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In recent years, the focus of the functional connectivity community has shifted from
stationary approaches to the ones that include temporal dynamics. Especially, non-
invasive electrophysiological data (magnetoencephalography/electroencephalography
(MEG/EEG)) with high temporal resolution and good spatial coverage have made it possible
to measure the fast alterations in the neural activity in the brain during ongoing cognition.
In this paper, we analyze dynamic brain reconfiguration using MEG images collected from
subjects during the rest and the cognitive tasks. Our proposed topological data analysis
method, called Mapper, produces biomarkers that differentiate cognitive tasks without
prior spatial and temporal collapse of the data. The suggested method provides an
interactive visualization of the rapid fluctuations in electrophysiological data during motor
and cognitive tasks; hence, it has the potential to extract clinically relevant information at
an individual level without temporal and spatial collapse.
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ABSTRACT11

In recent years, the focus of the functional connectivity community has shifted from stationary approaches

to the ones that include temporal dynamics. Especially, non-invasive electrophysiological data (magne-

toencephalography/electroencephalography (MEG/EEG)) with high temporal resolution and good spatial

coverage have made it possible to measure the fast alterations in the neural activity in the brain during

ongoing cognition. In this paper, we analyze dynamic brain reconfiguration using MEG images collected

from subjects during the rest and the cognitive tasks. Our proposed topological data analysis method,

called Mapper, produces biomarkers that differentiate cognitive tasks without prior spatial and temporal

collapse of the data. The suggested method provides an interactive visualization of the rapid fluctuations

in electrophysiological data during motor and cognitive tasks; hence, it has the potential to extract clinically

relevant information at an individual level without temporal and spatial collapse.
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INTRODUCTION22

The functional connectivity studies focusing on the co-activation of spatially separated brain regions have23

been shown to be fruitful in identifying special features of neural connectivity during resting state and24

cognitive tasks Bastos and Schoffelen (2016); O’Neill et al. (2015); Friston (2011). These results open the25

way for using functional connectivity as a biomarker for clinical diagnosis which, for example, measures26

illness severity Brookes et al. (2016) and predicts the response to clinical intervention Carbo et al. (2017).27

Despite their success, most of these methods neglect the temporal variations during neural processes28

Sporns (2013); Hutchison et al. (2013). Time-resolved approaches, on the other hand, can provide a29

crucial understanding of how the information is processed in the brain as functional connectivity may30

alter within several hundred milliseconds of a cognitive experiment Smith et al. (2012); Chang and Glover31

(2010); Tagliazucchi et al. (2012); Antonakakis et al. (2020).32

The most common neuroimaging modality to study dynamic functional connectivity has so far been33

functional Magnetic Resonance Imaging (fMRI). However, it is a challenge to monitor the rapid changes34

in network dynamics within a short time interval using fMRI, as it only detects a proxy of neuronal activity35

(i.e. hemodynamic signals) in the brain. In this case, the most reasonable time required to calculate36

connectivity is 30 s Allen et al. (2012). On the other hand, electrophysiological modalities (i.e. ECoG,37

EEG, MEG) address this issue with their high temporal resolution and decent spatial scales. Recently38

introduced non-invasive electrophysiological techniques de Pasquale et al. (2010); Liu et al. (2010) enable39

us to explore the variations in connectivity dynamics which eventually leads us to the determination of40

biomarkers in clinical applications.41

The sliding window method is a simple and common approach for measuring dynamic connectivity42

in electrophysiological modalities as it is compatible with most of the static connectivity measures43

Brovelli et al. (2017); O’Neill et al. (2015, 2017); Carbo et al. (2017); Lee et al. (2017); de Pasquale44

et al. (2010); Doron et al. (2012); Bassett et al. (2011); Antonakakis et al. (2020). In this approach,45

the connectivity is assessed over the time windows of a fixed width which are shifted by a fixed step46
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from the beginning to the end of the experiment. The main limitation with this approach is choosing47

the window length: While the results with a short window width are affected by noise, the ones with48

a long window width ignore the rapid fluctuations in the connectivity. Moreover, a fixed window49

width is not appropriate for the experiments with varying timescales of fluctuation. Hidden Markov50

Models (HMM) address this issue by measuring the connectivity of the data over aggregated intervals51

corresponding to certain states, which are characterized by the properties of the source level signal52

Baker et al. (2014); Vidaurre et al. (2016). A limitation of this method is scalability in the case of a53

high number of time points and subjects. It is also more suitable to apply to a small number of regions54

at a time due to possible overfitting resulting from a large number of regions Vidaurre et al. (2018).55

Examination of microstates in resting-state or during task is another well-established method of analyzing56

temporal brain activity. Microstates are a series of time intervals during which the scalp potential field’s57

configuration is quasi-stable Michel and Koenig (2018),Khanna et al. (2015),Milz et al. (2016). Similar58

to other discrete methods, microstate analysis collapses the signals on the time scale losing the possibly59

valuable information related to the high temporal resolution of MEG data. Different brain patterns60

might result in the same microstates as the inverse of the microstates are not unique.The effectiveness of61

these discrete approaches to quantify the brain dynamics is still under discussion among the functional62

connectivity community Preti et al. (2017). An alternative to avoid the discretization on the temporal63

scale is the high temporal measures of connectivity exploiting wavelet transform Dhamala et al. (2008) or64

Hilbert transform Breakspear (2002). Although the high temporal measures are applicable to individual65

data and capture the connectivity instantaneously, they require averaging, for example, over the trials66

of the task to increase robustness. Collapsing or averaging the data in time or space makes it difficult67

to derive the complete picture of how the brain connectivity continuously evolves during rest and task68

Saggar et al. (2018). To improve translational outcomes, it is important to explore new computational69

methods that avoid averaging data across individuals, time, or space.70

The use of Artificial Neural Networks (ANN) in scientific studies has been increased in recent years71

Chiniforooshan Esfahani (2023). This trend can also be noticed in brain dynamics research. Deep neural72

network models are used to improve electrophysiological source imaging of spatiotemporal brain dynamics73

Sun et al. (2022).Physics-informed neural networks are applied to investigate molecular transport in the hu-74

man brain using MRI images Zapf et al. (2022) and to provide high-resolution maps of velocity, area, and75

pressure in the entire brain vasculature from Transcranial Doppler ultrasound data Sarabian et al. (2022).76

Various graph neural network architectures designed to forecast brain activity based on models of spa-77

tiotemporal brain dynamics are compared in Wein et al. (2022). Recurrent Neural Networks are used78

to predict feature-evoked response sequences from fMRI data Güçlü and van Gerven (2017).The new79

MEG datasets are also emerging to train and test brain-based ANN models. For example, a narrative80

comprehension MEG data representing rich variety of temporal dynamics is provided to test ANN based81

current natural language processing models against brain data Armeni et al. (2022). ANNs have recently82

been utilized to improve disease diagnosis and classification. Deep neural networks using resting state83

EEG data of elderly individuals is proposed as a diagnosis tool for preclinical Alzheimer’s disease84

Park et al. (2022). Attention deficit and hyperactivity disorder (ADHD) classification with EEG and85

ANNs is studied in Martı́nez González et al. (2022).Another recent application is the detection of Parkin-86

son’s disease through resting-state EEG based deep neural networks Shaban and Amara (2022). While87

ANNs are black-box tools with high accuracy for classification and prediction, their results are hard to88

interpret due to the complex underlying algorithms. More interactive and inherently interpretable tools89

are necessary for clinical use.90

To address the above issues, we utilize a topological data analysis (TDA) technique called Mapper91

Singh et al. (2007); Carlsson (2014) using MEG data from Human Connectome Project Larson-Prior92

et al. (2013). Due to its low sensitivity to noise and coordinate and deformation invariance features,93

the mathematical graph obtained from Mapper for each subject’s MEG data can be visually and graph-94

theoretically explored making it accessible for clinical use.95

Mapper has previously been applied to longitudinal MRI revealing two large subgroups within the96

population (n = 52) of children diagnosed with Fragile X syndrome. Mapper is shown to be promising in97

brain dynamics analysis for fMRI on an individual level (n= 1) making it valuable for translational studies.98

The mesoscale graph invariants (i.e. modularity and core-periphery) of the output mathematical graph99

representation not only predict task performance but also differentiates the time points during evoked tasks100

and resting state by locating them at the core and periphery of the Mapper graph, respectively Saggar et al.101
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(2018). In a succeeding work, new Python-based interactive visualization tools are provided to examine102

Mapper graphs Geniesse et al. (2019). Limitations of Mapper such as the need of dimensionality reduction103

and exploration of vast parameter space are addressed via NeuMapper framework in Geniesse et al. (2022).104

Mapper has detected a transition state of the brain between different neural configuration from resting-105

state fMRI data Saggar et al. (2022b). In another work, Mapper has provided an evidence that A greater106

differential engagement of brain activity was achieved using methylphenidate during an n-back working107

memory fMRI task Saggar et al. (2022a).In Zhang et al. (2023), dynamical systems features are extracted108

from Mapper graphs to bridge the gap between data-driven models and mechanistic dynamical systems109

models.110

Here, we apply the Mapper algorithm to the temporal dimension of MEG data, which, unlike fMRI,111

provides direct measurement of whole-brain activity with richer temporal information. The mesoscale112

graph invariants of the Mapper graph are shown to be effective in differentiating data collected during113

working memory, story/math, and sensor-motor experimental paradigms. When these paradigms are114

compared pairwise, it is found that115

• the centrality scores of the working memory task are significantly higher than the centrality scores116

of the story/math task;117

• the centrality scores of the sensory-motor task are significantly higher than the centrality scores of118

the story/math task;119

• there is no significant difference between the centrality scores of the sensory-motor task and the120

centrality scores of the working memory task;121

pointing out the high stability in the temporal brain functional during the high demanding tasks. These122

results partially agree with the fMRI results Saggar et al. (2018). Additionally, for the working memory123

and the story/math tasks where the performance is measured and timed, it is shown that there is weak124

negative and non-significant correlation between the community structure of the graph and the response125

time. A stronger but statistically weak correlation is also noticed in the fMRI study Saggar et al. (2018).126

In summary, Mapper provides an interactive visualization of the rapid fluctuations in electrophysiological127

data during rest and cognitive tasks; hence, it has the potential to extract clinically relevant information at128

an individual level without temporal and spatial collapse.129

METHODS130

Ethics Statement131

This paper utilised data collected for the HCP Van Essen et al. (2012). The scanning protocol, participant132

recruitment procedures, and informed written consent forms, including consent to share deidentified data,133

were approved by the Washington University institutional review board Van Essen et al. (2012). IRB134

approval number is FEB-20220810-13614135

Subjects and Data136

The data we use in this research is the human non-invasive resting state and task Magnetoencephalography137

(MEG) data set which is publicly available from the Human Connectome Project (HCP) consortium138

Larson-Prior et al. (2013). It is acquired on a Magnes 3600 MEG (4D NeuroImaging, San Diego, USA)139

with 248 magnetometers and 23 reference channels at the sampling rate of 2034.5101 Hz. The data140

is available for a total of 100 subjects each performing three experimental paradigms; Sensory-motor,141

Working memory, and Story/Math.142

The tasks in the sensory-motor paradigm involve the execution of a simple hand or foot movement.143

Which limb on which side is instructed by a visual cue, which serves to pace the movement. The Working144

memory paradigm is similar or identical to the corresponding task acquired during fMRI imaging of HCP.145

Here, the participants have to remember the occurrence of n-back previously shown item (with n = 0146

and n = 2) with the items being either tools or faces. Data are segmented to the onset of the non-target147

item (WM task). The story/math paradigm is the same as that is used in the fMRI component of the HCP148

Barch et al. (2013). Participants listen either to auditory narratives of around 30 seconds duration or149

matched-duration simple arithmetic problems followed by a 2-alternative forced choice question Binder150

et al. (2011). Subjects respond by right-hand button press (index or middle finger).151
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For every subject, all the paradigms consist of two experimental runs. A run consists of blocks of152

tasks, a block consists of several trials of the same task with a fixation period between the trials, and153

finally, a trial consists of a baseline and a stimulus. We shall also note that not all data is available for154

each Subject.155

For a single subject, the data acquired by Magnes 3600 MEG is processed as follows:156

• Noisy channels with a high variance ratio and correlation to neighboring channels are detected and157

removed from further analysis.158

• The bad channels and segments are removed with iterative independent component analysis (ICA)159

using spatial and temporal criteria Mantini et al. (2011).160

• Using ICA, independent components (ICs) are classified as ‘Brain’ or ‘Noise’ using six parameters:161

correlation between IC signals, the correlation between power time courses, the correlation between162

spectra, and three additional parameters derived from both spectral and temporal properties. Physi-163

ological artifacts are identified as magneto- and electro-cardiogram, eye movements, power supply164

bursting, and 1/ f -like environmental noise. The details of this step can be found in Larson-Prior165

et al. (2013); Mantini et al. (2011).166

We note here two of its stages that are related to our preprocessing explained in the next section. First,167

the sampling rate is lowered to 506.6275, and second, the data from noisy channels are removed. As a168

result, the time points are reduced by 25% and the channels across the two runs might not be identical.169

Preprocessing170

We process the data further per subject and per paradigm. We lower the sampling rate down to 256 Hz. We171

remove all the time points corresponding to the fixation trials and the baseline keeping only the stimulus172

ones as well as the time points with missing values. Moreover, to concatenate the data from the two runs,173

we also remove the non-common channels across the runs. As a result, a subject for a given paradigm is174

represented by a matrix of the form (# channels)×(# time points). The number of channels is changing175

between 200 to 248 depending on the subject, and the number of time points is ranging between 350,000176

and 400,000.177

At this point of the preprocessing, each subject is associated with three matrices, one for every178

experimental paradigm. As we want to compare the paradigms pairwise, in the next stage we concatenate179

these matrices two by two. This way, each subject is still associated with three matrices corresponding to180

the cases:181

• Working memory and story/math;182

• Working memory and sensory-motor;183

• Story/math and sensory-motor.184

These matrices are concatenated in the above order across the common channels in the paradigms.185

Even though the concatenation results in the loss of some channels, the loss is not significant and the186

resulting concatenated matrix has still 200 to 250 channels. In the meantime, the number of time points187

in the concatenated matrix is almost doubled and ranges between 700,000 and 800,000. In the end, the188

concatenated matrix is transposed so that the time points are on the vertical axis and the channels are on189

the horizontal axis.190

Finally, we note that this vectorization of the MEG images causes the loss of the locations of channels191

relative to each other. However, it is shown in various studies that this process does not affect the success192

of the machine learning methods Bray et al. (2009).193

Topological Data Analysis: Mapper194

Most of the network neuroscience studies utilize simple graphs focusing on dyadic connection ignoring195

higher-order interactions that could be crucial to extract insight across multiple scales Torres et al. (2021).196

The existence, quantification, and comparison of these higher-order interactions necessitate the use of197

more advanced mathematical structures that can be studied by topological data analysis(TDA), which198

uses techniques from algebraic topology and computer science to analyze data sets Centeno et al. (2022).199
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Analysis of these non-dyadic relations makes it possible to deal with the open problems in network200

neuroscience Andjelković et al. (2020); Billings et al. (2021); Guo et al. (2021); Helm et al. (2021);201

Patania et al. (2019); Santos et al. (2019); Saggar et al. (2018).202

In our study, we adopt a TDA method called Mapper, which is a successful structure discovery and203

visualization technique for the exploration of high-dimensional data. The resulting mathematical graph204

from Mapper is a highly compact representation of the complex data revealing insightful coordinate-free205

visualization. Introduced in 2007 Singh et al. (2007), its application to biological data sets includes but206

is not limited to disease association, RNA folding, viral evolution, and immunology Chan et al. (2013);207

Nielson et al. (2015); Li et al. (2015). Hence, its application to brain dynamics is promising as shown in208

the earlier studies Geniesse et al. (2022, 2019); Saggar et al. (2018); Patania et al. (2019).209

The construction of a Mapper graph from a point cloud is illustrated in Fig 1: (i) The first step is the210

choice of a filter which assigns one (or more) values to each data point in the point cloud. The filter values211

can be height, coordinate values, a measure of centrality, or output of any data mining algorithm such as212

PCA, SVD, SNE, etc. . (ii) The next step is to cover all possible filter values with overlapping intervals (or213

regions depending on the dimension of the filter). Three color-coded intervals covering the range of the214

height function are shown in Fig 1. (iii) Next, the points whose filter values fall in the same interval (or215

region) clustered using a clustering algorithm such as hierarchical clustering, k-nearest neighbor (KNN),216

single linkage clustering. For clustering, one can use any metric including correlation, Euclidean, L1 or217

L∞ metrics. (iv) The nodes representing the clusters are finally connected by an edge if the underlying218

clusters have a non-empty intersection.219

The parameters of the algorithm are the number of intervals (or regions), the overlapping percentage,220

the distance metric, and the clustering algorithm. A high number of intervals increases the number of nodes221

in the final visualization; hence, defeats the purpose of having a highly compact representation. While an222

increase in the overlapping percentage results in a high number of edges and increases complexity, a low223

overlapping percentage produces disconnected clusters and misses the information about variation in the224

data due to underlying continuous filter values.225

We apply the Mapper algorithm to the MEG data from HCP. We use the open source KeplerMapper226

Python package Veen et al. (2019) to generate Mapper graphs from the minimally processed data. Our227

goal is to trace the brain activation patterns of each participant during working memory, story/math, and228

motor tasks. As explained above, the data is concatenated pairwise before entering the Mapper algorithm.229

It is not uncommon to use concatenated data to estimate task-state functional connectivity and brain230

networks Richiardi et al. (2011); Hsu et al. (2014); Freeman et al. (2011); Liu et al. (2014); Mokhtari and231

Hossein-Zadeh (2013); Zhu et al. (2017). Moreover, comparative studies show that functional connectivity232

for the concatenated data was both qualitatively and quantitatively similar to that of continuous data233

during rest Fair et al. (2007); Gavrilescu et al. (2008); Cheng et al. (2015) and task Zhu et al. (2017).234

The input data to Mapper is the (# time points)×(# channels) dimensional matrix prepared by the235

preprocessing explained in Sec .236

We choose the Euclidean metric as a similarity measure between the vectors in the time-space (i.e.237

column vectors) of the input matrix. The euclidean metric is suitable in this setting as the ranges and238

means of the data columns do not vary significantly Nielson et al. (2015). The choice of Euclidean metric239

is also proven to be successful in the previous applications of neuroimage data: In Romano et al. (2014),240

Mapper with Euclidean metric applied on sMRI data reveals high and low functioning neuro-phenotypes241

within Fragile X Syndrome. In Kyeong et al. (2017), the method on fMRI data identified two unique242

subgroups of ADHD using the Euclidean metric. In another fMRI study, a data-driven search for different243

metrics indicates that the Euclidean metric best localizes outcome measures Madan et al. (2017).244

In the next step, the similarity information determined by the Euclidean metric is transformed into245

a low dimensional representation using a non-linear filter called t-SNE Hinton and Roweis (2002),246

which maintains the local geometry existing in the original time-space unlike more conventional linear247

filters such as PCA van der Maaten and Hinton (2008); Saggar et al. (2018). Multivariate and non-248

linear characteristics of inter-regional interactions suggest the use of non-linear methods such as t-SNE249

Reinen et al. (2018), DiCarlo et al. (2012).The data which is first reduced into two dimensions by t-SNE250

is then divided into overlapping bins. Following the earlier practice Lum et al. (2013), the time points251

in each bin are further clustered using single linkage clustering with the Euclidean metric, which is252

computationally more efficient compared to the other clustering methods, and which does not require an253

initial number of clusters.254
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The common practice in Mapper applications is to test a large grid of parameters (i.e. overlapping255

percentage and number of intervals) to find the most stable graphs. Even though the stability of the256

Mapper algorithm under various parameters was studied before under certain conditions Carrière and257

Oudot (2018); Kalyanaraman et al. (2017), we analyze several parameters of the algorithm to ensure the258

reliability of our result.259

Centrality and Community Structure Analysis260

The mathematical graphs obtained from Mapper can be investigated by focusing its structures on different261

scales. It is established through many applications that the intermediate (mesoscale) structures identify262

certain characteristics that the local scale analysis of nodes (or edges) and global level of summary263

statistics are unsuccessful to detect. In this paper, we concentrate on centrality and modularity mesoscale264

properties.265

Centrality analysis of a network reveals the most important nodes (or edges) based on a quantification266

of node-node or node-edge relationships. The centrality of a node can be perceived as the communication267

ability with the other nodes or the closeness to the other nodes Estrada (2011). The centrality structure268

provides a perspective to comprehend how the brain states evolve during the ongoing task. The nodes269

with high centrality in the Mapper graph contain the most common brain activation patterns during the270

task. Here, we utilized four centrality measures: degree, eigenvalue, betweenness, and closeness. Based271

on the visual evidence from the box plots Fig. 2, Fig. 3, and Fig. 4 and the similar findings in Saggar et al.272

(2018), we claim for any one of those four centrality scores that273

HWS : The mean of the centrality score of the nodes dominated by the working memory paradigm time274

points is greater than the mean of the centrality score of the nodes dominated by the story/math275

paradigm time points.276

HWM : The mean of the centrality score of the nodes dominated by the sensory-motor paradigm time points277

is greater than the mean of the centrality score of the nodes dominated by the working memory278

paradigm time points.279

HSM : The mean of the centrality score of the nodes dominated by the sensory-motor paradigm time points280

is greater than the mean of the centrality score of the nodes dominated by the story/math paradigm281

time points.282

Modularity is one of the most commonly used metric to detect and characterize the community283

structure of the networks. Detecting communities in brain networks, are useful to identify the sub-284

networks that correspond to specialized functional components Sporns and Betzel (2016). In this paper,285

we use modularity as defined in Newman (2006).286

Analysis Pipeline287

We summarize all the steps explained so far in the previous sections in Fig 5.288

Earlier studies Saggar et al. (2018); Saggar and Uddin (2019); Duman et al. (2019) show that the289

topological properties of Mapper graphs are robust by construction to parameter perturbations. To ensure290

the reliability of the statistical results, we tested our null hypothesis using 48 different sets of Mapper291

parameters. The domains for # intervals, overlap %, and # clusters are {10,15,20}, {30,40,50,60}, and292

{5,10,15,20}, respectively. The parameter space is chosen in a way that the resulting Mapper graphs are293

connected to make modularity and centrality calculation possible. Statistically significant and reliable294

results are obtained for the large portion of parameter values (see Sec. for details).295

To have a better understanding, we also track the steps of the proposed analysis with the story/math296

and sensory-motor paradigm time points of the subject 106521.297

After concatenating the paradigms across the common channels, the subject 106521 is represented by298

a matrix of dimensions (357371×232). The first 177162 time points of the 357371 time points belong299

to the story/math paradigm and the rest to the motor-sensory. The Mapper algorithm with the projected300

data by SNE and the parameters 10, 50, and 10 corresponding to the number of intervals, percentage301

of overlap, and the number of clusters in the single linkage clustering, respectively, outputs the Mapper302

graph in Fig 6. It has 960 nodes and 13889 edges. The nodes are either in black if the majority of the time303

points in that node belong to the story/math paradigm or in green color if the majority of the time points304

in that node belong to the sensory-motor paradigm. In 70% of the nodes the story/math paradigm time305
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points are in majority and these nodes are on the periphery of the Mapper graph. The remaining 30% of306

the nodes are dominated by the sensory-motor paradigm time points which are placed mostly in the center307

of the graph.308

Code Accessibility309

The code described in the paper is available from the corresponding author upon reasonable request.310

RESULTS311

In this section, we discuss the results of the experiments whose details are explained in section . We check312

the reliability of our results by repeating the experiments with 48 different sets of Mapper parameters.313

The experiments are carried out in a Python environment using a workstation with 2 Nvidia GPUs (RTX314

2080 Ti, 11 GB VRAM Per GPU), 10 Cores CPU (Intel i9-9820X), and 64 GB Memory.315

Centrality of the Mapper Graphs316

For every pairwise scenario, working memory vs. story/math, working memory vs. sensory-motor, and317

story/math vs. sensory-motor and for every subject, we calculate four different centrality scores, degree,318

eigenvector, betweenness, and closeness centralities of the nodes in the Mapper graphs. Moreover, to show319

that the results do not depend on the Mapper graph, we repeat the same experiment with 48 different sets320

of Mapper parameters. The Mapper parameter space is made of triples of the form (# intervals, overlap %,321

# clusters). The domains for # intervals, overlap %, and # clusters are {10,15,20}, {30,40,50,60}, and322

{5,10,15,20}, respectively.323

We look at the pairwise results. In the working memory and story/math paradigms, there are 60324

common subjects. Fig 2 shows that, regardless of the Mapper parameters, all four centrality scores clearly325

distinguish the nodes dominated by the working memory time points from the nodes dominated by the326

story/math time points. We want to confirm this visual difference through statistical tests. The most327

relevant statistical test to use is the paired t-test that compares the mean of the centrality scores of the328

nodes dominated by the working memory time-points (µW ) and the mean of the centrality scores of329

the nodes dominated by the story/math paradigm’s time-points (µS). However, the paired t-test only330

works under the assumption that sample points follow a normal distribution. Therefore, we shall check331

numerically using the Shapiro–Wilk normality test or visually using probability plots that the differences332

in centrality scores of different paradigms satisfy this fact.333

There might be Mapper plots with the differences in the centrality scores not following a normal334

distribution. For example, the distribution of closeness centrality scores of the nodes of the Mapper graph335

with parameters 10-40-5 is non normal distribution with p = 0.02 Shapiro Wilk normality test (see Fig 7336

for the probability plot). For such cases, we use the paired permutation test Good (2013) with the test337

statistic being the mean of the differences between the centrality scores. We shall clarify how the p value338

of the test statistics is calculated. First, we calculate the observed mean differences µobs between the339

working memory and the story/math paradigms. The permutation test assumes that there is no difference340

between the test statistics. The translation of this null hypothesis to our case is that there is no difference341

between the paradigms. Hence, we can create new data sets by swapping the centrality measures of the342

paradigms for the same subject. We compute the mean of the differences between the paradigms for every343

possible new data set and compare them to µobs. If the alternative hypothesis is that the means are not344

equal, then the p value is 2min(pl , pg) where pg (resp. pl) is the probability of the mean of the differences345

being greater (resp. less) than µobs. If the alternative hypothesis is that one of the means is greater (resp.346

less) than the other mean, then the p is the probability of the mean of the differences being greater (resp.347

less) than µobs. As in the other hypothesis testing, if the p value is smaller than the significance level of348

0.05, we say that the null hypothesis is not likely to be observed and favor the alternative. In Appendix,349

we illustrate the permutation test on the closeness centrality scores of the Mapper graph with parameters350

10-40-5. In Table 1, we show how the paired permutation test creates a permuted data set. Later, the test351

statistics which is the mean of the differences in the centrality scores of the paradigms working memory352

and story/math are calculated. Going back to hypothesis testing, to verify our claims, we start with the353

null hypothesis:354

H0: The mean of the centrality scores of the working memory nodes is equal to the mean of the centrality355

scores of the story/math nodes.356
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Based on the Figs 2, 3, and 4, we expect H0 to be rejected for all the Mapper parameters and for all357

centrality score types. Then, we verify which mean is greater by simply comparing the sample means. We358

look at the pairwise combinations one by one. To our expectations, in working memory and story/math359

combination, the p values in the columns µW = µS of the Table 2 being less than 0.05 indicate that we360

shall reject the null hypothesis in favor of its alternative which is that µW and µS are significantly different.361

Moreover, as µS < µW and halves of all the p values in Table 2 are also less than 0.05, we can deduce that362

the mean of the centrality scores of the working memory nodes µW is significantly greater than the mean363

of the centrality scores of the story/math nodes µS.364

In the case of story/math and sensory-motor combination with 43 common subjects, by going through365

similar steps as above, we come to the conclusion using the test results in Table 3, that the mean of the366

centrality scores of the sensory-motor nodes µM is significantly greater than the mean of the centrality367

scores of the story/math nodes µS.368

For the final combination of working memory and sensory-motor with 21 common subjects, the369

table 4 shows that the p values of either the paired t-test or the permutation test under the null hypothesis370

are all greater than the significance level of 0.05 indicating that there is not enough evidence to reject the371

null hypothesis. Hence, we conclude for all types of centrality scores that mean the mean of the centrality372

scores of the working memory µW and sensory-motor µM are not significantly different.373

The above discussions show that, when compared pairwise, the centrality score of the nodes dominated374

by the time points of the story/math paradigm is the smallest. We summarize our findings in the Table 5.375

Community Structure and Response Time376

Subjects’ performances during the working memory and story/math experimental paradigms are scored377

and timed. In this section, we investigate if the modularity structure of the Mapper graphs is related to378

these measurements.379

The distribution of modularity scores of all subjects are shown by box plots for different set of mapper380

parameters in Fig 8. x-axis of the figure represents different set of mapper parameter. The interval381

parameter given by the first two numbers are either 10, 15 or 20. The following two numbers for the382

cluster parameter are either 30, 40, 50 or 60. The remaining numbers represents the overlap percentage383

which is either 5, 10, 15 or 20. Once we give a closer look at Fig 8, we observe that the median of the384

modularity scores tends to385

1. increase with the increase in the interval parameter as an increase in that parameter results in more386

nodes, hence more edges in the Mapper graph (see Fig 9),387

2. decrease with the increase in cluster parameter as an increase in that parameter results in a decrease388

in the number of edges (see Fig 10),389

3. non-decrease with the increase in the overlap percentage parameter as an increase in that parameter390

up to certain level results in a high number of edges and beyond that level less number of edges391

since some of the small nodes is absorbed by the larger ones. According to Fig 11, that level is392

between 50% and 60% for our data set.393

Moreover, the experiment results show that the modularity score of the Mapper graphs is negatively394

correlated to the reaction time. According to Table 6, the negative correlation is observed in all the Mapper395

graphs with different parameters. All correlation scores, with the strongest recorded at the parameters396

(10−40−5) (see Fig 12), are weak and non-significant.397

We also note that the strongest correlation scores are associated with the lowest clustering parameters398

as an increase in this parameter decreases the number of edges within the same interval which more likely399

contains similar tasks. (see Fig 13)400

Other Methods401

We also visualize the time points before the Mapper algorithm. In Fig 14, we see that the story/math402

paradigm time points overlap with the sensory-motor paradigm time points which indicates that a distance-403

based clustering would not distinguish them.404
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DISCUSSION405

The neural oscillations in the brain change rapidly in response to sensory and cognitive stimulations406

Pfurtscheller and Lopes da Silva (1999). As this fact implies the quick change in functional connectivity407

patterns, it is crucial to analyze dynamic connectivity to gain insight into how the information is processed408

in the brain. There is also increasing clinical interest in dynamic functional connectivity, which is shown409

to be perturbed by diseases such as schizophrenia Damaraju et al. (2014), bipolar disorder Rashid et al.410

(2014), and depression Demirtaş et al. (2016). For clinical applications, there is a need to have methods411

that derive a meaningful conclusion from high spatiotemporal dimensional data on the individual level.412

Moreover, state-of-the-art methods require the temporal and spatial collapse of the data, which may result413

in information loss. Saggar et al. Saggar et al. (2018) has recently addressed these issues for fMRI data414

using the Mapper algorithm that provides an interactive simple visualization of the brain dynamics on an415

individual level during ongoing cognitive tasks. However, it is hard to detect the rapid changes in neural416

activity using hemodynamic signals from fMRI, as they are the proxy of neural activity. In this current417

work, we extend this topological approach to high temporal resolution MEG data which can measure the418

fast fluctuations directly avoiding the autocorrelation structure caused by the hemodynamic response in419

fMRI.420

This new topological approach to the MEG data provides an interactive mathematical graph that tracks421

the brain configuration patterns of each participant during the sensory-motor, story/math, and working422

memory tasks. The Mapper graph for each participant is obtained from pairwise concatenation of the423

MEG data sets of different tasks which are not temporally and spatially1 collapsed in prior. The mesoscale424

graph invariants (i.e. centrality and modularity) of the resulting graphs uncover temporal characteristics of425

the brain configuration.In line with fMRI results Saggar et al. (2018) the centrality invariants statistically426

differentiate story/math and working memory tasks . Working memory task being cognitively more427

demanding has greater centrality values than the story/math data set on the individual level. This result428

is in accordance with the earlier neurophysiological findings of brain dynamics Liu and Duyn (2013);429

Ponce-Alvarez et al. (2015) and previous fMRI results Saggar et al. (2018) where the higher similarity430

between brain regions is observed if the task requires stronger cognitive involvement.431

As noted by O’Neill O’Neill et al. (2018), there are two existing groups of approaches for aggregating432

the time points to measure connectivity between brain regions: (i) using multiple successive time points433

such as in the case of sliding windows2, and (ii) aggregating across the same time point of multiple trials434

to generate connectivity dynamics. The first type of approach is mainly used for experiments without any435

trials (e.g. resting state), while the latter requires multiple task trials. The Mapper graph addresses the436

limitation of both approaches and can be used in the experiments both with or without trials. While there437

are parameters in the Mapper algorithm, the graphs are shown to be robust to the parameter choice. This438

is not the case with the sliding windows (or similar) methods, as the results with small window width439

are governed by the noise, while too large windows are not sensitive to rapid fluctuations. Unlike sliding440

windows, the temporal resolution is also preserved during the calculation of Mapper graphs. Moreover,441

the information loss caused by averaging over trials is avoided in the proposed Mapper pipeline.442

Mapper algorithm applied on high temporal resolution raw MEG data (∼ 800,000 time points)443

also contributes to biological understanding. The following possible connectomic biomarker can be444

extracted from the Mapper graph: The centrality of the Mapper graph that distinguishes working memory,445

story/math, and sensory-motor tasks.446

The Mapper graphs with high modularity (i.e. the nodes containing similar tasks have dense connec-447

tions between them but sparse connections with the remaining nodes) have negative and non-significant448

correlation with the response time of the cognitive tasks. A stronger but statistically weak correlation449

between modularity and response time is also found in fMRI studies Saggar et al. (2018). The weaker450

correlation in MEG is due to a high number of time points (∼800,000) with higher noise compared to451

fMRI data, which has about 1000 time points. In order to improve this results, the future studies can452

investigate different filter functions other than t-SNE. Unlike fMRI, the proposed approach on MEG does453

not detect any correlation between accuracy and modularity possibly due to the high level of noise.454

1While the filter function t-SNE maps the time points to two dimensional space to make the visualization possible, it is still

possible to trace back the activated locations in the brain from the nodes of the mapper graph Saggar et al. (2018). Hence, the spatial

information is not lost during the process.
2Note that sliding windows method calculates region-by-region connectivity on each time window and then explores the change

in standard FC patterns during the experiment.
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Another mesoscale structure that provides biological understanding is centrality. The four centrality455

invariants used in our analysis give similar outcomes for each participant’s Mapper graphs. The high456

number of time points (∼400,000) per paradigm and the computational limitations necessitate the pairwise457

comparison of the working memory, story/math, and sensory-motor paradigms. The centrality of working458

memory and the sensory-motor tasks are shown to be greater than the story/math tasks due to higher459

cognitive demand, as a similar but statistically less significant result is also observed in fMRI Saggar460

et al. (2018). This supports earlier findings indicating that the subjects performing tasks with higher461

cognitive efforts have higher similarity in whole-brain activation patterns compared to the periods of rest462

Liu and Duyn (2013); Ponce-Alvarez et al. (2015). Thus, the nodes containing time points of cognitively463

demanding tasks have more edges connecting resulting in higher centrality scores than the nodes of464

less demanding tasks. In addition, no difference between the centrality of sensory-motor tasks and465

the centrality of working memory is observed. This result, which contradicts the fMRI results for the466

same tasks in Saggar et al. (2018), can be explained by the low number of common subjects (n = 21)467

who performed both tasks. While a little fluctuation in the connectedness of specific brain areas during468

the motor-related tasks that were previously reported supports our findings Bassett et al. (2013), the469

neurophysiological relationship between the motor and the cognitive skills is more complex and still470

under discussion. The proposed topological approach might shed light on this issue from the perspective471

of overall brain dynamics.472

One of the limitations in this current study is the computational expense of generating a Mapper graph473

from 350,000-400,000 time points of the MEG recordings from each individual. It is worth noting that474

new software packages such as NeuMapper Geniesse et al. (2022) are reported to be much more efficient475

compared to KeplerMapper which is used in the current study. Another limitation is to determine the476

minimum number of time points that are required to produce a robust generation of Mapper graphs and477

corresponding graph invariants. As it might not be feasible to acquire sufficiently long recordings from478

individuals for clinical studies. The other possible criticism might be the low number of subjects (n = 21)479

in the concatenated sensory-motor and working memory data which potentially results in higher adjusted480

p-values. The other pairs working memory vs. story/math (n = 60) and sensory-motor vs. story/math481

(n = 45) have a higher number of subjects where the results are more statistically significant. Even though482

it is shown that the results are robust to parameter variation, it will be useful to find a parameter and483

filter function selection and exploration framework for MEG data. In Geniesse et al. (2022), the authors484

propose an algorithm that leverages the autocorrelation structure present in fMRI data due to the slow485

hemodynamic response, which is not the case in MEG data. Another consideration is that results will be486

mainly driven by the alpha band, while different dynamics might occur in the other bands. Future work is487

required to do the same analysis after filtering data in various bands.488

The ultimate aim of this research is to extract novel biomarkers to be used in translational studies given489

high temporal dimensional, minimally processed MEG (or EEG) data sets of individuals. For example,490

brain networks extracted from EEG of ADHD group have a significantly lower clustering coefficient and491

longer characteristic path length than the ones of the control group Jang et al. (2020). Hence, Mapper492

graphs of the individuals with ADHD traits are expected to have lower centrality measures than normal493

individuals. On the other hand, it is argued by Saggar and colleagues in Saggar et al. (2018) that higher494

centrality results are anticipated from the data of depressed patients compared to healthy individuals, as495

depressed patients show more functional connectivity than their healthy counterparts using seed-based496

connectivity approach Berman et al. (2011).497

CONCLUSIONS498

Using the graph theoretical invariants of Mapper graphs, we found that the centrality scores of the working499

memory task are significantly higher than the centrality scores of the story/math task; and the centrality500

scores of the sensory-motor task are significantly higher than the centrality scores of the story/math501

task. These results suggest that whole-brain activation patterns are more similar for tasks requiring502

higher cognitive effort when compared to periods of rest. Likewise, it is demonstrated that there is a503

weak negative and non-significant correlation between the community structure of the graph and the504

response time for the working memory and story/math tasks. Although the high number of time points505

and associated noise contributed to the weak correlation and its non-significance in MEG, this result along506

with the similar fMRI result has a potential to be improved as the individuals with a specific whole-brain507

organization are expected to have faster reaction times. The present study shows the potential contribution508
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of the topological data analysis method (i.e. Mapper) to translational studies, while the resulting interactive509

graphs reveal brain reconfiguration of different frequencies in noisy high-temporal-resolution MEG data510

at an individual level without losing any information by spatiotemporal collapsing.511

As a future direction, it will be interesting to investigate how sensitive the Mapper algorithm is to512

spatiotemporal collapsing and preprocessing steps of MEG data. Specifically, it is essential to com-513

pare concatenated MEG data with continuous MEG data using the Mapper approach, even though514

they earlier revealed similar qualitative and quantitative results during rest and task Fair et al. (2007),515

Gavrilescu et al. (2008), Cheng et al. (2015), Zhu et al. (2017).516

Another concern in the current study is applying Mapper on channel-level MEG data recorded by517

magnetometers; as different source configuration can produce similar MEG channel-level maps, while518

similar source level data can produce different channel-level signals due different head positions. To519

address this issue, future studies should investigate application of Mapper on a set of nodes in the source520

space.521

Another direction is to apply Mapper to a set of nodes in the source space rather than to channel-level522

MEG data recorded by magnetometers. This will address the concern about the fact that different source523

configuration can produce similar MEG channel-level maps, while different head positions could produce524

different channel-level patterns from similar source level patterns.525

In this study, we have chosen Euclidean distance as a similarity measure and t-SNE as a Mapper filter526

function. Inspired by manifold learning Tenenbaum et al. (2000), the use geodesic distances in Mapper527

algorithm has been recently suggested as the geodesic distances preserve the locality of the original528

high dimensional data better than Euclidean distance after dimension reduction Saggar et al. (2022a),529

Saggar et al. (2022b). Moreover, the filter function t-SNE can produce artificial clusters in low dimensions.530

Hence, exploring different similarity measures and filter functions in a future study can provide different531

insights from the MEG data.532

One should also investigate the relationship between mapper graphs and MEG/EEG microstates in533

cognitive tasks. It is expected that the limited number of microstates are highly connected in mapper534

graphs due to their similar topography.535
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Observed Permuted

Subjects Wrkmem Storym Wrkmem Storym

100307 0.2563 0.2006 0.2563 0.2006

102816 0.2372 0.1864 0.2372 0.1864

104012 0.2388 0.2045 0.2388 0.2045

106521 0.2301 0.1881 0.2301 0.1881

108323 0.2477 0.175 0.2477 0.175

109123 0.259 0.1862 0.259 0.1862

116726 0.2235 0.1968 0.2235 0.1968

133019 0.2497 0.1992 0.2497 0.1992

140117 0.2349 0.1942 0.2349 0.1942

146129 0.251 0.1871 0.251 0.1871

149741 0.2653 0.1967 0.2653 0.1967

151526 0.2534 0.1843 0.2534 0.1843

156334 0.2549 0.1963 0.2549 0.1963

158136 0.2528 0.1914 0.2528 0.1914

162026 0.2557 0.1981 0.2557 0.1981

166438 0.2579 0.2036 0.2579 0.2036

169040 0.2604 0.1883 0.1883 0.2604

175540 0.2364 0.1889 0.2364 0.1889

182840 0.2549 0.187 0.2549 0.187

185442 0.238 0.1748 0.238 0.1748

191033 0.2458 0.2021 0.2458 0.2021

191437 0.2373 0.1814 0.2373 0.1814

192641 0.2477 0.1749 0.2477 0.1749

195041 0.2562 0.1878 0.2562 0.1878

200109 0.2378 0.2118 0.2378 0.2118

204521 0.2449 0.1794 0.2449 0.1794

205119 0.2504 0.197 0.2504 0.197

212318 0.2413 0.1867 0.2413 0.1867

212823 0.2454 0.2006 0.2454 0.2006

214524 0.2452 0.2049 0.2452 0.2049

223929 0.2289 0.2115 0.2289 0.2115

248339 0.2403 0.1728 0.2403 0.1728

255639 0.246 0.1714 0.246 0.1714

257845 0.2565 0.2003 0.2003 0.2565

283543 0.2675 0.201 0.2675 0.201

293748 0.2587 0.1883 0.2587 0.1883

353740 0.2471 0.1941 0.2471 0.1941

433839 0.2485 0.1766 0.2485 0.1766

512835 0.2546 0.1846 0.2546 0.1846

555348 0.2528 0.1824 0.2528 0.1824

568963 0.2376 0.1933 0.1933 0.2376

599671 0.2382 0.1812 0.2382 0.1812

601127 0.2503 0.1965 0.2503 0.1965

660951 0.2488 0.2012 0.2488 0.2012

662551 0.2379 0.1976 0.2379 0.1976

665254 0.2509 0.1817 0.2509 0.1817

667056 0.2392 0.1856 0.2392 0.1856

679770 0.2308 0.1993 0.2308 0.1993

706040 0.2086 0.1677 0.2086 0.1677

707749 0.2122 0.166 0.2122 0.166

715950 0.2473 0.1914 0.2473 0.1914

725751 0.2648 0.1928 0.2648 0.1928

735148 0.2398 0.2021 0.2398 0.2021

783462 0.2479 0.1897 0.2479 0.1897

814649 0.2379 0.1899 0.2379 0.1899

825048 0.2393 0.1993 0.2393 0.1993

872764 0.2388 0.1849 0.2388 0.1849

877168 0.2377 0.1856 0.2377 0.1856

891667 0.2473 0.1943 0.2473 0.1943

917255 0.2564 0.2027 0.2564 0.2027

Table 1. Permutation Test. Bold rows represent the swapped centrality scores to create a permutation of

the observed closeness centrality scores of the Mapper graph with parameters 10-40-5. The permutation

test compares the mean of the differences (Wrkmem - Storym) of the permuted centrality scores to the

mean of the differences of the observed centrality scores which are 0.0490 and 0.0547, respectively.
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Parameter Degree Centrality Eigenvector Centrality Betweenness Centrality Closeness Centrality

(I-O-C) µW = µS Test Type µW = µS Test Type µW = µS Test Type µW = µS Test Type

10305 0.009 (P) 1.34E-39 (T) 4.23E-42 (T) 1.49E-36 (T)

10405 3.87E-33 (T) 8.91E-38 (T) 2.64E-37 (T) 0.009 (P)

10505 8.37E-34 (T) 1.22E-37 (T) 1.68E-38 (T) 1.64E-38 (T)

15305 4.28E-34 (T) 3.40E-43 (T) 4.07E-41 (T) 2.08E-31 (T)

15405 3.27E-33 (T) 1.84E-42 (T) 1.43E-40 (T) 4.68E-35 (T)

15505 9.31E-33 (T) 3.26E-41 (T) 1.20E-39 (T) 2.11E-37 (T)

15605 1.52E-35 (T) 9.00E-39 (T) 1.85E-41 (T) 3.24E-38 (T)

20305 1.30E-34 (T) 3.70E-45 (T) 8.55E-41 (T) 7.20E-29 (T)

20405 3.54E-33 (T) 5.49E-45 (T) 2.00E-42 (T) 2.09E-31 (T)

20505 1.58E-31 (T) 1.51E-43 (T) 4.77E-41 (T) 1.31E-34 (T)

20605 6.88E-35 (T) 1.30E-41 (T) 3.94E-42 (T) 7.34E-38 (T)

103010 2.14E-38 (T) 2.71E-42 (T) 5.13E-45 (T) 1.40E-32 (T)

104010 2.96E-35 (T) 2.31E-39 (T) 5.54E-40 (T) 1.18E-33 (T)

105010 1.32E-35 (T) 8.55E-39 (T) 1.30E-39 (T) 4.40E-36 (T)

106010 5.00E-39 (T) 2.56E-36 (T) 1.58E-42 (T) 1.66E-38 (T)

153010 3.02E-36 (T) 3.18E-45 (T) 1.49E-38 (T) 1.56E-28 (T)

154010 9.81E-36 (T) 2.94E-44 (T) 2.29E-41 (T) 3.03E-29 (T)

155010 1.15E-35 (T) 6.53E-44 (T) 1.80E-42 (T) 2.46E-33 (T)

156010 6.66E-37 (T) 1.85E-40 (T) 1.31E-42 (T) 7.83E-36 (T)

203010 2.93E-35 (T) 3.81E-46 (T) 0.009 (P) 8.87E-27 (T)

204010 3.28E-35 (T) 4.43E-46 (T) 0.009 (P) 2.32E-27 (T)

205010 1.10E-34 (T) 9.81E-46 (T) 0.009 (P) 4.72E-30 (T)

206010 1.32E-36 (T) 4.41E-44 (T) 1.43E-44 (T) 1.58E-33 (T)

103015 6.66E-39 (T) 5.22E-44 (T) 2.30E-43 (T) 3.70E-31 (T)

104015 1.89E-36 (T) 5.35E-41 (T) 1.51E-42 (T) 5.81E-31 (T)

105015 1.53E-36 (T) 1.20E-39 (T) 2.62E-39 (T) 3.43E-34 (T)

153015 2.78E-36 (T) 1.24E-45 (T) 3.01E-37 (T) 6.75E-28 (T)

154015 3.49E-36 (T) 3.40E-45 (T) 3.87E-39 (T) 2.25E-27 (T)

155015 1.43E-36 (T) 5.58E-45 (T) 1.36E-43 (T) 2.61E-31 (T)

156015 2.11E-37 (T) 1.19E-41 (T) 1.34E-43 (T) 5.85E-34 (T)

203015 4.21E-35 (T) 3.94E-46 (T) 7.42E-34 (T) 2.08E-26 (T)

204015 2.44E-35 (T) 2.77E-46 (T) 2.21E-36 (T) 7.02E-26 (T)

205015 3.76E-35 (T) 4.16E-46 (T) 6.88E-40 (T) 2.78E-27 (T)

206015 4.64E-37 (T) 4.29E-45 (T) 1.16E-44 (T) 6.35E-31 (T)

103020 9.99E-39 (T) 1.40E-44 (T) 2.61E-42 (T) 1.40E-44 (T)

104020 8.23E-37 (T) 7.69E-42 (T) 8.51E-42 (T) 7.69E-42 (T)

105020 2.20E-37 (T) 5.58E-41 (T) 3.94E-41 (T) 5.58E-41 (T)

153020 1.00E-35 (T) 1.39E-45 (T) 3.68E-35 (T) 1.39E-45 (T)

154020 4.86E-36 (T) 1.69E-45 (T) 4.59E-38 (T) 1.69E-45 (T)
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Parameter Degree Centrality Eigenvector Centrality Betweenness Centrality Closeness Centrality

(I-O-C) µS = µM Test Type µS = µM Test Type µS = µM Test Type µS = µM Test Type

10305 0.009 (P) 1.78E-31 (T) 0.009 (P) 0.009 (P)

10405 0.009 (P) 4.91E-31 (T) 0.009 (P) 0.009 (P)

10505 0.009 (P) 3.58E-29 (T) 0.009 (P) 0.009 (P)

15305 0.009 (P) 1.84E-34 (T) 0.009 (P) 0.009 (P)

15405 0.009 (P) 2.47E-33 (T) 0.009 (P) 0.009 (P)

15505 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)

15605 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)

20305 0.009 (P) 2.35E-35 (T) 0.009 (P) 0.009 (P)

20405 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)

20505 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)

20605 0.009 (P) 9.49E-33 (T) 0.009 (P) 0.009 (P)

103010 0.009 (P) 1.12E-32 (T) 0.009 (P) 0.009 (P)

104010 0.009 (P) 8.19E-32 (T) 0.009 (P) 0.009 (P)

105010 0.009 (P) 1.62E-30 (T) 0.009 (P) 0.009 (P)

153010 0.009 (P) 8.73E-35 (T) 0.009 (P) 0.009 (P)

154010 0.009 (P) 8.37E-35 (T) 0.009 (P) 0.009 (P)

155010 0.009 (P) 1.24E-33 (T) 0.009 (P) 0.009 (P)

156010 0.009 (P) 2.83E-31 (T) 0.009 (P) 0.009 (P)

203010 3.87E-30 (T) 9.59E-35 (T) 3.8E-30 (T) 0.009 (P)

204010 0.009 (P) 5.49E-35 (T) 0.009 (P) 0.009 (P)

205010 0.009 (P) 6.84E-35 (T) 0.009 (P) 0.009 (P)

206010 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)

103015 0.009 (P) 6.43E-33 (T) 0.009 (P) 0.009 (P)

104015 0.009 (P) 1.23E-32 (T) 0.009 (P) 0.009 (P)

105015 0.009 (P) 1.27E-30 (T) 0.009 (P) 0.009 (P)

153015 6.66E-30 (T) 1.11E-34 (T) 0.009 (P) 0.009 (P)

154015 0.009 (P) 1.04E-34 (T) 0.009 (P) 0.009 (P)

155015 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)

156015 0.009 (P) 5.04E-32 (T) 9.72E-32 (T) 0.009 (P)

203015 8.1E-29 (T) 1.36E-33 (T) 0.009 (P) 0.009 (P)

204015 2.13E-29 (T) 8.14E-35 (T) 1.96E-30 (T) 0.009 (P)

205015 0.009 (P) 1.62E-34 (T) 0.009 (P) 0.009 (P)

206015 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)

103020 2.62E-29 (T) 6.21E-33 (T) 0.009 (P) 0.009 (P)

104020 0.009 (P) 1.21E-32 (T) 0.009 (P) 0.009 (P)

105020 0.009 (P) 4.91E-31 (T) 1.55E-30 (T) 0.009 (P)

106020 0.009 (P) 1.68E-28 (T) 5.04E-28 (T) 0.009 (P)

153020 5.49E-29 (T) 2.43E-34 (T) 0.009 (P) 0.009 (P)

154020 1.23E-29 (T) 3.19E-34 (T) 0.009 (P) 0.009 (P)

155020 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)

156020 0.009 (P) 0.009 (P) 1.44E-31 (T) 0.009 (P)

203020 6.39E-28 (T) 6.61E-33 (T) 0.009 (P) 0.009 (P)

204020 1.69E-28 (T) 8.91E-34 (T) 6.7E-29 (T) 0.009 (P)

205020 1.75E-29 (T) 6.03E-34 (T) 0.009 (P) 0.009 (P)

206020 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)

Table 3. Story/math vs. Sensory-motor. Bonferroni corrected p values of either the paired t-test or the

paired permutation test for all types of centrality scores. Highlighted p values in every column represent

the minimum of that column. Note that the minimum values in all columns are less than the significance

level of 0.05 and so are their halves.
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Parameter Degree Centrality Eigenvector Centrality Betweenness Centrality Closeness Centrality

(I-O-C) µM = µW Test Type µM = µW Test Type µM = µW Test Type µM = µW Test Type

10305 0.184 (T) 0.164 (T) 0.203 (T) 0.522 (T)

10405 0.198 (T) 0.167 (T) 0.204 (T) 0.396 (T)

10505 0.262 (T) 0.173 (T) 0.227 (T) 0.498 (T)

15305 0.126 (T) 0.134 (T) 0.165 (T) 0.248 (T)

15405 0.137 (T) 0.11 (T) 0.182 (T) 0.215 (T)

15505 0.165 (T) 0.167 (T) 0.174 (T) 0.288 (T)

15605 0.175 (T) 0.157 (T) 0.19 (T) 0.254 (T)

20305 0.0973 (T) 0.169 (T) 0.175 (T) 0.261 (T)

20405 0.0775 (T) 0.132 (T) 0.139 (T) 0.256 (T)

20505 0.0992 (T) 0.128 (T) 0.185 (T) 0.24 (T)

20605 0.156 (T) 0.129 (T) 0.202 (T) 0.34 (T)

103010 0.257 (T) 0.246 (T) 0.578 (T) 0.771 (T)

104010 0.231 (T) 0.227 (T) 0.447 (T) 0.686 (T)

105010 0.217 (T) 0.198 (T) 0.235 (T) 0.317 (T)

106010 0.387 (T) 0.305 (T) 0.869 (T) 0.611 (T)

153010 0.121 (T) 0.131 (T) 0.263 (T) 0.192 (T)

154010 0.126 (T) 0.106 (T) 0.177 (T) 0.331 (T)

155010 0.149 (T) 0.186 (T) 0.189 (T) 0.351 (T)

156010 0.167 (T) 0.163 (T) 0.282 (T) 0.235 (T)

203010 0.0884 (T) 0.122 (T) 0.136 (T) 0.147 (T)

204010 0.0921 (T) 0.12 (T) 0.159 (T) 0.227 (T)

205010 0.103 (T) 0.115 (T) 0.186 (T) 0.272 (T)

206010 0.131 (T) 0.137 (T) 0.188 (T) 0.261 (T)

103015 0.202 (T) 0.213 (T) 0.297 (T) 0.559 (T)

104015 0.205 (T) 0.188 (T) 0.408 (T) 0.578 (T)

105015 0.203 (T) 0.19 (T) 0.296 (T) 0.443 (T)

106015 0.335 (T) 0.298 (T) 0.667 (T) 0.606 (T)

153015 0.104 (T) 0.107 (T) 0.139 (T) 0.124 (T)

154015 0.112 (T) 0.117 (T) 0.153 (T) 0.307 (T)

155015 0.118 (T) 0.133 (T) 0.153 (T) 0.387 (T)

156015 0.131 (T) 0.148 (T) 0.136 (T) 0.331 (T)

203015 0.0893 (T) 0.14 (T) 0.101 (T) 0.13 (T)

204015 0.0926 (T) 0.138 (T) 0.112 (T) 0.165 (T)

205015 0.108 (T) 0.131 (T) 0.172 (T) 0.247 (T)

206015 0.124 (T) 0.13 (T) 0.122 (T) 0.232 (T)

103020 0.257 (T) 0.25 (T) 0.314 (T) 0.559 (T)

104020 0.199 (T) 0.201 (T) 0.368 (T) 0.63 (T)

105020 0.18 (T) 0.18 (T) 0.218 (T) 0.365 (T)

106020 0.265 (T) 0.24 (T) 0.484 (T) 0.498 (T)

153020 0.117 (T) 0.123 (T) 0.0964 (T) 0.164 (T)

154020 0.12 (T) 0.12 (T) 0.129 (T) 0.279 (T)

155020 0.106 (T) 0.115 (T) 0.119 (T) 0.374 (T)

156020 0.168 (T) 0.183 (T) 0.213 (T) 0.253 (T)

203020 0.0982 (T) 0.136 (T) 0.107 (T) 0.125 (T)

204020 0.101 (T) 0.137 (T) 0.125 (T) 0.141 (T)

205020 0.103 (T) 0.132 (T) 0.131 (T) 0.219 (T)

206020 0.131 (T) 0.148 (T) 0.136 (T) 0.331 (T)

Table 4. Working memory vs. Sensory-motor. Bonferroni corrected p values of the paired t-test for all

types of centrality scores. Highlighted p values in every column represent the minimum of that column.

Note that minimum values in all columns are greater than the significance level of 0.05.

Hypothesis Result

HWS Satisfied

HWM Not Satisfied

HSM Satisfied

Table 5. Summary of results.Our assumptions on the centrality scores of the Mapper graphs of the

paradigms working memory vs. story/math and story/math vs. sensory-motor are valid whereas it is not

for the paradigms working memory vs. sensory-motor.
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Parameters Correlation Significance Parameters Correlation Significance

10405 -0.267126 0.05557 204010 -0.123708 0.382255

20505 -0.260994 0.061645 104015 -0.119964 0.396934

15505 -0.260676 0.061974 153010 -0.111893 0.429676

10505 -0.25259 0.070826 156015 -0.110886 0.433868

10305 -0.238318 0.088873 103015 -0.107187 0.44945

15405 -0.234167 0.094747 206015 -0.099824 0.48137

20605 -0.222254 0.113281 104020 -0.098844 0.485705

15305 -0.217556 0.121308 205015 -0.092262 0.515354

20405 -0.215669 0.124651 156020 -0.090867 0.521749

15605 -0.20907 0.13689 154015 -0.090226 0.524702

155010 -0.179271 0.203498 155020 -0.089571 0.52773

105010 -0.177728 0.207481 103020 -0.08614 0.543722

20305 -0.174525 0.215921 206020 -0.074192 0.601166

205010 -0.168408 0.232699 203010 -0.069045 0.626706

104010 -0.167384 0.235594 204015 -0.059161 0.676963

103010 -0.157533 0.2647 153015 -0.058248 0.681679

106010 -0.142675 0.312971 205020 -0.054341 0.702003

105015 -0.141298 0.317711 153020 -0.050865 0.720262

206010 -0.140536 0.320354 154020 -0.047769 0.736656

156010 -0.134884 0.340397 204020 -0.025744 0.856244

154010 -0.133479 0.345494 203015 -0.019687 0.889826

105020 -0.131414 0.353076 203020 0.006811 0.96178

155015 -0.127178 0.368944

Table 6. Modularity Analysis. Correlation scores in ascending order between the modularity scores and

the reaction times for every Mapper parameter.
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Güçlü, U. and van Gerven, M. A. J. (2017). Modeling the dynamics of human brain activity with recurrent

neural networks. Frontiers in Computational Neuroscience, 11.

Guo, T., Zhang, Y., Xue, Y., Qiao, L., and Shen, D. (2021). Brain function network: Higher order vs.

more discrimination. Frontiers in Neuroscience, 15.

Helm, A., Blevins, A. S., and Bassett, D. S. (2021). The growing topology of the c. elegans connectome.

bioRxiv.

Hinton, G. and Roweis, S. (2002). Stochastic neighbor embedding. In Proceedings of the 15th Interna-

tional Conference on Neural Information Processing Systems, NIPS’02, pages 857–864, Cambridge,

MA, USA. MIT Press.

Hsu, C. L., Voss, M. W., Handy, T. C., Davis, J. C., Nagamatsu, L. S., Chan, A., Bolandzadeh, N., and

Liu-Ambrose, T. (2014). Disruptions in brain networks of older fallers are associated with subsequent

cognitive decline: A 12-month prospective exploratory study. PLOS ONE, 9(4):e93673–.

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M.,

Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., Handwerker, D. A., Keilholz, S.,

Kiviniemi, V., Leopold, D. A., de Pasquale, F., Sporns, O., Walter, M., and Chang, C. (2013). Dynamic

functional connectivity: promise, issues, and interpretations. Neuroimage, 80:360–378.

Jang, K.-M., Kim, M.-S., and Kim, D.-W. (2020). The dynamic properties of a brain network during

16/32PeerJ reviewing PDF | (2023:01:81400:1:1:NEW 1 May 2023)

Manuscript to be reviewed



spatial working memory tasks in college students with adhd traits. Frontiers in Human Neuroscience,

14:371.

Kalyanaraman, A., Kamruzzaman, M., and Krishnamoorthy, B. (2017). Interesting paths in the mapper.

ArXiv, abs/1712.10197.

Khanna, A., Pascual-Leone, A., Michel, C. M., and Farzan, F. (2015). Microstates in resting-state eeg:

Current status and future directions. Neuroscience & Biobehavioral Reviews, 49:105–113.

Kyeong, S., Kim, J.-J., and Kim, E. (2017). Novel subgroups of attention-deficit/hyperactivity disorder

identified by topological data analysis and their functional network modular organizations. PLOS ONE,

12(8):e0182603–.

Larson-Prior, L., Oostenveld, R., Della Penna, S., Michalareas, G., Prior, F., Babajani-Feremi, A.,

Schoffelen, J., Marzetti, L., de Pasquale, F., Di Pompeo, F., Stout, J., Woolrich, M., Luo, Q., Bucholz,

R., Fries, P., Pizzella, V., Romani, G., Corbetta, M., and Snyder, A. (2013). Adding dynamics to the

human connectome project with meg. NeuroImage, 80:190–201.

Lee, H., Noh, G.-J., Joo, P., Choi, B.-M., Silverstein, B. H., Kim, M., Wang, J., Jung, W.-S., and Kim, S.

(2017). Diversity of functional connectivity patterns is reduced in propofol-induced unconsciousness.

Human Brain Mapping, 38(10):4980–4995.

Li, L., Cheng, W.-Y., Glicksberg, B. S., Gottesman, O., Tamler, R., Chen, R., Bottinger, E. P., and

Dudley, J. T. (2015). Identification of type 2 diabetes subgroups through topological analysis of patient

similarity. Science Translational Medicine, 7(311):311ra174–311ra174.

Liu, J. V., Kobylarz, E. J., Darcey, T. M., Lu, Z., Wu, Y.-C., Meng, M., and Jobst, B. C. (2014). Improved

mapping of interictal epileptiform discharges with eeg-fmri and voxel-wise functional connectivity

analysis. Epilepsia, 55(9):1380–1388.

Liu, X. and Duyn, J. H. (2013). Time-varying functional network information extracted from brief

instances of spontaneous brain activity. Proceedings of the National Academy of Sciences, 110(11):4392.

Liu, Z., Fukunaga, M., de Zwart, J. A., and Duyn, J. H. (2010). Large-scale spontaneous fluctuations

and correlations in brain electrical activity observed with magnetoencephalography. NeuroImage,

51(1):102–111.

Lum, P. Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, J.,

and Carlsson, G. (2013). Extracting insights from the shape of complex data using topology. Scientific

Reports, 3:1236 EP –.

Madan, A., Fowler, J. C., Patriquin, M. A., Salas, R., Baldwin, P. R., Velasquez, K. M., Viswanath, H.,

Molfese, D. L., Sharp, C., Allen, J. G., Hardesty, S., Oldham, J. M., and Frueh, B. C. (2017). A novel

approach to identifying a neuroimaging biomarker for patients with serious mental illness. The Journal

of Neuropsychiatry and Clinical Neurosciences, 29(3):275–283.

Mantini, D., Penna, S. D., Marzetti, L., de Pasquale, F., Pizzella, V., Corbetta, M., and Romani, G. L.

(2011). A signal-processing pipeline for magnetoencephalography resting-state networks. Brain

Connectivity, 1(1):49–59.
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Figure 1. Construction of a Mapper graph from a point cloud. The filter function is chosen as the

y-coordinate (height function). After clustering the points whose height fall in the same interval, the

vertices representing the clusters are joined by an edge if they have a common a point. The geometry of

the large number of points is represented by few edges end vertices.
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Figure 2. Working memory vs. Story/math. Box plots showing (from top to bottom) the degree,

eigenvector, betweenness, and closeness centrality scores of the nodes of the Mapper graphs under

different parameters. Parameters (10−60−5),(10−60−15),(10−60−20) are missing due to high

complexity of the calculations and the limitations of our workstation.
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Figure 3. Working memory vs. Sensory-motor. Box plots showing (from top to bottom) the degree,

eigenvector, betweenness, and closeness centrality scores of the nodes of the Mapper graphs under

different parameters. Parameter (10−60−5) is missing due to high complexity of the calculations and

the limitations of our workstation.
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Figure 4. Story/math vs. Sensory-motor. Box plots showing (from top to bottom) the degree,

eigenvector, betweenness, and closeness centrality scores of the nodes of the Mapper graphs under

different parameters. Parameters (10−60−5),(10−60−10),(10−60−15) are missing due to high

complexity of the calculations and the limitations of our workstation.
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Figure 5. Steps of the proposed analysis. Data Collection (Sec. ), Data Preprocessing (Sec. ), Mapper

Graph (Sec. ), Labeling, Centrality and community analysis (Sec. ).
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Figure 6. The Mapper graph of the subject 106521. Nodes contain story/math and sensory-motor

time points. Black nodes have story/math time points in majority whereas green nodes are dominated by

the sensory-motor time points.
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Figure 7. Non normal distribution (p = 0.02 Shapiro–Wilk normality test) of the closeness centrality

scores of the nodes of the Mapper graph with parameters 10-40-5.
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Figure 8. Modularity box plots. The distribution of modularity scores of all subjects are given by box

plots for each set of parameters. x-axis is for the mapper parameters. First two numbers (10, 15 or 20) are

for the interval parameter, following two numbers (30,40,50 or 60) are for the cluster parameter and

remaining numbers (5, 10, 15 or 20) are for the overlap percentage.
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Figure 9. Box plots across interval parameter. Modularity box plots of Mapper graphs over changing

interval parameter while the other parameters remain constant.
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Figure 10. Box plots across cluster parameter. Modularity box plots of Mapper graphs over changing

cluster parameter while the other parameters remain constant.
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Figure 11. Box plots across overlap parameter. Modularity box plots of Mapper graphs over changing

overlap parameter while the other parameters remain constant.
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Figure 12. Modularity scatter plot. Modularity scores of the Mapper graph with the parameters

(10-40-5) vs. the response time in seconds with a fitted regression line.

Figure 13. Correlation box plot. Correlation between the modularity score of the Mapper graphs and

the response time in seconds across the cluster parameters.
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Figure 14. Dimension reduction by t-SNE. Scatter plot of the dataset from the subject 106521 with

story/math and sensory-motor time points after reducing the dimension to two by t-SNE and before the

Mapper algorithm is applied.
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