionfish also can feed on juvenile snapper and grouper (Fig. 4) (Morris and Akins, 2009; 319 Villaseñor-Derbez and Herrera-Pérez, 2014; Dahl et al., 2017), important groups that include 320 potential lionfish predators (Maljkovic and Van Leeuwen, 2008). Additionally, lionfish feed 321 on cleaning fishes (e.g. Thalassoma bifasciatum) which can alter the structure and function 322 323 of communities on invaded reefs (Fig. 4) (Tuttle, 2017). 324 Given the threat posed by P. volitans / P. miles to invaded ecosystems, it became a necessity to carry out local studies that provide observations of its impact on the community structure 325 and the abundance of fishes and other organisms present in their diet. Some experiments have 326 shown that lionfish can considerably reduce the fish recruitment and fish forage, as well as 327 328 the abundance and richness of native fishes that constitute its prey, an effect that is greater 329 when native predators are also present (Albins and Hixon, 2008; Green et al., 2012; Albins, 330 2013; 2015; Samhouri and Stier, 2021). The possibility that these experimental effects can Eliminado: be extrapolated to the entire reef has been contemplated (Morris and Green, 2013). However, 331 should be taken into account that the lionfish effects on native prey in small-scale 332 333 experiments do not necessarily reflect the results in nature (Hackerot et al., 2017). Hackerot et al. (2017) conducted a study on a larger geographic scale and found no evidence 334 that lionfish appreciably affected the density, richness, or composition of prey fishes. In 335 336 contrast to these results, a study aimed at examining the impact of lionfish invasion on a wide regional and temporal scale, suggested that experimental studies to small-scale reef patches 337 in the Bahamas could provide good indications of the impact of the invasion in a wider region 338 (Ballew et al., 2016). Another study on a regional scale showed that species at risk of 339 extinction, those of fishing interest and those threatened by overfishing, contribute little to 340

the diet of lionfish in the western Atlantic (Peake et al., 2018).

The lionfish diet studies in different Cuban locations allowed detecting which are the most 343 344 affected fishes and invertebrates by direct predation, in addition to providing information about their effects on them (e.g. García, 2015; Pantoja, 2016; Pantoja et al., 2017). The 345 analysis of the main ecological relationships of lionfish in Havana reefs showed that lionfish 346 347 effect is limited to the lionfish most abundant fish prey families and species (García, 2015). 348 P. volitans doesn't affect the population variables of the usual lionfish fish preys neither the 349 ecological variables of the ecosystem, after studying several Cuban locations (Chevalier-Monteagudo, 2017). The new associations detected between native fishes and this invader 350 show the possibility that lionfish is progressively becoming in an additional component of 351 the Caribbean's biodiversity (Chevalier-Monteagudo, 2017). Concordantly, no changes were 352 detected in most of the diversity and equity indices of the fish communities in GNP, when 353 comparing several years before the lionfish invasion and years after the invasion (Cobián-354 Rojas et al., 2018a). These authors discussed that variations in richness, diversity, and equity 355 appear to be more related to reef structure and the effects of fishing than to lionfish 356 abundance. However, in other study conducted in GNP, it was detected that the abundance 357 and size of preys decreased as the abundance of lionfish increased (Cobián-Rojas et al., 358 2018b). Analysis of the density, size, biomass and diet of lionfish in the GNP suggests that 359 360 their impact on preys may increase when the invader reaches larger sizes and its populations grow (Cobián-Rojas et al., 2016). Additional studies are required to assess the impact of 361 362 lionfish as a predator after several years of invasion on a larger geographic scale and in 363 different ecosystems invaded in Cuba and in other areas of the region.

# 7.2. Impact by competition

364

373

365 Lionfish can also harm other organisms through competition for food or shelter (Fig. 4) (Morris and Whitfield, 2009; Morris and Green, 2013; Dahl et al., 2017). This invader 366 occupies the same habitats, and consumes the same preys as many native fish species and 367 macroinvertebrates (Morris and Green, 2013; Arredondo-Chávez et al., 2016; Peake et al., 368 2018). A possible competition for food has been evidenced between lionfish and native fish 369 such as Cephalopholis cruentata, Cephalopholis fulva, squirrelfishes (Holocentridae), 370 371 Epinephelus guttatus and Lutjanus apodus, due to the overlap between their isotopic niches (Curtis et al., 2017; Eddy et al., 2020; Murillo-Pérez et al., 2021). Although some researches 372

have not detected that lionfish affect the density and species richness of its competitors

Comentado [MOU20]: I think it is a very eventful conclusion

(Chevalier-Monteagudo et al., 2013; Elise et al., 2014; Chevalier-Monteagudo, 2017), the 374 375 effect that may have over them, in conditions of low availability of resources, constitutes an important concern. Competition with lionfish could affect the behavior, distribution, growth, 376 377 survival, and even population size of competitors (Morris and Green, 2013). 378 Some studies suggest that lionfish could surpass native predators in the competition for food 379 resources and decrease the abundance of the species that constitute their prey (Albins and 380 Hixon, 2008; Morris and Akins, 2009; Albins, 2013). This fact could be explained taking into account that this invader tends to grow faster (Albins, 2013; Bustos-Montes et al., 2020) and 381 can consume prey at a higher rate than some of these predators (Albins, 2013; Marshak et al., 382 2018). Additionally, its morphological characteristics offer mechanical advantages for the 383 consumption of a wide variety of benthic and cryptic animals (Rojas-Vélez et al., 2019). 384 In terms of competition for space, lionfish have a similar habitat preference to Panulirus 385 386 argus and Diadema antillarum, so it could compete with these native invertebrates for refuges, if their availability is limited. The invader cause an increase in the activity (time 387 spent: active vs resting) of P. argus that could cause a decrease in growth rates and an 388 increase in the risk of predation (Hunt et al., 2020). Besides it has been observed that fishes 389 390 predated by lionfish use shelters similar to those of this invader, which could lead to 391 competition for this resource. However, it has been shown that lionfish share daytime shelters with some of these fishes (e.g., Gramma loreto, Canthigaster rostrata, Chromis cyanea) and 392 the possibility that they act as a client of cleaners or as a protector against other predators is 393 raised (García -Rivas et al., 2017). 394 395 Cuban researches have been also focused on evaluating the impact of lionfish over its possible competitors. A study performed in eight localities within six Cuban provinces, 396 compared the densities of lionfish with those of grouper species that have similar ecological 397 niches to that of the invasive fish (e.g., Cephalopholis cruentata, Cephalopholis fulva and 398 399 Epinephelus guttatus) (Chevalier -Monteagudo et al., 2013). It was observed that lionfish densities tend to be similar or higher than those of their possible competitors and the 400 possibility that the invasive fish could displace some of these native groupers from their 401 402 ecological niche, and prevent the recovery of their populations. However, no significant correlations were observed between lionfish and the fish families that constitute their 403 404 potential predators and competitors, in terms of abundance, biomass and mean size (Chevalier-Monteagudo et al., 2013). In a later study, Pantoja et al. (2017) detected a low overlap among the diets of lionfish and those of the Haemulidae, Serranidae and Holocentridae families in GNP. It was shown that, although lionfish are essentially piscivorous like snappers (Lutjanidae) and groupers (Serranidae), its diet content differs in the proportion of fishes, crustaceans and mollusks. Therefore, these authors suggest that lionfish probably do not constitute a threat to native fishes of similar trophic level in the competition for food resources. Additionally, Chevalier-Monteagudo (2017) did not detect that *P. volitans* populations altered the population variables of their main competitors in this same location.

#### 7.3. Socio-economic impact

- In addition to threatening the ecological functioning and biodiversity of reefs, lionfish represent an economic risk (Morris and Whitfield, 2009; Arredondo-Chávez et al., 2016). Among the most vulnerable sectors are fishing and tourism, which are of great importance to many countries in the Caribbean and the Atlantic Ocean (Morris and Green, 2013). The
- 419 fisheries sector is affected by the inclusion of juvenile stages of commercially valuable
- 420 species (e.g., Epinephelus striatus; Ocyurus chrysurus; Rhomboplites aurorubens;
- 421 Haemulon aurolineatum; Lutjanus campechanus; Pristipomoides aquilonaris and Pagrus
- 422 pagrus) in the diet of lionfish (Morris and Whitfield, 2009; Morris and Akins, 2009; Ballew
- 423 et al., 2016; Dahl et al., 2017; Peake et al., 2018). Additionally, the presence of crab and
- shrimp species important for fisheries (e.g. *Menippe mercenaria* and *Farfantepenaeus*
- 425 duorarum) has been detected in their diet (Sancho et al., 2018). The predatory activity of
- lionfish on such species of commercial interest could reduce their catches, hinder efforts
- 427 aimed at the recovery of fishing populations and slow down initiatives aimed at the
- management and conservation of these groups (Morris and Akins, 2009; Morris and Green,
- 429 2013).

405

406

407 408

409 410

411

412

413

- 430 The ecological impact of lionfish can potentially cause a reduction in tourist interest in the
- 431 most affected areas, due to the decrease in the attractiveness of the reefs. In Cuba the lionfish
- has been registered in areas of interest for tourism, e.g. Holguín's tourist coastline (Vega et
- 433 al., 2015; Reynaldo et al., 2018), the GNP (Cobián-Rojas et al., 2016; 2018a, b), the PFNP
- 434 (del Río et al., 2022), Jardines de la Reina National Park (Pina-Amargós et al., 2012; 2021).
- In such cases, should be noted that all these represent recreational diving sites, an activity

- that depends considerably on the attractiveness of the fauna and the ecosystem as a whole.
- Therefore, the need for adequate control of this invader in these areas is evident, to avoid
- 438 damaging the ecosystems vital for tourism and thereby affecting the economy. The concern
- 439 generated in this regard has prompted studies aimed at evaluating the impact of lionfish and
- 440 the establishment of effective control strategies in some of these affected areas (Labastida et
- 441 al., 2015; Cobián-Rojas et al., 2016; Pantoja et al., 2017; Cobián-Rojas et al., 2018 a, b; del
- 442 Río et al., 2022).

# 8. Control of lionfish populations

- 444 Since the beginning of the invasion, the potential impact of this IAS has aroused the interest
- 445 of researchers in detecting possible natural drivers of their populations. In the Caribbean,
- 446 lionfish have been found in the stomachs of large groupers (Maljkovic and Van Leeuwen,
- 447 2008; Mumby et al., 2011; Côté and Smith, 2018), which highlights the possibility that
- 448 groupers can act as a biological controller of this IAS. In a recent study of Dahl and Patterson
- 449 (2020), lionfish were tracked using an acoustic system on artificial reefs, and strong evidence
- 450 regarding lionfish predation was obtained pointed to sharks or large groupers as predators,
- since several species have been observed in the area.
- 452 Mumby et al. (2011) detected evidence of the probable predation of lionfish by groupers.
- 453 However, the overfishing of groupers (Whitfield et al., 2006) and predation during their
- 454 juvenile stages by lionfish (Morris and Akins, 2009; Villaseñor-Derbez and Herrera-Pérez,
- 455 2014), hinder their effective participation as natural control in the Caribbean. In subsequent
- 456 studies carried out in Cuba, Bahamas, Belize, Mexico and Colombia no evidence of predation
- by potential predators (i.e., groupers and snappers), has been observed (Valdivia et al., 2014;
- 458 Cobián-Rojas et al., 2018b; Rojas-Vélez et al., 2019). Additionally, in a recent study, the
- 459 stomach contents of more than 200 groupers of five species were analyzed, and the presence
- 460 of lionfish was not observed among their prey (Smith and Côté, 2021). Such results suggest
- 461 that the invasion of lionfish cannot be controlled by its potential predators, even when the
- latter can show a relatively high biomass, e.g., average biomasses of 7.6 g m<sup>-2</sup> in Caribbean
- reefs (Valdivia et al., 2014) and 20.0 g m<sup>-2</sup> in Exuma reefs (Bahamas) (Mumby et al., 2011).
- 464 In the absence of effective natural control over lionfish in the Caribbean and western Atlantic,
- 465 the development of management plans targeting these species has become a necessity.
- 466 Lionfish extractions are of great importance as a control strategy, since it has been observed

that they can decrease their density, and therefore, the potential impact over native prey fishes 467 468 and overthe most vulnerable components of the ecosystem (Frazer et al., 2012; Côté et al., 2014; Samhouri and Stier, 2021). In addition to density, lionfish sizes have decreased in 469 470 response to this strategy in various regions within the invaded area, e.g., Bonaire, USA, 471 Bahamas, Cayman Islands, Cuba and Mexico (Frazer et al., 2012; Akins, 2013; Cobián-Rojas 472 et al., 2018a, b). The success of removals could be significantly increased if coordinated removal programs are carried out in connected areas (Díaz-Ferguson and Hunter, 2019). 473 Cuba is a key exporter of lionfish larvae, so it should be a prime target for lionfish control 474 475 efforts, and therefore a primary location to implement a comprehensive lionfish culling program (Johnston and Purkis, 2015). Periodic lionfish captures have been carried out in 476 Cuban MPAs, as is the case of the GNP and the PFNP. In a recent study in the PFNP, the 477 478 average size of lionfish tended to decrease over time, evidencing the effectiveness of 479 systematic extractions performed in the area (del Río et al., 2022). For instance, after the largest extraction of lionfish during that study (226 individuals, average length: 259.52 mm), 480 a notable decrease was observed in the average lengths of the specimens (210.63 mm), which 481 is attributed precisely to the effect of these catches (del Río et al., 2022). In GNP the 482 483 International Lionfish Fishing Tournament is held annually, unique of this kind in Cuba. To 484 date, five tournaments have been held, which are focused on controlling lionfish through mass catches by divers from local communities, national and foreign professional divers; at 485 486 the time that is promoted the species consumption by local communities. In the framework 487 of these events, 660 lionfish individuals have been caught in the modality of free diving and 488 autonomous diving, with the participation of 103 fishermen (Cobián-Rojas, pers. comm., GNP, Pinar del Río, Cuba). The catches show a tendency towards the decline of the species 489 in a period of five years in GNP. However, these massive captures have been made in a small 490 sector of this area (less than 10% of the total area), and although they are also captured in the 491 492 framework of other activities such as scientific expeditions and guided dives carried out by the International Diving Center María la Gorda, it is considered that the control of this 493 invader is insufficient in the GNP. Far from diminishing the importance of the tournaments, 494 this is an example of systematic control of invasive species and contributes directly to the 495 496 conservation of the coral reefs in GNP and the region. Importantly, in other Cuban areas

submarine fisheries (Chevalier-Monteagudo et al., 2013). 498 9. Uses of lionfish 499 500 Although the lionfish is seen as a negative component in invaded ecosystems, even for human being, it can provide some benefits. They can be used as food, as biomonitoring species of 501 502 contamination, in aquariums, handycrafts and for obtaining drugs. Besides it can represent 503 an additional tourist attraction during recreational diving, although this is debatable 504 (Whitfield et al., 2002; Sri Balasubashini et al., 2006 a, b; Chel-Guerrero et al., 2020; Van den Hurk et al., 2020). 505 The use of lionfish as food constitutes an alternative that could contribute to reducing its 506 density in the western Atlantic and the Caribbean. In Cuba, lionfish is recognized as an edible 507 species and is consumed daily in coastal communities (Chevalier-Monteagudo et al., 2013). 508 Educating people about the environmental problems that this invader can cause and its 509 possible use as food, can favor a possible market for lionfish meat (Simnitt et al., 2020; 510 Blakeway et al., 2021). If demand is sufficient, lionfish populations could be reduced to 511 512 levels that allow the restoration of native ecosystems. For these reasons, evaluating the benefits of its consumption should be a priority in new researches. 513 In this regard, has been evidenced that proteins and peptides obtained from lionfish muscle 514 515 has a high quality, due to their amino acid composition (Chel-Guerrero et al., 2020). 516 Additionally, it provides a potential source of antioxidants and chelators, with higher values 517 than those obtained in other species of high demand in human consumption (e.g. Salmo salar, Onchorhynchus kisutch, Theragra chalco-gramma, Rhopilema esculentum) (Nakajima et al., 518 519 2009; Zhuang et al., 2010; Girgih et al., 2013; Guo, 2015; Chel-Guerrero et al., 2020). The possible accumulation of contaminants in the lionfish musculature is a concern when 520 521 promoting their use as food. However, a recent study analyzed the presence of 16 rare earth 522 elements and traces of 23 elements in the muscles of a lionfish from Cuba (Squadrone et al., 2020). The results obtained show that lionfish meat is safe and valuable as a source of protein 523 and minerals for the local population. 524 Substances with possible pharmacological use can be obtained from lionfish. The venom 525 526 contained in their spines produces reversible changes in the blood and vital organs of mice,

and contains many bioactive substances that bind with high affinity to physiological targets

(non-marine protected areas), lionfish populations have decreased likely as result of

497

527

Eliminado: non marine

Comentado [MOU21]: lionfish meat and even the skin, has a high level of protein and fatty acids, so its consumption is highly recommended and with it, control populations Castro-González et al., 2019 http://lajar.ucv.cl/index.php/rlajar/article/view/vol47-issue5-fulltext-13/1112

and could be used for therapeutic purposes (Sri Balasubashini et al., 2006b). Besides it has 529 been shown to have antitumoral, hepatoprotective and antimetastatic effects in mice with 530 Ehrlich's ascites carcinoma (Sri Balasubashini et al., 2006a), which suggests the possibility 531 of its use in the development of drugs for the cancer treatment. Additionally, proteins and 532 peptides obtained from lionfish muscle with an iron chelating activity greater than 50%, can 533 534 be used for the treatment of diseases characterized by a high accumulation of iron (e.g., 535 thalassemia major, sickle cell anemia, myelodysplastic syndromes or different subtypes of 536 congenital anemias) (Villegas, 2006; Chel-Guerrero et al., 2020). Recently, the use of lionfish has also been proposed in the biomonitoring of oil spills in coral 537 reef ecosystems (Van den Hurk et al., 2020). Its use for these purposes has the advantage 538 539 that, being an invasive species, there are no restrictions on its capture. The proper management of lionfish as a generator of such benefits may be possible, and 540 importantly, it could represent a profitable and efficient tool in the control of their populations 541 542 in the western Atlantic and the Caribbean. New studies are required to provide the necessary knowledge to ensure maximum use of this invasive fish. These elements reflect that, in 543 contrast to its multiple potentially negative effects, the lionfish could be considered a species 544 545 that generates notable ecological and socioeconomic benefits. 546

# 10. Final considerations

547 548

549

550

551

552

553

554

555

556

557

558

559

Considering other reviews articles, which have been focused on the analysis of scientific publications per topic and year, we provide a current view over the well-known lionfish as a marine successful invasor. Importantly, we put in this context the information regarding lionfish in Cuban waters, enriching the background knowledge, giving a novel and relevant information.

Summarizing, the lionfish invasion in the Atlantic Ocean and the Caribbean Sea constitutes a major concern for the scientific community and marine protected area managers, since its colonization capacity and the speed with which it has spread, make it a potential threat for the integrity of invaded ecosystems. This concern has been reflected on the wide range of scientific publications, focused on diverse topics of lionfish in the invaded area, which is notable when compared with those from its native distribution (Fig. 5; Table S1). Lionfish is a new predator with the potential to affect negatively populations of native organisms, by direct predation or by competition for trophic resources. This invader has numerous

Comentado [MOU22]: It is a highly debatable comment, every invasive species tends more to bring negative effects than favorable ones.

morphological and behavioral characteristics that ensure its success in a wide variety of 560 habitats. Since the beginning of the invasion, several studies have been carried out that allow 561 the evaluation of its impact in different regions within the invaded area. However, 562 563 contradictory results have been obtained, which generate the current controversy: is lionfish so dangerous, or do the affected ecosystems return to a new state of equilibrium even with 564 565 the presence of this invader? It is therefore necessary to carry out new studies to expand 566 current knowledge about the abundance and distribution of lionfish in invaded ecosystems, its impact on them, the composition of their diet and the state of the main affected species. 567 New research should cover broader time scales, enabling a more complete analysis of its 568 impact on native species and ecosystems. The knowledge generated will increase the 569 efficiency of the control and management plans in the invaded areas. These plans should 570 include the development of environmental education programs aimed at the entire 571 population, mainly those living in coastal communities, as well as actions that promote 572 fishing and the consumption of lionfish. New investigations directed to the use of this species, 573 expand the possibilities of management and the implementation of its potential benefits. 574

Comentado [MOU23]: Since it is not now news and the species in fashion, now the massive arrival of sargassum in the Caribbean is in the spotlight, the funds for lionfish studies are less, scarce or do not exist and this makes it difficult to generate current information and that of proposals to respond to the huge problem that remains

#### 575 Acknowledgments

- 576 Thanks to Davier Ojeda for their technical assistance in drawing the diagram, and also to
- Alejandro Camejo for reviewing the English of the manuscript. 577

#### **Literature Cited**

578

587

588

Agudo, E.A., and E. Klein Salas. 2014. Lionfish abundance, size structure and spatial 579 580 distribution along the Venezuelan coast (*Pterois volitans*, Pteroinae: Scorpaenidae). Rev. 581 62 151-158. Trop. (3): http://www.scielo.sa.cr/scielo.php?script=sci\_arttext&pid=S0034-582 77442014000700025&lng=en&nrm=iso 583 Aguilar-Medrano, R., and Ma.E. Vega-Cendejas. 2020. Size, weight, and diet of the invasive 584 585 lionfish Pterois volitans (Linnaeus, 1758) on the southern coast of Veracruz, Gulf of Mexico. Ciencias Marinas 46(1):57–64. https://doi.org/10.7773/cm.v46i1.3012. 586

Ahrenholz, D.W., and J.A. Morris. 2010. Larval duration of the lionfish, Pterois volitans along the Bahamian Archipelago. Environ. Biol. Fishes. 88(4): 305-309. https://doi.org/10.1007/s10641-010-9647-4

589 Akins, J.L. 2013. Estrategias de control: herramientas y técnicas de control local. In: J.A. 590 591 Morris Jr., ed. El pez león invasor: guía para su control y manejo. GCFI Special Publication Series Number 2, Marathon, Florida, USA. p. 27-58. http://www.gcfi.org 592

Albins, M.A., and M.A. Hixon. 2008. Invasive Indo-Pacific lionfish Pterois volitans reduce 593 594 recruitment of Atlantic coral-reef fishes. Mar. Ecol. Prog. Ser. 367: 233-238.

https://doi.org/10.3354/meps07620 595

Con formato: Inglés (americano)

- Albins, M.A., and M.A Hixon. 2011. Worst case scenario: potential long-term effects of invasive predatory lionfish (*Pterois volitans*) on Atlantic and Caribbean coral-reef communities. Environ. Biol. Fishes. doi: 10.1007/s10641-011-9795-1.
- Albins, M.A., and P.J. Lyons. 2012. Invasive red lionfish *Pterois volitans* blow directed jets of water at prey fish. Mar. Ecol. Prog. Ser. 448: 1-5. https://doi.org/10.3354/meps09580
- Albins, M.A. 2013. Effects of invasive Pacific red lionfish *Pterois volitans* versus a native predator on Bahamian coral-reef fish communities. Biol Invasions. 15: 29–43. https://doi.org/10.1007/s10530-012-0266-1

605

606

- Anderson, L.G., J.K. Chapman, D. Escontrela, and Ch.L.A. Gough. 2017. The role of conservation volunteers in the detection, monitoring and management of invasive alien lionfish. Management of Biological Invasions 8(4): 589–598. https://doi.org/10.3391/mbi.2017.8.4.14
- Andradi-Brown D.A., M.J.A. Vermeij, M. Slattery, M. Lesser, I. Bejarano, R. Appeldoorn,
   G. Goodbody-Gringley, A.D. Chequer, J.M. Pitt, C. Eddy, S.R. Smith, E. Brokovich, H.T.
   Pinheiro, M.E. Jessup, B. Shepherd, L.A. Rocha, J. Curtis-Quick, G. Eyal, T.J. Noyes,
   A.D. Rogers, and D.A. Exton. 2017. Large-scale invasion of western Atlantic mesophotic
   reefs by lionfish potentially undermines culling-based management. Biol Invasions.
   19:939-954. https://doi.org/10.1007/s10530-016-1358-0
- Andradi-Brown, D.A. 2019. Invasive Lionfish (*Pterois volitans* and *P. miles*): Distribution,
   Impact, and Management. In: Loya, Y., K.A. Puglise, T.C.L. Bridge, eds. Mesophotic
   Coral Ecosystems, Coral Reefs of the World 12, Springer Nature Switzerland AG. p: 931 341.
- Anton, A., M.S. Simpson, and I. Vu. 2014. Environmental and Biotic Correlates to Lionfish Invasion Success in Bahamian Coral Reefs. PLoS ONE 9(9): e106229. doi:10.1371/journal.pone.0106229.
- Arredondo-Chávez, A.T., J.A. Sánchez-Jimenez, O.G. Ávila-Morales, P. Torres-Chávez, Y. 621 Herrerias-Diego, M. Medina-Nava, X. Madrigal-Guridi, A. Campos-Mendoza, O. 622 Domínguez-Domínguez, and J.A. Caballero-Vázquez. 2016. Spatio-temporal variation in 623 the diet composition of red lionfish, *Pterois volitans* (Actinopterygii: Scorpaeniformes: 624 625 Scorpaenidae), in the Mexican Caribbean: insights into the ecological effect of the alien 626 invasion. Acta Ichthyologica et Piscatoria. 46 (3): 185–200. 10.3750/AIP2016.46.3.03 627
- Baker, A.C., P.W. Glynn, and B. Riegl. 2008. Climate change and coral reef bleaching: An
   ecological assessment of long-term impacts, recovery trends and future outlook.
   Estuarine. Coastal and Shelf Science 80: 435–471.
   https://doi.org/10.1016/j.ecss.2008.09.003
- Ballew, N.G., N.M Bacheler, G.T. Kellison, and A.M. Schueller. 2016. Invasive lionfish
   reduce native fish abundance on a regional scale. Scientific Reports 6: 32169.
   https://doi.org/10.1038/srep32169
- Barbour, A.B., M.S. Allen, T.K. Frazer, and K.D. Sherman. 2011. Evaluating the Potential
   Efficacy of Invasive Lionfish (*Pterois volitans*) Removals. PLoS ONE 6(5).
   https://doi.org/10.1371/journal.pone.0019666
- Bax N., A. Williamson, M. Aguero, E. Gonzalez, and W. Geeves. 2003. Marine invasive
   alien species: a threat to global biodiversity. Marine Policy 27: 313–323.
   https://doi.org/10.1016/S0308-597X(03)00041-1
- Bellard C., P. Cassey, and T.M. Blackburn. 2016. Alien species as a driver of recent extinctions. Biol. Lett. 12: 20150623. http://dx.doi.org/10.1098/rsbl.2015.0623

- Berchtold, A.E., and I.M. Côté. 2020. Effect of early exposure to predation on risk perception
   and survival of fish exposed to a non-native predator. Animal Behaviour.
   ttps://doi.org/10.1016/j.anbehav.2020.02.013
- Betancur-R, R., A.P. Hines, A. Acero, G. Ortí, A.E. Wilbur, and D.W. Freshwater. 2011.
   Reconstructing the lionfish invasion: insights into Greater Caribbean biogeography.
   Journal of Biogeography. 38: 1281–1293
   https://www.researchgate.net/publication/229988897.
- Blackburn T.M., F. Essl, T. Evans, P.E. Hulme, J.M. Jeschke, I. Kuhn, S. Kumschick, Z. 650 Markova, A. Mrugała, W. Nentwig, J. Pergl, P. Pysek, W. Rabitsch, A. Ricciardi, D.M. 651 652 Richardson, A. Sendek, M. Vila, J.R.U. Wilson, M. Winter, P. Genovesi, and S. Bacher. 2014. A Unified Classification of Alien Species Based on the Magnitude of their 653 Environmental Impacts. **PLoS** Biol 12(5): e1001850. 654 https://doi.org/10.1371/journal.pbio.1001850 655
- Blakeway, R.D., A.D. Ross, and G.A. Jones. 2021. Insights from a Survey of Texas Gulf
   Coast Residents on the Social Factors Contributing to Willingness to Consume and
   Purchase Lionfish. Sustainability 13: 9621. https://doi.org/10.3390/ su13179621
- Bruno, J.F., I.M. Côté, and L.T. Toth. 2019. Climate change, coral loss, and the curious case
   of the parrotfish paradigm: why don't marine protected areas improve reef resilience?
   Annual Review of Marine Science 11: 307-334. doi: 10.1146/annurev-marine-010318-095300
- Burford Reiskind M.O., E.M.X. Reed, A. Elias, J.J. Giacomini, A.F. McNear, J. Nieuwsma,
   G.A. Parker, R.B. Roberts, R.E. Rossi, C.N. Stephenson, J.L. Stevens, B.E. Williams.
   2019. The genomics of invasion: characterization of red lionfish (*Pterois volitans*)
   populations from the native and introduced Ranges. Biol Invasions.
   https://doi.org/10.1007/s10530-019-01992-0.
- Bustos-Montes, D., M. Wolff, A. Sanjuan-Muñoz, and A. Acero. 2020. Growth parameters
   of the invasive lionfish (*Pterois volitans*) in the Colombian Caribbean. Regional Studies
   in Marine Science. https://doi.org/10.1016/j.rsma.2020.101362.
  - Chel-Guerrero, L., D. Cua-Aguayo, D. Betancur-Ancona, A. Chuc-Koyoc, I. Aranda-González, and S. Gallegos-Tintoré. 2020. Antioxidant and chelating activities from Lionfish (*Pterois volitans* L.) muscle protein hydrolysates produced by in vitro digestion using pepsin and pancreatin. Emir. J. Food Agric. 32(1): 62-72. https://doi.org/10.9755/ejfa.2020.v32.i1.2060
- Chen, Ch., K. Shao, and Y. Tu. 2004. Effect of thermal discharges on the Fish assemblages
   of a nuclear power Plant in northern Taiwan. Journal of Marine Science and Technology
   12(5): 404-410. doi: 10.51400/2709-6998.2261.
- 679 https://jmstt.ntou.edu.tw/journal/vol12/iss5/6

673

674

- Chevalier-Monteagudo, P.P. 2017. Efecto de las poblaciones de *Pterois volitans* (Pisces:
   Scorpaenidae) sobre sus principales presas y competidores entre los peces de arrecifes en
   varias localidades en Cuba. Ph.D. thesis. Acuario Nacional de Cuba, La Habana, Cuba.
   117 p.
- Chevalier-Monteagudo, P.P., E. Gutiérrez, D. Ibarzabal, S. Romero, V. Isla, E. Hernández.
   2008. Primer registro de *Pterois volitans* (Pisces: Scorpaenidae) para aguas cubanas.
   Solenodon 7: 37-40.
- Chevalier-Monteagudo, P.P., E. Cabrera, H. Caballero, R.I. Corrada, A. Fernández, D.
   Cobián, A. García. 2014. Distribución, Abundancia y Relaciones Ecológicas del Pez León
   (Pterois volitans/miles: Scorpaenidae) en Cuba. GCFI 66: 178-179.

- Claydon, A.J.B., M.C. Calosso, and S.B. Traiger. 2012. Progression of invasive lionfish in
   seagrass, mangrove and reef habitats. Mar. Ecol. Prog. Ser. 448: 119-129.
   https://doi.org/10.3354/meps09534
- Cobián-Rojas, D., P.P. Chevalier- Monteagudo, J.J. Schimitter-Soto, R.I. Corrada- Wong, H.
   Salvat-Torres, E. Cabrera-Sansón, A. García-Rodríguez, A. Fernández-Osorio, L.
   Espinosa-Pantoja, D. Cabrera-Guerra, L.M. Pantoja-Echevaria, H. Caballero-Aragón, and
   S. Perera-Valderrama. 2016. Density, size, biomass, and diet of lionfish in
   Guanahacabibes National Park, western Cuba. Aquatic Biology 24: 219-226.
   https://doi.org/10.3354/ab00651
- Cobián-Rojas, D., J.J. Schmitter-Soto, A. Aguilar-Perera, C.M. Aguilar, M.Á. Ruiz-Zárate,
   G. González, P.P. Chevalier, A. García, R. Herrera, S. Perera, H. Caballero, E. Guardia.
   2018a. Diversidad de las comunidades de peces en dos áreas marinas protegidas del Caribe
   y su relación con el pez león. Rev. Biol. Trop. 66(1): 189-203.
   http://dx.doi.org/10.15517/rbt.v66i1.28197
- Cobián-Rojas, D., J.J. Schmitter-Soto, C.M.A. Betancourt, A. Aguilar-Perera, M.Á. Ruiz-Zárate, G. González-Sansón, P.P. Chevalier, R. Herrera, A. García, R.I. Corrada, D.
   Cabrera, H. Salvat, and S. Perera. 2018b. The community diversity of two Caribbean MPAs invaded by lionfish does not support the biotic resistance hypothesis. Journal of Sea Research 134: 26-33. https://doi.org/10.1016/j.seares.2018.01.004
- Cobián-Rojas, D., Z.M. Navarro-Martínez, A.D. García-Rodríguez, P.P. Chevalier Monteagudo, P. Drummond, S. Farrington, and J.K. Reed. 2021. Characterization of fish
   communities in mesophotic reefs of Cuba. Bull. Mar. Sci. 97(3):443–472.
   https://doi.org/10.5343/bms.2020.0067
- Cohen, A.S., and A.J. Olek. 1989. An extract of lionfish (*Pterois volitans*) spine tissue contains acethylcholine and a toxin that affects neuromuscular-transmission. Toxicon 27(12): 1367-1376. https://doi.org/10.1016/0041-0101(89)90068-8
- 716 Côté, I.M., and A. Maljkovic. 2010. Predation rates of Indo-Pacific lionfish on Bahamian 717 coral reefs. Mar. Ecol. Prog. Ser. 404: 219-225. https://doi.org/10.3354/meps08458
- Côté, I. M., Green, S. J., Hixon, M. A. 2013. Predatory fish invaders: insights from Indo Pacific lionfish in the western Atlantic and Caribbean. Biological Conservation, 164, 50 doi: 10.1016/j.biocon.2013.04.014
- Côté, I.M., L. Akins, E. Underwood, J. Curtis-Quick, and S.J. Green. 2014. Setting the record
   straight on invasive lionfish control: Culling works. Peerj. http://dx.doi.org/10.7287
   /peerj.preprints.398v1.
- Côté, I.M., and N.S. Smith. 2018. The lionfish *Pterois* sp. invasion: Has the worst-case
   scenario come to pass? Journal of Fish Biology 92: 660-689.
   https://doi.org/10.1111/jfb.13544
- 727 Courtenay, W.J. 1995. Marine fish introductions in southeastern Florida. American Fisheries 728 Society Introduced Fish Section Newsletter 14: 2-3. Citado por Morris y Akins (2009).
- Cruz-López, C., A. Sanz-Ochotorena, Y. Rodríguez-Gómez, R. Lara-Martínez, M. de L.
   Segura-Valdéz, L.F. Jiménez-García. 2020. Morfología de las gónadas maduras del pez
   león (*Pterois volitans*: Pisces, Scorpaenidae) en el litoral oeste de La Habana. Rev. Invest.
   Mar. 40 (2): 26-42.
- Cure, K., C.E. Benkwitt, T.L. Kindinger, E.A. Pickering, T.J. Pusack, J.L. Mcilwain, and M.
   Hixon. 2012. Comparative behavior of red lionfish *Pterois volitans* on native Pacific versus invaded Atlantic coral reefs. Mar. Ecol. Prog. Ser. 467: 181-192. https://doi.org/10.3354/meps09942

- Curtis, J.S., K.R. Wall, M.A. Albins, and C.D. Stallings. 2017. Diet shifts in a native 737 mesopredator across a range of invasive lionfish biomass. Mar. Ecol. Prog. Ser. 573: 215-738 739 228. https://doi.org/10.3354/meps12164
- Dahl, K.A., and W.F. Patterson. 2020. Movement, home range, and depredation of invasive 740 741 lionfish revealed by fine-scale acoustic telemetry in the northern Gulf of Mexico. Mar Biol 167: 1-22. https://doi.org/10.1007/s00227-020-03728-4 742
- 743 Dahl, K.A., W.F. Patterson III, A. Robertson, and A.C. Ortmann. 2017. DNA barcoding significantly improves resolution of invasive lionfish diet in the northern Gulf of Mexico. 744 745 Biol Invasions. doi: 10.1007/s10530-017-1407-3.

747

748

752

754

755 756

757

758 759

760

761

762 763

- Dahl, K.A., and W.F. Patterson III. 2014. Habitat-specific density and diet of rapidly expanding invasive red lionfish, Pterois volitans, populations in the Northern Gulf of Mexico. PLoS ONE 9(8): e105852. doi: 10.1371/journal.pone.0105852.
- Dahl, K.A., M.A. Edwards, and W.F. Patterson III. 2019. Density-dependent condition and 749 750 growth of invasive lionfish in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 623: 145-159. https://doi.org/10.3354/meps13028 751
- Darling, E.S., S.J. Green, J.K. O'Leary, and I.M. Côté. 2011. Indo-Pacific lionfish are larger 753 and more abundant on invaded reefs: a comparison of Kenyan and Bahamian lionfish populations. Biol Invasions 13: 2045–2051. https://doi.org/10.1007/s10530-011-0020-0
  - De León, R., K. Vane, P. Bertuol, V.C. Chamberland, F. Simal, E. Imms, M.J.A. Vermeij. 2013. Effectiveness of lionfish removal efforts in the southern Caribbean. Endang Species Res. 22: 175-182. https://doi.org/10.3354/esr00542
  - del Río, L., Z.M. Navarro-Martínez, A. Ruiz-Abierno, P.P. Chevalier-Monteagudo, J.A. Angulo-Valdes, L. Rodriguez-Viera. 2022. Feeding ecology of invasive lionfish in the Punta Frances MPA, Cuba: insight into morphological features, diet and management. PeerJ 10:e14250 doi: 10.7717/peerj.14250
  - Díaz-Ferguson, E.E., and M.E. Hunter. 2019. Life history, genetics, range expansion and new frontiers of the lionfish (Pterois volitans, Perciformes: Pteroidae) in Latin America. Regional Studies in Marine Science 31: 1–6. https://doi.org/10.1016/j.rsma.2019.100793
- Eakin, C.M., H.P.A. Sweatman, and R.E. Brainard. 2019. The 2014–2017 global-scale coral 766 bleaching event: insights and impacts. Coral Reefs. doi: 10.1007/s00338-019-01844-2
- 767 Eaton, L., K.A. Sloman, R.W. Wilson, A.B. Gill, A.R. Harborne. 2016. Non-consumptive effects of native and invasive predators on juvenile Caribbean parrotfish. Environ. Biol. 768 Fishes. 99 (5): 499-508. https://doi.org/10.1007/s10641-016-0486-9 769
- 770 Eddy, C., J.M. Pitt, J. Larkum, M.A. Altabet, and D. Bernal. 2020. Stable Isotope Ecology of Invasive Lionfish (Pterois volitans and P. miles) in Bermuda. Front. Mar. Sci.7: 435. 771 772 doi: 10.3389/fmars.2020.00435
- Edwards, M.A., T.K. Frazer, and C.A. Jacoby. 2014. Age and growth of invasive lionfish 773 774 (Pterois spp.) in the Caribbean Sea, with implications for management. Bull. Mar. Sci. 90(4): 953–966. http://dx.doi.org/10.5343/bms.2014.1022 775
- 776 Elise, S., I. Urbina-Barreto, H. Boadas-Gil, M. Galindo-Vivas, and M. Kulbicki. 2014. No 777 detectable effect of lionfish (Pterois volitans and P. miles) invasion on a healthy reef fish assemblage in Archipelago Los Roques National Park, Venezuela. Mar Biol. doi: 778 779 10.1007/s00227-014-2571-y
- Fabricius, K.E. 2005. Effects of terrestrial runoff on the ecology of corals and coral reefs: 780 review 781 and synthesis. Marine Pollution Bulletin 50:125-146. https://doi.org/10.1016/j.marpolbul.2004.11.028 782

- Ferreira, C.E.L., O.J. Luiz, S.R. Floeter, M.B. Lucena, M.C. Barbosa, C.R. Rocha, L.A.
   Rocha. 2015. First Record of Invasive Lionfish (*Pterois volitans*) for the Brazilian Coast.
   PLoS ONE 10(4): 1-5. https://doi.org/10.1371/journal.pone.0123002
- Fishelson, L. 1997. Experiments and observations on food consumption, growth and
   starvation in *Dendrochirus brachypterus* and *Pterois volitans* (Pteroinae, Scorpaenidae).
   Environ. Biol. Fishes. 50: 391-403. https://doi.org/10.1023/A:1007331304122
- Frazer, T.K., Ch.A. Jacoby, M.A. Edwards, S.C. Barry, and C.M. Manfrino. 2012. Coping
   with the Lionfish Invasion: Can Targeted Removals Yield Beneficial Effects? Reviews in
   Fisheries Science. 20 (4): 185-191. https://doi.org/10.1080/10641262.2012.700655
  - Froese, R., and D. Pauly. 2019. FishBase. World Wide Web electronic publication. www.fishbase.org, version (10/2019).
- García, A. 2015. Principales relaciones ecológicas del pez león (*Pterois volitans/miles*) en
   arrecifes de La Habana, Cuba. M.Sc. thesis. Universidad de La Habana, La Habana, Cuba.
   57 p.

793

797 798

799

800

801 802

803

804 805

806

807

808 809

810

- Gardner, P.G., T.K. Frazer, C.A. Jacoby, and R.P.E. Yanong. 2015. Reproductive biology of invasive lionfish (*Pterois* spp.). Front. Mar. Sci.2(7): 1-10. https://doi.org/10.3389/fmars.2015.00007
- Girgih, A.T., C.C. Udenigwe, F.M. Hasan, T.A. Gill, and R.E. Aluko. 2013. Antioxidant properties of salmon (*Salmo salar*) protein hydrolysate and peptide fractions isolated by reverse-phase HPLC. Food Res. Int. 52: 315-322. https://doi.org/10.1016/j.foodres.2013.03.034
- Golani, D., and O. Sonin. 1992. New records of the Red Sea Fishes, *Pterois miles* (Scorpaenidae) and *Pteragogus pelycus* (Labridae) from the eastern Mediterranean Sea. Japanese Journal of Ichthyology 39: 167–169. https://doi.org/10.11369/jji1950.39.167
- Goodbody-Gringley, G., C. Eddy, J.M. Pitt, A.D. Chequer, and S.R. Smith. 2019. Ecological Drivers of Invasive Lionfish (*Pterois volitans* and *Pterois miles*) Distribution Across Mesophotic Reefs in Bermuda. Front. Mar. Sci. 6:258. https://doi.org/10.3389/fmars.2019.00258
- Green, S. J., and I. M. Côté. 2009. Record densities of Indo-Pacific lionfish on Bahamian
   coral reefs. Coral Reefs. 28 (107). doi: 10.1007/s00338-008-0446-8
- Green, S.J., J.L. Akins, A. Maljkovi'c, and I.M. Côté. 2012. Invasive Lionfish Drive Atlantic
   Coral Reef Fish Declines. PLoS One 7 (3): e32596. doi:10.1371/journal.pone.0032596
  - Green, S.J., and I.M. Côté. 2008. Record densities of Indo-Pacific lionfish on Bahamian coral reefs. Coral Reefs. 28: 107. doi: 10.1007/s00338-008-0446-8
- 817 Green, S.J., and I.M. Côté. 2010. Consumption potential of invasive lionfish (*Pterois volitans*) on Caribbean coral reefs. GCFI 62: 358-359.
- Green, S.J., J.L. Akins, and I.M. Côté. 2011. Foraging behavior and prey consumption in the
   Indo-Pacific lionfish on Bahamian coral reefs. Mar. Ecol. Prog. Ser. 433: 159-167.
   https://doi.org/10.3354/meps09208
- Guardia, E.d.l., D.C. Rojas, L. Espinosa, Z. Hernández, L. García, and J.E.A. González.
   2017. Distribución y abundancia del pez león *Pterois volitans* (Scorpaeniformes:
   Scorpaenidae) y especies nativas asociadas en el Parque Marino Cayos de San Felipe,
   Cuba. Rev. Biol. Trop. 65 (1): 117-125.
- Guerrero, K.A., and L.A. Franco. 2008. First record of the Indo-Pacifica red lionfish *Pterois volitans* (Linnaeus, 1758) for the Dominican Republic. Aquatic Invasions 3(2): 267-268.
   doi: 10.3391/ai.2008.3.2.21

- Guo, L., P.A. Harnedy, L. Zhang, B. Li, Z. Zhang, H. Hou, X. Zhao, and R.J. Fitzgerald.
   2015. *In vitro* assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. J. Sci. Food Agric. 95: 1514-1520. https://doi.org/10.1002/jsfa.6854
- Hackerott, S., A. Valdivia, S.J Green, I.M. Côté, C.E. Cox, L. Akins, C.A. Layman, W.F.
   Precht, J.F. Bruno. 2013. Native Predators Do Not Influence Invasion Success of Pacific
   Lionfish on Caribbean. Reefs. PLoS ONE 8(7): e68259.
   doi:10.1371/journal.pone.0068259.
- Harris H.E., W.F. Patterson III, R.N.M. Ahrens, and M.S. Allen. 2019. Detection and
   removal efficiency of invasive lionfish in the northern Gulf of Mexico. Fisheries Research
   213: 22–32. https://doi.org/10.1016/j.fishres.2019.01.002
- Hunt, C.L., D.A Andradi-Brown, C.J.Hudson, J. Bennett-Williams, F. Noades, J. Curtis-Quick, O.T. Lewis, and D.A. Exton. 2020. Shelter use interactions of invasive lionfish with commercially and ecologically important native invertebrates on Caribbean coral reefs. PloS ONE 15(8), e0236200. https://doi.org/10.1371/journal.pone.0236200

846

847 848

859

860

861 862

866

867

868

- Jackson, J., M. Donovan, K. Cramer, and V. Lam. 2014. Status and trends of Caribbean coral reefs: 1970-2012: Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland.
- Kindinger, K.L., and M.A. Albins. 2017. Consumptive and non-consumptive effects of an invasive marine predator on native coral-reef herbivores. Biol Invasions 19: 131–146. https://doi.org/10.1007/s10530-016-1268-1
- Kulbicki, M., J. Bates, P. Chabanet, K. Cure, E. Darling, S.R. Floeter, R. Galzin, A. Green,
  M. Harmelin-Viruen, M. Hixon, Y. Letourneur, T. Lison de Loma, McClonahan, J.
  McIlwain, G. Moutham, R. Myers, J.K. O'Leary, S. Planes, L. Vigliola, and L. Wantiez.
  2012. Distributions of Indo-Pacific lionfish *Pterois* spp. in their native ranges:
  implications for the Atlantic Invasion. Mar. Ecol. Prog. Ser. 446: 189- 205.
  https://doi.org/10.3354/meps09442
- Labastida, E., D. Cobián, Y. Hénaut, M.C. García-Rivas, P.P. Chevalier, and S. Machkour M´Rabet. 2015. The use of ISSR markers for species determination and a genetic study of
   the invasive lionfish in Guanahacabibes, Cuba. Latin American Journal of Aquatic
   Research 43(5): 1011-1018. https://doi.org/10.3856/vol43-issue5-fulltext-21
  - Lesser, M.P., and M. Slattery. 2011. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (*Pterois volitans*) invasion on a Bahamian coral reef. Biol Invasions 13: 1855–1868. Citado por Côté y Smith (2018). https://doi.org/10.1007/s10530-011-0005-z
- Loya, Y., and E. Kramarsky-Winter. 2003. *In situ* eutrophication caused by fish farms in the
   northern Gulf of Eilat (Aqaba) is beneficial for its coral reefs: a critique. Mar. Ecol. Prog.
   Ser. 261: 299–303.
  - Luiz, O.J., W.C.R. dos Santos, A.P. Marceniuk, L.A. Rocha, S.R. Floeter, C.E. Buck, A.G.C.M. de Klautau, and C.E.L. Ferreira. 2021. Multiple lionfish (Pterois spp.) new occurrences along the Brazilian coast confirm the invasion pathway into the Southwestern Atlantic. Biol Invasions. https://doi.org/10.1007/s10530-021-02575-8
- Maljkovic, A., and T.E. Van Leeuwen. 2008. Predation on the invasive red lionfish, *Pterois volitans* (Pisces: Scorpaenidae), by native groupers in the Bahamas. Coral Reefs 27 (501).
   https://doi.org/10.1007/s00338-008-0372-9
- Marshak, A.R., K.L. Heck Jr, and Z.R. Jud. 2018. Ecological interactions between Gulf of
   Mexico snappers (Teleostei: Lutjanidae) and invasive red lionfish (*Pterois volitans*). PloS
   ONE 13(11), e0206749. https://doi.org/10.1371/journal.pone.0206749

- McCleery, C. 2011. A comparative study of the feeding ecology of invasive lionfish (Pterois 876 volitans) in the Caribbean. J. Mar. Sci. 9: 38-43. 877
- 878 Mendoza-Alfaro, R.E., P. Koleff-Osorio, C. Ramírez-Martínez, P. Álvarez-Torres, M. Arroyo-Damián, C. Escalera-Gallardo, and A. Orbe-Mendoza. 2011. La evaluación de 879 880 riesgos por especies acuáticas exóticas invasoras: una visión compartida para Norteamérica. Ciencia Pesquera 19(2): 65-75. 881
- 882 Morris, J.A., and J.L. Akins. 2009. Feeding ecology of invasive lionfish (*Pterois volitans*) in Bahamian archipelago. Environ. Biol. Fishes. 389-398. 883 the 884 https://doi.org/10.1007/s10641-009-9538-8
- Morris, J.A., and P.E. Whitfield. 2009. Biology, ecology, control and management of the 885 invasive Indo-Pacific lionfish: An updated integrated assessment. NOAA Technical 886 887 Memorandum NOS NCCOS 99: 57.
  - Morris, J.A., K.W. Shertzer, and J.A. Rice. 2011b. A stage-based matrix population model of invasive lionfish with implications for control. Biol Invasions 13:7-12. https://doi.org/10.1007/s10530-010-9786-8

890

894 895

896

897

898 899

900

904

905

- 891 Morris, J.A., C.V. Sullivan, and J.J. Govoni. 2011a. Oogenesis and spawn formation in the 892 invasive lionfih, Pterois miles and Pterois volitans. Scientia Marina 75(1): 147-154. 893 http://digital.casalini.it/2478336
  - Morris, J.A. 2013. La invasión del pez león: pasado, presente y futuro. In: J.A. Morris Jr., ed. El pez león invasor: guía para su control y manejo. GCFI Special Publication Series Number 2, Marathon, Florida, USA. p. 1-2. http://www.gcfi.org
  - Morris, J.A., and S.J. Green. 2013. Las investigaciones sobre el pez león: resultados alcanzados y cuestiones pendientes. In: J.A. Morris Jr., ed. El pez león invasor: guía para su control y manejo. GCFI Special Publication Series Number 2, Marathon, Florida, USA. p. 3-16. http://www.gcfi.org
- Mumby, P.J., A.R. Harborne, and D.R. Brumbaugh. 2011. Grouper as a Natural Biocontrol 901 902 Invasive Lionfish. PloS ONE e21510. 6(6): https://doi.org/10.1371/journal.pone.0021510 903
  - Muñoz, R.C., C.A. Currin, and P.E. Whitfield. 2011. Diet of invasive lionfish on hard bottom reefs of the Southeast USA: insights from stomach contents and stable isotopes. Mar. Ecol. Prog. Ser. 432: 181-193. https://doi.org/10.3354/meps09154
- Murillo-Pérez, B.I., J.J. Schmitter-Soto, D. Cobián-Rojas, and R.L. Herrera-Pavón. 2021. 907 Trophic overlap of lionfish (Pterois volitans) and two native predators (Lutjanus apodus 908 909 and Cephalopholis cruentata) in the western Caribbean. Biota Neotropica 21(1): e20190909. https://doi.org/10.1590/1676-0611-BN-2019-0909 910
- 911 Nakajima, K., Y. Yoshie-Stark, and M. Ogushi. 2009. Comparison of ACE inhibitory and DPPH radical scavenging activities of fish muscle hydrolysates. Food Chem. 114: 844-912 851. https://doi.org/10.1016/j.foodchem.2008.10.083 913
- 914 Oxley, W.G., A.M. Ayling, A.J. Cheal, and K. Osborne. 2004. Marine surveys undertaken in the Elizabeth and Middleton Reefs Marine National Nature Reserve, December 2003. 915 916 Australian Institute of Marine Science, Townsville. 42p.
- Pantoja, L. 2016. Superposición de la dieta del pez león Pterois volitans/miles (Teleostei: 917 918 Scorpaenidae) con la de peces nativos de nivel trófico similar en tres localidades de Cuba. M.Sc. thesis. Universidad de La Habana, La Habana, Cuba. 78 p. 919
- 920 Pantoja, L., P.P. Chevalier, D. Cabrera, R.I. Corrada, C. Cobián, H. Caballero, A. García, R.A. Fernández. 2017. Superposición de la dieta del pez león Pterois volitans (Teleostei: 921
- 922 Scorpaenidae) con la de peces nativos de nivel trófico similar en Cuba. Boletín de

- 923 Investigaciones Marinas y Costeras 46 (2): 115-134. 924 https://doi.org/10.25268/bimc.invemar.2017.46.2.732
- Peake, J., A.K. Bogdanoff, C.A. Layman, B. Castillo, K. Reale-Munroe, J. Chapman, K.
   Dahl, W.F. Patterson III, C. Eddy, R.D. Ellis, M. Faletti, N. Higgs, M.A. Johnston, R.C.
   Muñoz, V. Sandel, J.C. Villasenor-Derbez, J.A. Morris. 2018. Feeding ecology of invasive lionfish (*Pterois volitans* and *Pterois miles*) in the temperate and tropical western
   Atlantic. Biol invasions 20(9): 2567-2597. https://doi.org/10.1007/s10530-018-1720-5
- Pimiento, C., J.C. Nifong, M.E. Hunter, E. Monaco, and B.R. Sillima. 2013. Habitat use
   patterns of the invasive red lionfish *Pterois volitans*: a comparison between mangrove and
   reef systems in San Salvador, Bahamas. Marine Ecology 36: 28–37.
   https://doi.org/10.1111/maec.12114
- Pina-Amargós, F., H. Salvat-Torres, and N. López-Fernández. 2012. Ictiofauna del
   archipiélago Jardines de la Reina, Cuba. Rev. Invest. Mar. 32(2): 54-65.
- Pina-Amargós, F., T. Figueredo-Martín, and N.A. Rossi. 2021. The Ecology of Cuba's
   Jardines de la Reina: A review. Rev. Invest. Mar. 41(1): 2-42.
- R Core Team (2020) R: a language and environment for statistical computing. R Foundation
   for Statistical Computing, Vienna. www.R-project.org/
- Reed, J.K., P. González-Díaz, L. Busutil, S. Farrington, B. Martínez-Daranas, D. Cobián-Rojas, J. Voss, C. Diaz, A. David, M.D. Hanisak, J.G. Mendez, A.G. Rodríguez, P.M.G.
  Sánchez, J.V. Fernández, D.E. Pérez, M. Studivan, F. Drummond, M. Jiang, and S.A.
  Pomponi. 2018. Cuba's mesophotic coral reefs and associated fish communities. Rev.
  Invest. Mar. 38(1): 56-125.
- Reynaldo, E., A. Vega, A. Fernández, J. Cruz, E. Córdova, and P. Cruz. 2018. Distribución
  y abundancia del pez león *Pterois volitans* en la zona costera de uso turístico de Holguín,
  Cuba. Novitates Caribaea (12): 63-73. https://doi.org/10.33800/nc.v0i12.85

950

- Ritger, A.L., C.T. Fountain, K. Bourne, J.A. Martín-Fernández, and M.E. Pierotti. 2020. Diet choice in a generalist predator, the invasive lionfish (*Pterois volitans/miles*). Journal of Experimental Marine Biology and Ecology 524: 1-7. https://doi.org/10.1016/j.jembe.2020.151311
- Rittermann, A. 2016. A Review of Present and Alternative Lionfish Controls in the Western
   Atlantic. Capstone. Nova Southeastern University. Retrieved from NSUWorks. (327)
   https://nsuworks.nova.edu/cnso\_stucap/327.
- Rojas-Vélez S., J. Tavera, and A. Acero. 2019. Unraveling lionfish invasion: Is *Pterois* volitans truly a morphologically novel predator in the Caribbean? Biol Invasions.
   https://doi.org/10.1007/s10530-019-01946-6.(012
- 958 Ruttenberg, B.I., P.J. Schofield, J.L. Akins, A. Acosta, M.W., Feeley, J. Blondeau, S.G. Smith, and J.S. Ault. 2012. Rapid invasion of Indo-Pacific lionfishes (Pterois volitans and 959 960 Pterois miles) in the Florida Keys, USA: evidence from multiple pre- and post-invasion 961 Bulletin Cience 88(4):1051-1059. data sets. Marine of https://doi.org/10.5343/bms.2011.1108 962
- Samhouri J.F., and A.C. Stier. 2021. Ecological impacts of an invasive mesopredator do not
   differ from those of a native mesopredator: lionfish in Caribbean Panama. Coral Reefs.
   https://doi.org/10.1007/s00338-021-02132-8
- Sancho, G., P.R. Kingsley-Smith, J.A. Morris, C.A. Toline, V. McDonough, and S.M. Doty.
   2018. Invasive lionfish (*Pterois volitans/miles*) feeding ecology in Biscayne National
   Park, Florida, USA. Biol Invasions. https://doi.org/10.1007/s10530-018-1705-4.

- Sandel, V.M. 2011. El pez león (*Pterois volitans/miles* complex) en el Área de Conservación
   La Amistad-Caribe, Costa Rica- estado actual de la población invasiva y perspectivas para
   su manejo. M.Sc. thesis. Universidad Nacional Heredia, Puntarenas, Costa Rica. p. 82
- Santamaria, C.A., J. Locascio, and T.M. Greenan. 2020. First report of lionfish prey from
   Western Florida waters as identified by DNA barcoding. PeerJ 8, e9922.
   https://doi.org/10.7717/peerj.9922

- Santamaría, L., J. Pericàs, M. Carrete, and L.J. Tella. 2008. In: Sánchez, P.T., M.Á. Puig-Samper Mulero, A.N. Sánchez, G.N. Feliner, J.M. de Salazar, J.P. del Val, R.M. Cáceres, and C.G. Martínez, eds. La ausencia de enemigos naturales favorece las invasiones biológicas. Invasiones biológicas, Cyan, Proyectos y Producciones Editoriales, S.A, Madrid, España. p. 91-101.
- Saunders, P.R., and P.B. Taylor. 1959. Venom of the lionfish *Pterois volitans*. American Journal of Physiology 197: 437-440. https://doi.org/10.1152/ajplegacy.1959.197.2.437
- Schofield, P.J. 2009. Geographic extent and chronology of the invasion of non-native lionfish
   (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]) in the Western North
   Atlantic and Caribbean Sea. Aquatic Invasions 4(3): 473-479. doi: 10.3391/ai.2009.4.3.5
  - Schofield, P.J. 2010. Update on geographic spread of invasive lionfishes (*Pterois volitans* [Linnaeus, 1758] and *P. miles* [Bennett, 1828]) in the Western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. Aquatic Invasions 5(1): 117-122. doi:10.3391/AI.2010.5.S1.024
- Schultz, E. 1986. Pterois volitans and Pterois miles: Two valid species. Copeia 3: 686-690.
   https://doi.org/10.2307/1444950
  - Simnitt, S., L. House, S.L. Larkin, J.S. Tookes, T. Yandle. 2020. Using Markets to Control Invasive Species: Lionfish in the US Virgin Islands. Marine Resource Economics 35(4): 319-341. https://doi.org/10.1086/710254
  - Smith, N.S., and I.M. Côté. 2021. Biotic resistance on coral reefs? Direct and indirect effects of native predators and competitors on invasive lionfish. Coral Reefs. https://doi.org/10.1007/s00338-021-02117-7
  - Squadrone, S., P. Brizio, C. Stella, M. Mantia, L. Favaro, B. Biancani, S. Gridelli, C. Da Rugna, M.C. Abete. 2020. Differential Bioaccumulation of Trace Elements and Rare Earth Elements in the Muscle, Kidneys, and Liver of the Invasive Indo-Pacific Lionfish (*Pterois* spp.) from Cuba. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01918-w
- Sri Balasubashini, M. 2006b. *In Vivo* and *In Vitro* Characterization of the Biochemical and pathological Changes Induced by Lionfish (*Pterois Volitans*) Venom in Mice. Toxicology Mechanisms and Methods. 16:525–531.
  - Sri Balasubashini, M., S. Karthigayan, S.T. Somasundaram, T. Balasubramanian, V. Viswanathan, P. Raveendrand, and V.P. Menon. 2006a. Fish venom (*Pterois volitans*) peptide reduces tumor burden and ameliorates oxidative stress in Ehrlich's ascites carcinoma xenografted mice. Bioorganic & Medicinal Chemistry Letters 16: 6219–6225. https://doi.org/10.1016/j.bmcl.2006.09.025
- Steneck R., S. Arnold, and P. Mumby. 2014. Experiment mimics fishing on parrotfish:
   insights on coral reef recovery and alternative attractors. Mar. Ecol. Prog. Ser. 506: 115–127. https://doi.org/10.3354/meps10764
- Tamburello, N., I.M. Côté. 2014. Movement ecology of Indo-Pacific lionfish on Caribbean
   coral reefs and its implications for invasion dynamics. Biol Invasions 17(6): 1639-1653.
   https://doi.org/10.1007/s10530-014-0822-y

Eliminado: By

- Tuttle, L.J. 2017. Direct and indirect effects of invasive lionfish on coral-reef cleaning mutualists. Mar. Ecol. Prog. Ser. 569: 163–172. https://doi.org/10.3354/meps12092
- Valdez-Moreno, M., C. Quintal-Lizama, R. Gómez-Lozano, and M.C. García-Rivas. 2012.

  Monitoring an Alien Invasion: DNA Barcoding and the Identification of Lionfish and
  Their Prey on Coral Reefs of the Mexican Caribbean. PLoS ONE 7(6): 1-8.
  https://doi.org/10.1371/journal.pone.0036636
- Valdivia A., J.F. Bruno, C.E. Cox, S. Hackerott, and S.J. Green. 2014. Re-examining the relationship between invasive lionfish and native grouper in the Caribbean. PeerJ. (2): e348. doi:10.7717/peerj.348
- Van den Hurk, P., I. Edhlund, R. David, J.J. Hahn, M.J. McComb, E. L. Rogers, E. Pisarski,
   K. Chung, M. DeLorenzo. 2020. Lionfish (*Pterois volitans*) as biomonitoring species for
   oil pollution effects in coral reef ecosystems. Biological Sciences.
   https://doi.org/10.1016/j.marenvres.2020.104915
- Vega, A., E. Reynaldo, A. Fernández, J. Crúz, F. Ocaña, E. Córdova. 2015. Abundancia y
   distribución del pez león *Pterois volitans* (Teleostei: Scorpaenidae) en el litoral turístico
   de Holguín, Cuba. Solenodon 12: 72-83.
- Villaseñor-Derbez, J., and R. Herrera-Perez. 2014. Brief description of prey selectivity and
   ontogenetic changes in the diet of the invasive lionfish *Pterois volitans* (Actinopterygii,
   Scorpaenidae) in the Mexican Caribbean. Pan-American Journal of Aquatic Sciences 9(2):
   131-135.
- 1037 Villegas, A. 2006. Nuevas perspectivas terapéuticas en la sobrecarga de hierro. An. Med.
   1038 Intern. 23: 511-512.
  - Whitfield, P.E., T. Gardner, S.P. Vives, M.R. Gilligan, W.R. Courtenay Jr., G. Carleton Ray, and J.A. Hare. 2002. Biological invasion of the Indo-Pacific lionfish *Pterois volitans* along the Atlantic coast of North America. Mar. Ecol. Prog. Ser. 235: 289–297. doi:10.3354/meps235289
  - Whitfield, P.E., J.A. Hare, A.W. David, S.L. Harter, R.C. Muñoz, and C.M. Addison. 2006. Abundance estimates of the Indo-Pacific lionfish *Pterois volitans/miles* complex in the Western North Atlantic. Biol Invasions 9: 53-64. <a href="https://doi.org/10.1007/s10530-006-9005-9">https://doi.org/10.1007/s10530-006-9005-9</a>
- 1047 Wickham, H. (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York,1048 NY.
- Zhuang, Y.L., L.P. Sun, X. Zhao, H. Hou, and B.F. Li. 2010. Investigation of gelatin
   polypeptides of jellyfish (*Rhopilema esculentum*) for their antioxidant activity *in vitro*.
   Food Technol. Biotech 48: 222-228.

# COMMENTS IN TITLES OF FIGURES AND TABLES

1039

1040

1041

1042

1043

1044 1045

1046

1052 1053 1054

1055

1056

1057

Figure 1. Natural range of the lionfish species Pterois violitans and P. miles

Con formato: Fuente: Cursiva

Con formato: Fuente: Cursiva

|      | 30                                                                                              |                                  |
|------|-------------------------------------------------------------------------------------------------|----------------------------------|
| 1058 | on figure 2, there are maps and data published at least until the year 2020, it is suggested to | Con formato: Fuente: Sin Cursiva |
| 1059 | update this figure                                                                              |                                  |
| 1060 |                                                                                                 |                                  |
| 1061 | In the diagram of figure 4, sharks, rays and barracudas are missing from the diagram            |                                  |
| 1062 | table 1 organize geographically for the invasion zone and to make its analysis more explicit    |                                  |
| ļ    |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |
|      |                                                                                                 |                                  |