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ABSTRACT
In recent years, the focus of the functional connectivity community has shifted from
stationary approaches to the ones that include temporal dynamics. Especially, non-
invasive electrophysiological data (magnetoencephalography/electroencephalography
(MEG/EEG)) with high temporal resolution and good spatial coverage have made it
possible tomeasure the fast alterations in the neural activity in the brain during ongoing
cognition. In this article, we analyze dynamic brain reconfiguration using MEG images
collected from subjects during the rest and the cognitive tasks.Our proposed topological
data analysis method, called Mapper, produces biomarkers that differentiate cognitive
tasks without prior spatial and temporal collapse of the data. The suggested method
provides an interactive visualization of the rapid fluctuations in electrophysiological
data during motor and cognitive tasks; hence, it has the potential to extract clinically
relevant information at an individual level without temporal and spatial collapse.

Subjects Neuroscience, Data Mining and Machine Learning, Data Science
Keywords Topological data analysis, MEG, Dynamic functional connectivity, Working memory,
Sensory motor, Mapper

INTRODUCTION
The functional connectivity studies focusing on the co-activation of spatially separated brain
regions have been shown to be fruitful in identifying special features of neural connectivity
during resting state and cognitive tasks (Bastos & Schoffelen, 2016; O’Neill et al., 2015;
Friston, 2011). These results open the way for using functional connectivity as a biomarker
for clinical diagnosis which, for example, measures illness severity (Brookes et al., 2016) and
predicts the response to clinical intervention (Carbo et al., 2017). Despite their success,most
of these methods neglect the temporal variations during neural processes (Sporns, 2013;
Hutchison et al., 2013). Time-resolved approaches, on the other hand, can provide a crucial
understanding of how the information is processed in the brain as functional connectivity
may alter within several hundred milliseconds of a cognitive experiment (Smith et al., 2012;
Chang & Glover, 2010; Tagliazucchi et al., 2012; Antonakakis et al., 2020).

The most common neuroimaging modality to study dynamic functional connectivity
has so far been functional Magnetic Resonance Imaging (fMRI). However, it is a challenge
to monitor the rapid changes in network dynamics within a short time interval using fMRI,
as it only detects a proxy of neuronal activity (i.e., hemodynamic signals) in the brain. In
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this case, the most reasonable time required to calculate connectivity is 30 s (Allen et al.,
2012). On the other hand, electrophysiological modalities (i.e., ECoG, EEG, MEG) address
this issue with their high temporal resolution and decent spatial scales. Recently introduced
MEG/EEG analysis methods (de Pasquale et al., 2010; Liu et al., 2010) enable us to explore
the variations in connectivity dynamics which eventually leads us to the determination of
biomarkers in clinical applications.

The sliding window method is a simple and common approach for measuring dynamic
connectivity in electrophysiological modalities as it is compatible with most of the static
connectivity measures (Brovelli et al., 2017;O’Neill et al., 2015;O’Neill et al., 2017; Carbo et
al., 2017; Lee et al., 2017; de Pasquale et al., 2010; Doron, Bassett & Gazzaniga, 2012; Bassett
et al., 2011; Antonakakis et al., 2020). In this approach, the connectivity is assessed over the
time windows of a fixed width which are shifted by a fixed step from the beginning to the
end of the experiment. The main limitation with this approach is choosing the window
length: While the results with a short window width are affected by noise, the ones with
a long window width ignore the rapid fluctuations in the connectivity. Moreover, a fixed
windowwidth is not appropriate for the experiments with varying timescales of fluctuation.
Hidden Markov Models (HMM) address this issue by measuring the connectivity of the
data over aggregated intervals corresponding to certain states, which are characterized
by the properties of the source level signal (Baker et al., 2014; Vidaurre et al., 2016). A
limitation of this method is scalability in the case of a high number of time points and
subjects. It is also more suitable to apply to a small number of regions at a time due
to possible overfitting resulting from a large number of regions (Vidaurre et al., 2018).
Examination of microstates in resting-state or during task is another well-established
method of analyzing temporal brain activity. Microstates are a series of time intervals
during which the scalp potential field’s configuration is quasi-stable (Michel & Koenig,
2018; Khanna et al., 2015; Milz et al., 2016). Similar to other discrete methods, microstate
analysis collapses the signals on the time scale losing the possibly valuable information
related to the high temporal resolution of MEG data. Different brain patterns might result
in the same microstates as the inverse of the microstates are not unique.The effectiveness of
these discrete approaches to quantify the brain dynamics is still under discussion among the
functional connectivity community (Preti, Bolton & Ville, 2017). An alternative to avoid the
discretization on the temporal scale is the high temporalmeasures of connectivity exploiting
wavelet transform (Dhamala, Rangarajan & Ding, 2008) or Hilbert transform (Breakspear,
2002). Although the high temporal measures are applicable to individual data and capture
the connectivity instantaneously, they require averaging, for example, over the trials of
the task to increase robustness. Collapsing or averaging the data in time or space makes
it difficult to derive the complete picture of how the brain connectivity continuously
evolves during rest and task (Saggar et al., 2018). To improve translational outcomes, it
is important to explore new computational methods that avoid averaging data across
individuals, time, or space.

The use of artificial neural networks (ANN) in scientific studies has been increased
in recent years (Chiniforooshan Esfahani, 2023). This trend can also be noticed in brain
dynamics research. Deep neural network models are used to improve electrophysiological
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source imaging of spatiotemporal brain dynamics (Sun et al., 2022). Physics-informed
neural networks are applied to investigate molecular transport in the human brain
using MRI images (Zapf et al., 2022) and to provide high-resolution maps of velocity,
area, and pressure in the entire brain vasculature from Transcranial Doppler ultrasound
data (Sarabian, Babaee & Laksari, 2022). Various graph neural network architectures
designed to forecast brain activity based on models of spatiotemporal brain dynamics are
compared in Wein et al. (2022). Recurrent neural networks are used to predict feature-
evoked response sequences from fMRI data (Güçlü & van Gerven, 2017).The new MEG
datasets are also emerging to train and test brain-based ANN models. For example, a
narrative comprehension MEG data representing rich variety of temporal dynamics is
provided to test ANN based current natural language processing models against brain data
(Armeni et al., 2022). ANNs have recently been utilized to improve disease diagnosis and
classification. Deep neural networks using resting state EEG data of elderly individuals is
proposed as a diagnosis tool for preclinical Alzheimer’s disease (Park et al., 2022). Attention
deficit and hyperactivity disorder (ADHD) classification with EEG and ANNs is studied in
Martínez González et al. (2022). Another recent application is the detection of Parkinson’s
disease through resting-state EEG based deep neural networks (Shaban & Amara, 2022).
While ANNs are black-box tools with high accuracy for classification and prediction, their
results are hard to interpret due to the complex underlying algorithms. More interactive
and inherently interpretable tools are necessary for clinical use.

To address the above issues, we utilize a topological data analysis (TDA) technique
called Mapper (Singh, Memoli & Carlsson, 2007; Carlsson, 2014) using MEG data from the
Human Connectome Project (Larson-Prior et al., 2013). Due to its low sensitivity to noise
and coordinate and deformation invariance features, the mathematical graph obtained
fromMapper for each subject’s MEG data can be visually and graph-theoretically explored
making it accessible for clinical use.

Mapper has previously been applied to longitudinal MRI revealing two large subgroups
within the population (n= 52) of children diagnosed with Fragile X syndrome. Mapper is
shown to be promising in brain dynamics analysis for fMRI on an individual level (n= 1)
making it valuable for translational studies. Themesoscale graph invariants (i.e.,modularity
and core–periphery) of the output mathematical graph representation not only predict
task performance but also differentiates the time points during evoked tasks and resting
state by locating them at the core and periphery of the Mapper graph, respectively (Saggar
et al., 2018). In a succeeding work, new Python-based interactive visualization tools are
provided to examine Mapper graphs (Geniesse et al., 2019). Limitations of Mapper such as
the need of dimensionality reduction and exploration of vast parameter space are addressed
via NeuMapper framework in Geniesse, Chowdhury & Saggar (2022). Mapper has detected
a transition state of the brain between different neural configuration from resting-state
fMRI data (Saggar et al., 2022b). In another work, Mapper has provided an evidence that
a greater differential engagement of brain activity was achieved using methylphenidate
during an n-back working memory fMRI task (Saggar et al., 2022a). In Zhang, Chowdhury
& Saggar (2023), dynamical systems features are extracted from Mapper graphs to bridge
the gap between data-driven models and mechanistic dynamical systems models.
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Here, we apply the Mapper algorithm to the temporal dimension of MEG data, which,
unlike fMRI, provides direct measurement of whole-brain activity with richer temporal
information. The mesoscale graph invariants of the Mapper graph are shown to be effective
in differentiating data collected during working memory, story/math, and sensor–motor
experimental paradigms. When these paradigms are compared pairwise, it is found that

• the centrality scores of the working memory task are significantly higher than the
centrality scores of the story/math task;
• the centrality scores of the sensory-motor task are significantly higher than the centrality
scores of the story/math task;
• there is no significant difference between the centrality scores of the sensory-motor task
and the centrality scores of the working memory task;

pointing out the high stability in the temporal brain functional during the high
demanding tasks. These results partially agree with the fMRI results (Saggar et al., 2018).
Additionally, for the working memory and the story/math tasks where the performance is
measured and timed, it is shown that there is weak negative and non-significant correlation
between the community structure of the graph and the response time. A stronger but
statistically weak correlation is also noticed in the fMRI study (Saggar et al., 2018). In
summary, Mapper provides an interactive visualization of the rapid fluctuations in
electrophysiological data during rest and cognitive tasks; hence, it has the potential to
extract clinically relevant information at an individual level without temporal and spatial
collapse.

METHODS
Ethics statement
This article utilised data collected for the HCP (Van Essen et al., 2012). The scanning
protocol, participant recruitment procedures, and informed written consent forms,
including consent to share deidentified data, were approved by the Washington University
institutional review board (Van Essen et al., 2012). The IRB approval number is FEB-
20220810-13614.

Subjects and data
The data we use in this research is the human non-invasive resting state and task
Magnetoencephalography (MEG) data set which is publicly available from the Human
Connectome Project (HCP) consortium (Larson-Prior et al., 2013). It is acquired on a
Magnes 3600MEG (4DNeuroImaging, San Diego, CA, USA) with 248 magnetometers and
23 reference channels at the sampling rate of 2034.5101 Hz. The data is available for a total
of 100 subjects each performing three experimental paradigms: Sensory-motor, Working
memory, and Story/Math.

The tasks in the sensory-motor paradigm involve the execution of a simple hand or foot
movement. Which limb on which side is instructed by a visual cue, which serves to pace
the movement. The working memory paradigm is similar or identical to the corresponding
task acquired during fMRI imaging of HCP. Here, the participants have to remember
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the occurrence of n-back previously shown item (with n= 0 and n= 2) with the items
being either tools or faces. Data are segmented to the onset of the non-target item (WM
task). The story/math paradigm is the same as that is used in the fMRI component of the
HCP (Barch et al., 2013). Participants listen either to auditory narratives of around 30 s
duration or matched-duration simple arithmetic problems followed by a 2-alternative
forced choice question (Binder et al., 2011). Subjects respond by right-hand button press
(index or middle finger).

For every subject, all the paradigms consist of two experimental runs. A run consists
of blocks of tasks, a block consists of several trials of the same task with a fixation period
between the trials, and finally, a trial consists of a baseline and a stimulus. We shall also
note that not all data is available for each subject.

For a single subject, the data acquired by Magnes 3600 MEG is processed as follows:

• Noisy channels with a high variance ratio and correlation to neighboring channels are
detected and removed from further analysis.
• The bad channels and segments are removed with iterative independent component
analysis (ICA) using spatial and temporal criteria (Mantini et al., 2011).
• Using ICA, independent components (ICs) are classified as ‘brain’ or ‘noise’ using six
parameters: correlation between IC signals, the correlation between power time courses,
the correlation between spectra, and three additional parameters derived from both
spectral and temporal properties. Physiological artifacts are identified as magneto- and
electro-cardiogram, eye movements, power supply bursting, and 1/f -like environmental
noise. The details of this step can be found in Larson-Prior et al. (2013) and Mantini et
al. (2011).

We note here two of its stages that are related to our preprocessing explained in the next
section. First, the sampling rate is lowered to 506.6275 Hz, and second, the data from noisy
channels are removed. As a result, the time points are reduced by 25% and the channels
across the two runs might not be identical.

Preprocessing
We process the data further per subject and per paradigm. We lower the sampling rate
down to 256 Hz. We remove all the time points corresponding to the fixation trials and
the baseline keeping only the stimulus ones as well as the time points with missing values.
Moreover, to concatenate the data from the two runs, we also remove the non-common
channels across the runs. As a result, a subject for a given paradigm is represented by a
matrix of the form (# channels) ×(# time points). The number of channels is changing
between 200 to 248 depending on the subject, and the number of time points is ranging
between 350,000 and 400,000.

At this point of the preprocessing, each subject is associated with three matrices, one for
every experimental paradigm. As we want to compare the paradigms pairwise, in the next
stage we concatenate these matrices two by two. This way, each subject is still associated
with three matrices corresponding to the cases:

• Working memory and story/math;
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• Working memory and sensory-motor;
• Story/math and sensory-motor.

These matrices are concatenated in the above order across the common channels in the
paradigms. Even though the concatenation results in the loss of some channels, the loss is
not significant and the resulting concatenated matrix has still 200 to 250 channels. In the
meantime, the number of time points in the concatenated matrix is almost doubled and
ranges between 700,000 and 800,000. In the end, the concatenated matrix is transposed so
that the time points are on the vertical axis and the channels are on the horizontal axis.

Finally, we note that this vectorization of theMEG images causes the loss of the locations
of channels relative to each other. However, it is shown in various studies that this process
does not affect the success of the machine learning methods (Bray, Chang & Hoeft, 2009).

Topological data analysis: Mapper
Most of the network neuroscience studies utilize simple graphs focusing on dyadic
connection ignoring higher-order interactions that could be crucial to extract insight
across multiple scales (Torres et al., 2021). The existence, quantification, and comparison
of these higher-order interactions necessitate the use of more advanced mathematical
structures that can be studied by topological data analysis(TDA), which uses techniques
from algebraic topology and computer science to analyze data sets (Centeno et al., 2022).
Analysis of these non-dyadic relations makes it possible to deal with the open problems in
network neuroscience (Andjelković, Tadić & Melnik, 2020; Billings et al., 2021; Guo et al.,
2021; Helm, Blevins & Bassett, 2021; Patania et al., 2019; Santos et al., 2019; Saggar et al.,
2018).

In our study, we adopt a TDA method called Mapper, which is a successful structure
discovery and visualization technique for the exploration of high-dimensional data. The
resulting mathematical graph from Mapper is a highly compact representation of the
complex data revealing insightful coordinate-free visualization. Introduced in 2007 (Singh,
Memoli & Carlsson, 2007), its application to biological data sets includes but is not limited
to disease association, RNA folding, viral evolution, and immunology (Chan, Carlsson &
Rabadan, 2013;Nielson et al., 2015; Li et al., 2015). Hence, its application to brain dynamics
is promising as shown in the earlier studies (Geniesse, Chowdhury & Saggar, 2022; Geniesse
et al., 2019; Saggar et al., 2018; Patania et al., 2019).

The construction of a Mapper graph from a point cloud is illustrated in Fig. 1: (i) The
first step is the choice of a filter which assigns one (or more) values to each data point in
the point cloud. The filter values can be height, coordinate values, a measure of centrality,
or output of any data mining algorithm such as PCA, SVD, SNE, etc. (ii) The next step
is to cover all possible filter values with overlapping intervals (or regions depending on
the dimension of the filter). Three color-coded intervals covering the range of the height
function are shown in Fig. 1. (iii) Next, the points whose filter values fall in the same
interval (or region) clustered using a clustering algorithm such as hierarchical clustering,
k-nearest neighbor (KNN), or single linkage clustering. For clustering, one can use any
metric including correlation, Euclidean, L1 or L∞ metrics. (iv) The nodes representing
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Figure 1 Construction of a Mapper graph from a point cloud. The filter function is chosen as the y-
coordinate (height function). After clustering the points whose height fall in the same interval, the vertices
representing the clusters are joined by an edge if they have a common a point. The geometry of the large
number of points is represented by few edges end vertices.

Full-size DOI: 10.7717/peerj.15721/fig-1

the clusters are finally connected by an edge if the underlying clusters have a non-empty
intersection.

The parameters of the algorithm are the number of intervals (or regions), the overlapping
percentage, the distance metric, and the clustering algorithm. A high number of intervals
increases the number of nodes in the final visualization; hence, defeats the purpose of
having a highly compact representation. While an increase in the overlapping percentage
results in a high number of edges and increases complexity, a low overlapping percentage
produces disconnected clusters and misses the information about variation in the data due
to underlying continuous filter values.

We apply the Mapper algorithm to the MEG data from HCP. We use the open
source KeplerMapper Python package (Veen et al., 2019) to generate Mapper graphs
from the minimally processed data. Our goal is to trace the brain activation patterns of
each participant during working memory, story/math, and motor tasks. As explained
above, the data is concatenated pairwise before entering the Mapper algorithm. It is not
uncommon to use concatenated data to estimate task-state functional connectivity and
brain networks (Richiardi et al., 2011; Hsu et al., 2014; Freeman, Donner & Heeger, 2011;
Liu et al., 2014;Mokhtari & Hossein-Zadeh, 2013; Zhu et al., 2017). Moreover, comparative
studies show that functional connectivity for the concatenated data was both qualitatively
and quantitatively similar to that of continuous data during rest (Fair et al., 2007;Gavrilescu
et al., 2008; Cheng et al., 2015) and task (Zhu et al., 2017).

The input data to Mapper is the (# time points) ×(# channels) dimensional matrix
prepared by the preprocessing explained in Preprocessing.

We choose the Euclidean metric as a similarity measure between the vectors in the
time-space (i.e., column vectors) of the input matrix. The euclidean metric is suitable in
this setting as the ranges and means of the data columns do not vary significantly (Nielson
et al., 2015). The choice of Euclidean metric is also proven to be successful in the previous
applications of neuroimage data: In Romano et al. (2014), Mapper with Euclidean metric
applied on sMRI data reveals high and low functioning neuro-phenotypes within Fragile X
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Syndrome. In Kyeong, Kim & Kim (2017), the method on fMRI data identified two unique
subgroups of ADHD using the Euclidean metric. In another fMRI study, a data-driven
search for different metrics indicates that the Euclidean metric best localizes outcome
measures (Madan et al., 2017).

In the next step, the similarity information determined by the Euclidean metric is
transformed into a low dimensional representation using a non-linear filter called t-SNE
(Hinton & Roweis, 2002), which maintains the local geometry existing in the original
time-space unlike more conventional linear filters such as PCA (van der Maaten & Hinton,
2008; Saggar et al., 2018). Multivariate and non-linear characteristics of inter-regional
interactions suggest the use of non-linear methods such as t-SNE (Reinen et al., 2018;
DiCarlo, Zoccolan & Rust, 2012). The data which is first reduced into two dimensions by
t-SNE is then divided into overlapping bins. Following the earlier practice (Lum et al.,
2013), the time points in each bin are further clustered using single linkage clustering
with the Euclidean metric, which is computationally more efficient compared to the other
clustering methods, and which does not require an initial number of clusters.

The common practice in Mapper applications is to test a large grid of parameters
(i.e., overlapping percentage and number of intervals) to find the most stable graphs.
Even though the stability of the Mapper algorithm under various parameters was studied
before under certain conditions (Carrière & Oudot, 2018; Kalyanaraman, Kamruzzaman
& Krishnamoorthy, 2017), we analyze several parameters of the algorithm to ensure the
reliability of our result.

Centrality and community structure analysis
The mathematical graphs obtained from Mapper can be investigated by focusing its
structures on different scales. It is established through many applications that the
intermediate (mesoscale) structures identify certain characteristics that the local scale
analysis of nodes (or edges) and global level of summary statistics are unsuccessful to
detect. In this article, we concentrate on centrality and modularity mesoscale properties.

Centrality analysis of a network reveals the most important nodes (or edges) based on
a quantification of node-node or node-edge relationships. The centrality of a node can
be perceived as the communication ability with the other nodes or the closeness to the
other nodes (Estrada, 2011). The centrality structure provides a perspective to comprehend
how the brain states evolve during the ongoing task. The nodes with high centrality in the
Mapper graph contain the most common brain activation patterns during the task. Here,
we utilized four centrality measures: degree, eigenvalue, betweenness, and closeness. Based
on the visual evidence from the box plots Figs. 2, 3, and 4 and the similar findings in Saggar
et al. (2018), we claim for any one of those four centrality scores that

HWS: The mean of the centrality score of the nodes dominated by the working memory
paradigm time points is greater than the mean of the centrality score of the nodes
dominated by the story/math paradigm time points.

HWM : Themean of the centrality score of the nodes dominated by the sensory-motor paradigm
time points is greater than the mean of the centrality score of the nodes dominated by
the working memory paradigm time points.
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Figure 2 Working memory vs. Story/math. Box plots showing (from top to bottom) the degree, eigen-
vector, betweenness, and closeness centrality scores of the nodes of the Mapper graphs under different pa-
rameters. Parameters (10−60−5),(10−60−15),(10−60−20) are missing due to high complexity of the
calculations and the limitations of our workstation.

Full-size DOI: 10.7717/peerj.15721/fig-2

HSM : Themean of the centrality score of the nodes dominated by the sensory-motor paradigm
time points is greater than the mean of the centrality score of the nodes dominated by
the story/math paradigm time points.
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Figure 3 Working memory vs. Sensory-motor. Box plots showing (from top to bottom) the degree,
eigenvector, betweenness, and closeness centrality scores of the nodes of the Mapper graphs under differ-
ent parameters. Parameter (10−60−5) is missing due to high complexity of the calculations and the limi-
tations of our workstation.

Full-size DOI: 10.7717/peerj.15721/fig-3

Modularity is one of the most commonly used metric to detect and characterize the
community structure of the networks. Detecting communities in brain networks, are useful
to identify the sub-networks that correspond to specialized functional components (Sporns
& Betzel, 2016). In this article, we use modularity as defined in Newman (2006).
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Figure 4 Story/math vs. Sensory-motor. Box plots showing (from top to bottom) the degree, eigenvec-
tor, betweenness, and closeness centrality scores of the nodes of the Mapper graphs under different pa-
rameters. Parameters (10−60−5),(10−60−10),(10−60−15) are missing due to high complexity of the
calculations and the limitations of our workstation.

Full-size DOI: 10.7717/peerj.15721/fig-4

Analysis pipeline
We summarize all the steps explained so far in the previous sections in Fig. 5.

Earlier studies (Saggar et al., 2018; Saggar & Uddin, 2019; Duman, Tatar & Pirim, 2019)
show that the topological properties of Mapper graphs are robust by construction to
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Figure 5 Steps of the proposed analysis.Data collection, data preprocessing, mapper graph, labeling,
centrality and community analysis.

Full-size DOI: 10.7717/peerj.15721/fig-5

parameter perturbations. To ensure the reliability of the statistical results, we tested our
null hypothesis using 48 different sets of Mapper parameters. The domains for # intervals,
overlap %, and # clusters are {10,15,20}, {30,40,50,60}, and {5,10,15,20}, respectively.
The parameter space is chosen in a way that the resulting Mapper graphs are connected
to make modularity and centrality calculation possible. Statistically significant and reliable
results are obtained for the large portion of parameter values (see Results for details).

To have a better understanding, we also track the steps of the proposed analysis with the
story/math and sensory-motor paradigm time points of the subject, 106521.

After concatenating the paradigms across the common channels, the subject, 106521, is
represented by a matrix of dimensions (357,371×232). The first 177,162 time points of the
357,371 time points belong to the story/math paradigm and the rest to the motor-sensory.
The Mapper algorithm with the projected data by SNE and the parameters 10, 50, and
10 corresponding to the number of intervals, percentage of overlap, and the number of
clusters in the single linkage clustering, respectively, outputs the Mapper graph in Fig. 6. It
has 960 nodes and 13,889 edges. The nodes are either in black if the majority of the time
points in that node belong to the story/math paradigm or in green color if the majority of
the time points in that node belong to the sensory-motor paradigm. In 70% of the nodes
the story/math paradigm time points are in majority and these nodes are on the periphery
of theMapper graph. The remaining 30% of the nodes are dominated by the sensory-motor
paradigm time points which are placed mostly in the center of the graph.

Code accessibility
The code described in the article is available from the corresponding author upon reasonable
request.
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Figure 6 TheMapper graph of the subject 106521.Nodes contain story/math and sensory-motor time
points. Black nodes have story/math time points in majority whereas green nodes are dominated by the
sensory-motor time points.

Full-size DOI: 10.7717/peerj.15721/fig-6

RESULTS
In this section, we discuss the results of the experiments whose details are explained in
the analysis pipeline. We check the reliability of our results by repeating the experiments
with 48 different sets of Mapper parameters. The experiments are carried out in a Python
environment using a workstation with 2 Nvidia GPUs (RTX 2080 Ti, 11 GB VRAM per
GPU), 10 cores CPU (Intel i9-9820X), and 64 GB memory.

Centrality of the Mapper graphs
For every pairwise scenario, working memory vs. story/math, working memory vs. sensory-
motor, and story/math vs. sensory-motor and for every subject, we calculate four different
centrality scores, degree, eigenvector, betweenness, and closeness centralities of the nodes
in the Mapper graphs. Moreover, to show that the results do not depend on the Mapper
graph, we repeat the same experiment with 48 different sets of Mapper parameters. The
Mapper parameter space is made of triples of the form (# intervals, overlap %, # clusters).
The domains for # intervals, overlap %, and # clusters are {10,15,20}, {30,40,50,60}, and
{5,10,15,20}, respectively.
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We look at the pairwise results. In the working memory and story/math paradigms,
there are 60 common subjects. Figure 2 shows that, regardless of the Mapper parameters,
all four centrality scores clearly distinguish the nodes dominated by the working memory
time points from the nodes dominated by the story/math time points. We want to confirm
this visual difference through statistical tests. The most relevant statistical test to use is
the paired t -test that compares the mean of the centrality scores of the nodes dominated
by the working memory time-points (µW ) and the mean of the centrality scores of the
nodes dominated by the story/math paradigm’s time-points (µS). However, the paired
t -test only works under the assumption that sample points follow a normal distribution.
Therefore, we shall check numerically using the Shapiro–Wilk normality test or visually
using probability plots that the differences in centrality scores of different paradigms satisfy
this fact.

There might be Mapper plots with the differences in the centrality scores not following
a normal distribution. For example, the distribution of closeness centrality scores of the
nodes of the Mapper graph with parameters 10-40-5 is non normal distribution with
p= 0.02 Shapiro Wilk normality test (see Fig. 7 for the probability plot). For such cases,
we use the paired permutation test (Good, 2013) with the test statistic being the mean of
the differences between the centrality scores. We shall clarify how the p value of the test
statistics is calculated. First, we calculate the observed mean differences µobs between the
working memory and the story/math paradigms. The permutation test assumes that there
is no difference between the test statistics. The translation of this null hypothesis to our case
is that there is no difference between the paradigms. Hence, we can create new data sets
by swapping the centrality measures of the paradigms for the same subject. We compute
the mean of the differences between the paradigms for every possible new data set and
compare them toµobs. If the alternative hypothesis is that the means are not equal, then the
p value is 2min(pl,pg ) where pg (resp. pl) is the probability of the mean of the differences
being greater (resp. less) than µobs. If the alternative hypothesis is that one of the means
is greater (resp. less) than the other mean, then the p is the probability of the mean of the
differences being greater (resp. less) than µobs. As in the other hypothesis testing, if the p
value is smaller than the significance level of 0.05, we say that the null hypothesis is not
likely to be observed and favor the alternative. In Table 1, we illustrate the permutation test
on the closeness centrality scores of the Mapper graph with parameters 10-40-5. We show
how the paired permutation test creates a permuted data set. Later, the test statistics which
is the mean of the differences in the centrality scores of the paradigms working memory
and story/math are calculated. Going back to hypothesis testing, to verify our claims, we
start with the null hypothesis:
H0: The mean of the centrality scores of the working memory nodes is equal to the mean

of the centrality scores of the story/math nodes.
Based on the Figs. 2, 3 and 4, we expect H0 to be rejected for all the Mapper parameters

and for all centrality score types. Then, we verify whichmean is greater by simply comparing
the sample means. We look at the pairwise combinations one by one. To our expectations,
in working memory and story/math combination, the p values in the columns µW =µS of
the Table 2 being less than 0.05 indicate that we shall reject the null hypothesis in favor of
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Figure 7 Non-normal distribution (p = 0.02 Shapiro–Wilk normality test) of the closeness centrality
scores of the nodes of the Mapper graph with parameters 10-40-5.

Full-size DOI: 10.7717/peerj.15721/fig-7

its alternative which is that µW and µS are significantly different. Moreover, as µS<µW

and halves of all the p values in Table 2 are also less than 0.05, we can deduce that the mean
of the centrality scores of the working memory nodes µW is significantly greater than the
mean of the centrality scores of the story/math nodes µS.

In the case of story/math and sensory-motor combination with 43 common subjects, by
going through similar steps as above, we come to the conclusion using the test results in
Table 3, that themean of the centrality scores of the sensory-motor nodesµM is significantly
greater than the mean of the centrality scores of the story/math nodes µS.

For the final combination of working memory and sensory-motor with 21 common
subjects, the Table 4 shows that the p values of either the paired t -test or the permutation
test under the null hypothesis are all greater than the significance level of 0.05 indicating
that there is not enough evidence to reject the null hypothesis. Hence, we conclude for
all types of centrality scores that mean the mean of the centrality scores of the working
memory µW and sensory-motor µM are not significantly different.

The above discussions show that, when compared pairwise, the centrality score of
the nodes dominated by the time points of the story/math paradigm is the smallest. We
summarize our findings in the Table 5.

Community structure and response time
Subjects’ performances during the working memory and story/math experimental
paradigms are scored and timed. In this section, we investigate if the modularity structure
of the Mapper graphs is related to these measurements.
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Table 1 Permutation Test. Bold rows represent the swapped centrality scores to create a permutation
of the observed closeness centrality scores of the Mapper graph with parameters 10-40-5. The permuta-
tion test compares the mean of the differences (Wrkmem–Storym) of the permuted centrality scores to the
mean of the differences of the observed centrality scores which are 0.0490 and 0.0547, respectively.

Observed Permuted

Subjects Wrkmem Storym Wrkmem Storym

100307 0.2563 0.2006 0.2563 0.2006
102816 0.2372 0.1864 0.2372 0.1864
104012 0.2388 0.2045 0.2388 0.2045
106521 0.2301 0.1881 0.2301 0.1881
108323 0.2477 0.175 0.2477 0.175
109123 0.259 0.1862 0.259 0.1862
116726 0.2235 0.1968 0.2235 0.1968
133019 0.2497 0.1992 0.2497 0.1992
140117 0.2349 0.1942 0.2349 0.1942
146129 0.251 0.1871 0.251 0.1871
149741 0.2653 0.1967 0.2653 0.1967
151526 0.2534 0.1843 0.2534 0.1843
156334 0.2549 0.1963 0.2549 0.1963
158136 0.2528 0.1914 0.2528 0.1914
162026 0.2557 0.1981 0.2557 0.1981
166438 0.2579 0.2036 0.2579 0.2036
169040 0.2604 0.1883 0.1883 0.2604
175540 0.2364 0.1889 0.2364 0.1889
182840 0.2549 0.187 0.2549 0.187
185442 0.238 0.1748 0.238 0.1748
191033 0.2458 0.2021 0.2458 0.2021
191437 0.2373 0.1814 0.2373 0.1814
192641 0.2477 0.1749 0.2477 0.1749
195041 0.2562 0.1878 0.2562 0.1878
200109 0.2378 0.2118 0.2378 0.2118
204521 0.2449 0.1794 0.2449 0.1794
205119 0.2504 0.197 0.2504 0.197
212318 0.2413 0.1867 0.2413 0.1867
212823 0.2454 0.2006 0.2454 0.2006
214524 0.2452 0.2049 0.2452 0.2049
223929 0.2289 0.2115 0.2289 0.2115
248339 0.2403 0.1728 0.2403 0.1728
255639 0.246 0.1714 0.246 0.1714
257845 0.2565 0.2003 0.2003 0.2565
283543 0.2675 0.201 0.2675 0.201
293748 0.2587 0.1883 0.2587 0.1883
353740 0.2471 0.1941 0.2471 0.1941
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Table 1 (continued)

Observed Permuted

Subjects Wrkmem Storym Wrkmem Storym

433839 0.2485 0.1766 0.2485 0.1766
512835 0.2546 0.1846 0.2546 0.1846
555348 0.2528 0.1824 0.2528 0.1824
568963 0.2376 0.1933 0.1933 0.2376
599671 0.2382 0.1812 0.2382 0.1812
601127 0.2503 0.1965 0.2503 0.1965
660951 0.2488 0.2012 0.2488 0.2012
662551 0.2379 0.1976 0.2379 0.1976
665254 0.2509 0.1817 0.2509 0.1817
667056 0.2392 0.1856 0.2392 0.1856
679770 0.2308 0.1993 0.2308 0.1993
706040 0.2086 0.1677 0.2086 0.1677
707749 0.2122 0.166 0.2122 0.166
715950 0.2473 0.1914 0.2473 0.1914
725751 0.2648 0.1928 0.2648 0.1928
735148 0.2398 0.2021 0.2398 0.2021
783462 0.2479 0.1897 0.2479 0.1897
814649 0.2379 0.1899 0.2379 0.1899
825048 0.2393 0.1993 0.2393 0.1993
872764 0.2388 0.1849 0.2388 0.1849
877168 0.2377 0.1856 0.2377 0.1856
891667 0.2473 0.1943 0.2473 0.1943
917255 0.2564 0.2027 0.2564 0.2027

The distribution of modularity scores of all subjects are shown by box plots for different
set of mapper parameters in Fig. 8. x-axis of the figure represents different set of mapper
parameter. The interval parameter given by the first two numbers are either 10, 15 or
20. The following two numbers for the cluster parameter are either 30, 40, 50 or 60. The
remaining numbers represents the overlap percentage which is either 5, 10, 15 or 20. Once
we give a closer look at Fig. 8, we observe that the median of the modularity scores tends to
1. increase with the increase in the interval parameter as an increase in that parameter

results in more nodes, hence more edges in the Mapper graph (see Fig. 9),
2. decrease with the increase in cluster parameter as an increase in that parameter results

in a decrease in the number of edges (see Fig. 10),
3. non-decrease with the increase in the overlap percentage parameter as an increase in

that parameter up to certain level results in a high number of edges and beyond that
level less number of edges since some of the small nodes is absorbed by the larger ones.
According to Fig. 11, that level is between 50% and 60% for our data set.
Moreover, the experiment results show that the modularity score of the Mapper graphs

is negatively correlated to the reaction time. According to Table 6, the negative correlation
is observed in all the Mapper graphs with different parameters. All correlation scores,
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Table 2 Working memory vs. Story/math. Bonferroni corrected p values of either the paired t -test or the paired permutation test for all types of
centrality scores. Bolded p values in every column represent the maximum of that column. Note that maximum values in all columns are less than
the significance level of 0.05 and so are their halves.

Parameter Degree centrality Eigenvector centrality Betweenness centrality Closeness centrality

(I-O-C) µW =µS Test type µW =µS Test type µW =µS Test type µW =µS Test type

10305 0.009 (P) 1.34E−39 (T) 4.23E−42 (T) 1.49E−36 (T)
10405 3.87E−33 (T) 8.91E−38 (T) 2.64E−37 (T) 0.009 (P)
10505 8.37E−34 (T) 1.22E−37 (T) 1.68E−38 (T) 1.64E−38 (T)
15305 4.28E−34 (T) 3.40E−43 (T) 4.07E−41 (T) 2.08E−31 (T)
15405 3.27E−33 (T) 1.84E−42 (T) 1.43E−40 (T) 4.68E−35 (T)
15505 9.31E−33 (T) 3.26E−41 (T) 1.20E−39 (T) 2.11E−37 (T)
15605 1.52E−35 (T) 9.00E−39 (T) 1.85E−41 (T) 3.24E−38 (T)
20305 1.30E−34 (T) 3.70E−45 (T) 8.55E−41 (T) 7.20E−29 (T)
20405 3.54E−33 (T) 5.49E−45 (T) 2.00E−42 (T) 2.09E−31 (T)
20505 1.58E−31 (T) 1.51E−43 (T) 4.77E−41 (T) 1.31E−34 (T)
20605 6.88E−35 (T) 1.30E−41 (T) 3.94E−42 (T) 7.34E−38 (T)
103010 2.14E−38 (T) 2.71E−42 (T) 5.13E−45 (T) 1.40E−32 (T)
104010 2.96E−35 (T) 2.31E−39 (T) 5.54E−40 (T) 1.18E−33 (T)
105010 1.32E−35 (T) 8.55E−39 (T) 1.30E−39 (T) 4.40E−36 (T)
106010 5.00E−39 (T) 2.56E−36 (T) 1.58E−42 (T) 1.66E−38 (T)
153010 3.02E−36 (T) 3.18E−45 (T) 1.49E−38 (T) 1.56E−28 (T)
154010 9.81E−36 (T) 2.94E−44 (T) 2.29E−41 (T) 3.03E−29 (T)
155010 1.15E−35 (T) 6.53E−44 (T) 1.80E−42 (T) 2.46E−33 (T)
156010 6.66E−37 (T) 1.85E−40 (T) 1.31E−42 (T) 7.83E−36 (T)
203010 2.93E−35 (T) 3.81E−46 (T) 0.009 (P) 8.87E−27 (T)
204010 3.28E−35 (T) 4.43E−46 (T) 0.009 (P) 2.32E−27 (T)
205010 1.10E−34 (T) 9.81E−46 (T) 0.009 (P) 4.72E−30 (T)
206010 1.32E−36 (T) 4.41E−44 (T) 1.43E−44 (T) 1.58E−33 (T)
103015 6.66E−39 (T) 5.22E−44 (T) 2.30E−43 (T) 3.70E−31 (T)
104015 1.89E−36 (T) 5.35E−41 (T) 1.51E−42 (T) 5.81E−31 (T)
105015 1.53E−36 (T) 1.20E−39 (T) 2.62E−39 (T) 3.43E−34 (T)
153015 2.78E−36 (T) 1.24E−45 (T) 3.01E−37 (T) 6.75E−28 (T)
154015 3.49E−36 (T) 3.40E−45 (T) 3.87E−39 (T) 2.25E−27 (T)
155015 1.43E−36 (T) 5.58E−45 (T) 1.36E−43 (T) 2.61E−31 (T)
156015 2.11E−37 (T) 1.19E−41 (T) 1.34E−43 (T) 5.85E−34 (T)
203015 4.21E−35 (T) 3.94E−46 (T) 7.42E−34 (T) 2.08E−26 (T)
204015 2.44E−35 (T) 2.77E−46 (T) 2.21E−36 (T) 7.02E−26 (T)
205015 3.76E−35 (T) 4.16E−46 (T) 6.88E−40 (T) 2.78E−27 (T)
206015 4.64E−37 (T) 4.29E−45 (T) 1.16E−44 (T) 6.35E−31 (T)
103020 9.99E−39 (T) 1.40E−44 (T) 2.61E−42 (T) 1.40E−44 (T)
104020 8.23E−37 (T) 7.69E−42 (T) 8.51E−42 (T) 7.69E−42 (T)
105020 2.20E−37 (T) 5.58E−41 (T) 3.94E−41 (T) 5.58E−41 (T)
153020 1.00E−35 (T) 1.39E−45 (T) 3.68E−35 (T) 1.39E−45 (T)
154020 4.86E−36 (T) 1.69E−45 (T) 4.59E−38 (T) 1.69E−45 (T)

(continued on next page)

Duman and Tatar (2023), PeerJ, DOI 10.7717/peerj.15721 18/39

https://peerj.com
http://dx.doi.org/10.7717/peerj.15721


Table 2 (continued)

Parameter Degree centrality Eigenvector centrality Betweenness centrality Closeness centrality

(I-O-C) µW =µS Test type µW =µS Test type µW =µS Test type µW =µS Test type

155020 1.06E−36 (T) 4.68E−45 (T) 2.05E−42 (T) 4.68E−45 (T)
156020 8.73E−38 (T) 1.25E−42 (T) 8.42E−44 (T) 1.25E−42 (T)
203020 1.09E−34 (T) 1.09E−45 (T) 5.00E−32 (T) 1.09E−45 (T)
204020 5.80E−35 (T) 9.05E−46 (T) 1.17E−34 (T) 9.05E−46 (T)
205020 4.99E−35 (T) 4.64E−46 (T) 4.20E−38 (T) 4.64E−46 (T)
206020 4.43E−37 (T) 1.16E−45 (T) 3.16E−44 (T) 1.16E−45 (T)

with the strongest recorded at the parameters (10−40−5) (see Fig. 12), are weak and
non-significant.

We also note that the strongest correlation scores are associatedwith the lowest clustering
parameters as an increase in this parameter decreases the number of edges within the same
interval which more likely contains similar tasks (see Fig. 13).

Other methods
We also visualize the time points before the Mapper algorithm. In Fig. 14, we see that the
story/math paradigm time points overlap with the sensory-motor paradigm time points
which indicates that a distance-based clustering would not distinguish them.

DISCUSSION
The neural oscillations in the brain change rapidly in response to sensory and cognitive
stimulations (Pfurtscheller & Lopes da Silva, 1999). As this fact implies the quick change
in functional connectivity patterns, it is crucial to analyze dynamic connectivity to gain
insight into how the information is processed in the brain. There is also increasing clinical
interest in dynamic functional connectivity, which is shown to be perturbed by diseases
such as schizophrenia (Damaraju et al., 2014), bipolar disorder (Rashid et al., 2014), and
depression (Demirtaş et al., 2016). For clinical applications, there is a need to have methods
that derive a meaningful conclusion from high spatiotemporal dimensional data on the
individual level. Moreover, state-of-the-art methods require the temporal and spatial
collapse of the data, which may result in information loss. Saggar et al. (2018) has recently
addressed these issues for fMRI data using theMapper algorithm that provides an interactive
simple visualization of the brain dynamics on an individual level during ongoing cognitive
tasks. However, it is hard to detect the rapid changes in neural activity using hemodynamic
signals from fMRI, as they are a proxy of neural activity. In this current work, we extend this
topological approach to high temporal resolution MEG data which can measure the fast
fluctuations directly avoiding the autocorrelation structure caused by the hemodynamic
response in fMRI.

This new topological approach to the MEG data provides an interactive mathematical
graph that tracks the brain configuration patterns of each participant during the sensory-
motor, story/math, and working memory tasks. The Mapper graph for each participant is
obtained from pairwise concatenation of the MEG data sets of different tasks which are not
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Table 3 Story/math vs. Sensory-motor. Bonferroni corrected p values of either the paired t -test or the paired permutation test for all types of cen-
trality scores. Bolded p values in every column represent the minimum of that column. Note that the minimum values in all columns are less than
the significance level of 0.05 and so are their halves.

Parameter Degree centrality Eigenvector centrality Betweenness centrality Closeness centrality

(I-O-C) µS =µM Test type µS =µM Test type µS =µM Test type µS =µM Test type

10305 0.009 (P) 1.78E−31 (T) 0.009 (P) 0.009 (P)
10405 0.009 (P) 4.91E−31 (T) 0.009 (P) 0.009 (P)
10505 0.009 (P) 3.58E−29 (T) 0.009 (P) 0.009 (P)
15305 0.009 (P) 1.84E−34 (T) 0.009 (P) 0.009 (P)
15405 0.009 (P) 2.47E−33 (T) 0.009 (P) 0.009 (P)
15505 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)
15605 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)
20305 0.009 (P) 2.35E−35 (T) 0.009 (P) 0.009 (P)
20405 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)
20505 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)
20605 0.009 (P) 9.49E−33 (T) 0.009 (P) 0.009 (P)
103010 0.009 (P) 1.12E−32 (T) 0.009 (P) 0.009 (P)
104010 0.009 (P) 8.19E−32 (T) 0.009 (P) 0.009 (P)
105010 0.009 (P) 1.62E−30 (T) 0.009 (P) 0.009 (P)
153010 0.009 (P) 8.73E−35 (T) 0.009 (P) 0.009 (P)
154010 0.009 (P) 8.37E−35 (T) 0.009 (P) 0.009 (P)
155010 0.009 (P) 1.24E−33 (T) 0.009 (P) 0.009 (P)
156010 0.009 (P) 2.83E−31 (T) 0.009 (P) 0.009 (P)
203010 3.87E−30 (T) 9.59E−35 (T) 3.8E−30 (T) 0.009 (P)
204010 0.009 (P) 5.49E−35 (T) 0.009 (P) 0.009 (P)
205010 0.009 (P) 6.84E−35 (T) 0.009 (P) 0.009 (P)
206010 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)
103015 0.009 (P) 6.43E−33 (T) 0.009 (P) 0.009 (P)
104015 0.009 (P) 1.23E−32 (T) 0.009 (P) 0.009 (P)
105015 0.009 (P) 1.27E−30 (T) 0.009 (P) 0.009 (P)
153015 6.66E−30 (T) 1.11E−34 (T) 0.009 (P) 0.009 (P)
154015 0.009 (P) 1.04E−34 (T) 0.009 (P) 0.009 (P)
155015 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)
156015 0.009 (P) 5.04E−32 (T) 9.72E−32 (T) 0.009 (P)
203015 8.1E−29 (T) 1.36E−33 (T) 0.009 (P) 0.009 (P)
204015 2.13E−29 (T) 8.14E−35 (T) 1.96E−30 (T) 0.009 (P)
205015 0.009 (P) 1.62E−34 (T) 0.009 (P) 0.009 (P)
206015 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)
103020 2.62E−29 (T) 6.21E−33 (T) 0.009 (P) 0.009 (P)
104020 0.009 (P) 1.21E−32 (T) 0.009 (P) 0.009 (P)
105020 0.009 (P) 4.91E−31 (T) 1.55E−30 (T) 0.009 (P)
106020 0.009 (P) 1.68E−28 (T) 5.04E−28 (T) 0.009 (P)
153020 5.49E−29 (T) 2.43E−34 (T) 0.009 (P) 0.009 (P)
154020 1.23E−29 (T) 3.19E−34 (T) 0.009 (P) 0.009 (P)
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1While the filter function t-SNE maps the
time points to two dimensional space
to make the visualization possible, it is
still possible to trace back the activated
locations in the brain from the nodes of
the mapper graph (Saggar et al., 2018).
Hence, the spatial information is not lost
during the process.

2Note that sliding windows method
calculates region-by-region connectivity
on each time window and then explores
the change in standard FC patterns during
the experiment.

Table 3 (continued)

Parameter Degree centrality Eigenvector centrality Betweenness centrality Closeness centrality

(I-O-C) µS =µM Test type µS =µM Test type µS =µM Test type µS =µM Test type

155020 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)
156020 0.009 (P) 0.009 (P) 1.44E−31 (T) 0.009 (P)
203020 6.39E−28 (T) 6.61E−33 (T) 0.009 (P) 0.009 (P)
204020 1.69E−28 (T) 8.91E−34 (T) 6.7E−29 (T) 0.009 (P)
205020 1.75E−29 (T) 6.03E−34 (T) 0.009 (P) 0.009 (P)
206020 0.009 (P) 0.009 (P) 0.009 (P) 0.009 (P)

temporally and spatially1 collapsed in prior. The mesoscale graph invariants (i.e., centrality
and modularity) of the resulting graphs uncover temporal characteristics of the brain
configuration. In line with the fMRI results (Saggar et al., 2018) the centrality invariants
statistically differentiate story/math and working memory tasks . Working memory task
being cognitively more demanding has greater centrality values than the story/math data
set on the individual level. This result is in accordance with the earlier neurophysiological
findings of brain dynamics (Liu & Duyn, 2013; Ponce-Alvarez et al., 2015) and previous
fMRI results (Saggar et al., 2018) where the higher similarity between brain regions is
observed if the task requires stronger cognitive involvement.

As noted by O’Neill et al. (2018), there are two existing groups of approaches for
aggregating the time points to measure connectivity between brain regions: (i) using
multiple successive time points such as in the case of sliding windows,2 and (ii) aggregating
across the same time point of multiple trials to generate connectivity dynamics. The first
type of approach is mainly used for experiments without any trials (e.g., resting state),
while the latter requires multiple task trials. The Mapper graph addresses the limitation
of both approaches and can be used in the experiments both with or without trials. While
there are parameters in the Mapper algorithm, the graphs are shown to be robust to the
parameter choice. This is not the case with the sliding windows (or similar) methods, as
the results with small window width are governed by the noise, while too large windows
are not sensitive to rapid fluctuations. Unlike sliding windows, the temporal resolution is
also preserved during the calculation of Mapper graphs. Moreover, the information loss
caused by averaging over trials is avoided in the proposed Mapper pipeline.

The Mapper algorithm applied on high temporal resolution raw MEG data (∼
800,000 time points) also contributes to biological understanding. The following possible
connectomic biomarker can be extracted from the Mapper graph: the centrality of the
Mapper graph that distinguishes working memory, story/math, and sensory-motor tasks.

The Mapper graphs with high modularity (i.e., the nodes containing similar tasks have
dense connections between them but sparse connections with the remaining nodes) have
negative and non-significant correlation with the response time of the cognitive tasks. A
stronger but statistically weak correlation between modularity and response time is also
found in fMRI studies (Saggar et al., 2018). The weaker correlation in MEG is due to a high
number of time points (∼800,000) with higher noise compared to fMRI data, which has
about 1,000 time points. In order to improve this results, the future studies can investigate
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Table 4 Working memory vs. Sensory-motor. Bonferroni corrected p values of the paired t -test for all types of centrality scores. Bolded p values in
every column represent the minimum of that column. Note that minimum values in all columns are greater than the significance level of 0.05.

Parameter Degree Centrality Eigenvector Centrality Betweenness Centrality Closeness Centrality
(I-O-C) µM =µW Test type µM =µW Test type µM =µW Test type µM =µW Test type

10305 0.184 (T) 0.164 (T) 0.203 (T) 0.522 (T)
10405 0.198 (T) 0.167 (T) 0.204 (T) 0.396 (T)
10505 0.262 (T) 0.173 (T) 0.227 (T) 0.498 (T)
15305 0.126 (T) 0.134 (T) 0.165 (T) 0.248 (T)
15405 0.137 (T) 0.11 (T) 0.182 (T) 0.215 (T)
15505 0.165 (T) 0.167 (T) 0.174 (T) 0.288 (T)
15605 0.175 (T) 0.157 (T) 0.19 (T) 0.254 (T)
20305 0.0973 (T) 0.169 (T) 0.175 (T) 0.261 (T)
20405 0.0775 (T) 0.132 (T) 0.139 (T) 0.256 (T)
20505 0.0992 (T) 0.128 (T) 0.185 (T) 0.24 (T)
20605 0.156 (T) 0.129 (T) 0.202 (T) 0.34 (T)
103010 0.257 (T) 0.246 (T) 0.578 (T) 0.771 (T)
104010 0.231 (T) 0.227 (T) 0.447 (T) 0.686 (T)
105010 0.217 (T) 0.198 (T) 0.235 (T) 0.317 (T)
106010 0.387 (T) 0.305 (T) 0.869 (T) 0.611 (T)
153010 0.121 (T) 0.131 (T) 0.263 (T) 0.192 (T)
154010 0.126 (T) 0.106 (T) 0.177 (T) 0.331 (T)
155010 0.149 (T) 0.186 (T) 0.189 (T) 0.351 (T)
156010 0.167 (T) 0.163 (T) 0.282 (T) 0.235 (T)
203010 0.0884 (T) 0.122 (T) 0.136 (T) 0.147 (T)
204010 0.0921 (T) 0.12 (T) 0.159 (T) 0.227 (T)
205010 0.103 (T) 0.115 (T) 0.186 (T) 0.272 (T)
206010 0.131 (T) 0.137 (T) 0.188 (T) 0.261 (T)
103015 0.202 (T) 0.213 (T) 0.297 (T) 0.559 (T)
104015 0.205 (T) 0.188 (T) 0.408 (T) 0.578 (T)
105015 0.203 (T) 0.19 (T) 0.296 (T) 0.443 (T)
106015 0.335 (T) 0.298 (T) 0.667 (T) 0.606 (T)
153015 0.104 (T) 0.107 (T) 0.139 (T) 0.124 (T)
154015 0.112 (T) 0.117 (T) 0.153 (T) 0.307 (T)
155015 0.118 (T) 0.133 (T) 0.153 (T) 0.387 (T)
156015 0.131 (T) 0.148 (T) 0.136 (T) 0.331 (T)
203015 0.0893 (T) 0.14 (T) 0.101 (T) 0.13 (T)
204015 0.0926 (T) 0.138 (T) 0.112 (T) 0.165 (T)
205015 0.108 (T) 0.131 (T) 0.172 (T) 0.247 (T)
206015 0.124 (T) 0.13 (T) 0.122 (T) 0.232 (T)
103020 0.257 (T) 0.25 (T) 0.314 (T) 0.559 (T)
104020 0.199 (T) 0.201 (T) 0.368 (T) 0.63 (T)
105020 0.18 (T) 0.18 (T) 0.218 (T) 0.365 (T)
106020 0.265 (T) 0.24 (T) 0.484 (T) 0.498 (T)

(continued on next page)
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Table 4 (continued)

Parameter Degree Centrality Eigenvector Centrality Betweenness Centrality Closeness Centrality
(I-O-C) µM =µW Test type µM =µW Test type µM =µW Test type µM =µW Test type

153020 0.117 (T) 0.123 (T) 0.0964 (T) 0.164 (T)
154020 0.12 (T) 0.12 (T) 0.129 (T) 0.279 (T)
155020 0.106 (T) 0.115 (T) 0.119 (T) 0.374 (T)
156020 0.168 (T) 0.183 (T) 0.213 (T) 0.253 (T)
203020 0.0982 (T) 0.136 (T) 0.107 (T) 0.125 (T)
204020 0.101 (T) 0.137 (T) 0.125 (T) 0.141 (T)
205020 0.103 (T) 0.132 (T) 0.131 (T) 0.219 (T)
206020 0.131 (T) 0.148 (T) 0.136 (T) 0.331 (T)

Table 5 Summary of results.Our assumptions on the centrality scores of the Mapper graphs of the
paradigms working memory vs. story/math and story/math vs. sensory-motor are valid whereas it is not
for the paradigms working memory vs. sensory-motor.

Hypothesis Result

HWS Satisfied
HWM Not Satisfied
HSM Satisfied

Figure 8 Modularity box plots. The distribution of modularity scores of all subjects are given by box
plots for each set of parameters. x-axis is for the mapper parameters. First two numbers (10, 15 or 20) are
for the interval parameter, following two numbers (30,40,50 or 60) are for the cluster parameter and re-
maining numbers (5, 10, 15 or 20) are for the overlap percentage..

Full-size DOI: 10.7717/peerj.15721/fig-8

different filter functions other than t-SNE. Unlike fMRI, the proposed approach on MEG
does not detect any correlation between accuracy and modularity possibly due to the high
level of noise.

Another mesoscale structure that provides biological understanding is centrality. The
four centrality invariants used in our analysis give similar outcomes for each participant’s
Mapper graphs. The high number of time points (∼400,000) per paradigm and the

Duman and Tatar (2023), PeerJ, DOI 10.7717/peerj.15721 23/39

https://peerj.com
https://doi.org/10.7717/peerj.15721/fig-8
http://dx.doi.org/10.7717/peerj.15721


Figure 9 Box plots across interval parameter.Modularity box plots of Mapper graphs over changing in-
terval parameter while the other parameters remain constant.

Full-size DOI: 10.7717/peerj.15721/fig-9

computational limitations necessitate the pairwise comparison of the working memory,
story/math, and sensory-motor paradigms. The centrality of working memory and the
sensory-motor tasks are shown to be greater than the story/math tasks due to higher
cognitive demand, as a similar but statistically less significant result is also observed in fMRI
(Saggar et al., 2018). This supports earlier findings indicating that the subjects performing
tasks with higher cognitive efforts have higher similarity in whole-brain activation patterns
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Figure 10 Box plots across cluster parameter.Modularity box plots of Mapper graphs over changing
cluster parameter while the other parameters remain constant.

Full-size DOI: 10.7717/peerj.15721/fig-10

compared to the periods of rest (Liu & Duyn, 2013; Ponce-Alvarez et al., 2015). Thus, the
nodes containing time points of cognitively demanding tasks have more edges connecting
resulting in higher centrality scores than the nodes of less demanding tasks. In addition,
no difference between the centrality of sensory-motor tasks and the centrality of working
memory is observed. This result, which contradicts the fMRI results for the same tasks in
Saggar et al. (2018), can be explained by the low number of common subjects (n= 21) who
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Figure 11 Box plots across overlap parameter.Modularity box plots of Mapper graphs over changing
overlap parameter while the other parameters remain constant.

Full-size DOI: 10.7717/peerj.15721/fig-11

performed both tasks. While a little fluctuation in the connectedness of specific brain areas
during the motor-related tasks that were previously reported supports our findings (Bassett
et al., 2013), the neurophysiological relationship between the motor and the cognitive skills
is more complex and still under discussion. The proposed topological approach might shed
light on this issue from the perspective of overall brain dynamics.
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Table 6 Modularity analysis. Correlation scores in ascending order between the modularity scores and
the reaction times for every Mapper parameter.

Parameters Correlation Significance Parameters Correlation Significance

10405 −0.267126 0.05557 204010 −0.123708 0.382255
20505 −0.260994 0.061645 104015 −0.119964 0.396934
15505 −0.260676 0.061974 153010 −0.111893 0.429676
10505 −0.25259 0.070826 156015 −0.110886 0.433868
10305 −0.238318 0.088873 103015 −0.107187 0.44945
15405 −0.234167 0.094747 206015 −0.099824 0.48137
20605 −0.222254 0.113281 104020 −0.098844 0.485705
15305 −0.217556 0.121308 205015 −0.092262 0.515354
20405 −0.215669 0.124651 156020 −0.090867 0.521749
15605 −0.20907 0.13689 154015 −0.090226 0.524702
155010 −0.179271 0.203498 155020 −0.089571 0.52773
105010 −0.177728 0.207481 103020 −0.08614 0.543722
20305 −0.174525 0.215921 206020 −0.074192 0.601166
205010 −0.168408 0.232699 203010 −0.069045 0.626706
104010 −0.167384 0.235594 204015 −0.059161 0.676963
103010 −0.157533 0.2647 153015 −0.058248 0.681679
106010 −0.142675 0.312971 205020 −0.054341 0.702003
105015 −0.141298 0.317711 153020 −0.050865 0.720262
206010 −0.140536 0.320354 154020 −0.047769 0.736656
156010 −0.134884 0.340397 204020 −0.025744 0.856244
154010 −0.133479 0.345494 203015 −0.019687 0.889826
105020 −0.131414 0.353076 203020 0.006811 0.96178
155015 −0.127178 0.368944

One of the limitations in this current study is the computational expense of generating
a Mapper graph from 350,000–400,000 time points of the MEG recordings from
each individual. It is worth noting that new software packages such as NeuMapper
(Geniesse, Chowdhury & Saggar, 2022) are reported to be much more efficient compared
to KeplerMapper which is used in the current study. Another limitation is to determine
the minimum number of time points that are required to produce a robust generation
of Mapper graphs and corresponding graph invariants. As it might not be feasible to
acquire sufficiently long recordings from individuals for clinical studies. The other possible
criticism might be the low number of subjects (n= 21) in the concatenated sensory-motor
and working memory data which potentially results in higher adjusted p-values. The other
pairs working memory vs. story/math (n= 60) and sensory-motor vs. story/math (n= 45)
have a higher number of subjects where the results are more statistically significant. Even
though it is shown that the results are robust to parameter variation, it will be useful to
find a parameter and filter function selection and exploration framework for MEG data. In
Geniesse, Chowdhury & Saggar (2022), the authors propose an algorithm that leverages the
autocorrelation structure present in fMRI data due to the slow hemodynamic response,
which is not the case in MEG data. Another consideration is that results will be mainly
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Figure 12 Modularity scatter plot.Modularity scores of the Mapper graph with the parameters (10-40-
5) vs. the response time in seconds with a fitted regression line.

Full-size DOI: 10.7717/peerj.15721/fig-12

Figure 13 Correlation box plot. Correlation between the modularity score of the Mapper graphs and the
response time in seconds across the cluster parameters.

Full-size DOI: 10.7717/peerj.15721/fig-13

driven by the alpha band, while different dynamics might occur in the other bands. Future
work is required to do the same analysis after filtering data in various bands.

The ultimate aim of this research is to extract novel biomarkers to be used in translational
studies given high temporal dimensional, minimally processed MEG (or EEG) data sets
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Figure 14 Dimension reduction by t-SNE. Scatter plot of the dataset from subject 106521 with story/-
math and sensory-motor time points after reducing the dimension to two by t-SNE and before the Map-
per algorithm is applied.

Full-size DOI: 10.7717/peerj.15721/fig-14

of individuals. For example, brain networks extracted from EEG of ADHD group have
a significantly lower clustering coefficient and longer characteristic path length than
the ones of the control group (Jang, Kim & Kim, 2020). Hence, Mapper graphs of the
individuals with ADHD traits are expected to have lower centrality measures than normal
individuals. On the other hand, it is argued by Saggar et al. (2018) that higher centrality
results are anticipated from the data of depressed patients compared to healthy individuals,
as depressed patients show more functional connectivity than their healthy counterparts
using seed-based connectivity approach (Berman et al., 2011).

CONCLUSIONS
Using the graph theoretical invariants of Mapper graphs, we found that the centrality
scores of the working memory task are significantly higher than the centrality scores of the
story/math task; and the centrality scores of the sensory-motor task are significantly higher
than the centrality scores of the story/math task. These results suggest that whole-brain
activation patterns are more similar for tasks requiring higher cognitive effort when
compared to periods of rest. Likewise, it is demonstrated that there is a weak negative and
non-significant correlation between the community structure of the graph and the response
time for the working memory and story/math tasks. Although the high number of time
points and associated noise contributed to the weak correlation and its non-significance in
MEG, this result along with the similar fMRI result has a potential to be improved as the
individuals with a specific whole-brain organization are expected to have faster reaction
times. The present study shows the potential contribution of the topological data analysis
method (i.e.,Mapper) to translational studies, while the resulting interactive graphs reveal
brain reconfiguration of different frequencies in noisy high-temporal-resolutionMEG data
at an individual level without losing any information by spatiotemporal collapsing.

As a future direction, it will be interesting to investigate how sensitive the Mapper
algorithm is to spatiotemporal collapsing and preprocessing steps ofMEG data. Specifically,
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it is essential to compare concatenated MEG data with continuous MEG data using the
Mapper approach, even though they earlier revealed similar qualitative and quantitative
results during rest and task (Fair et al., 2007; Gavrilescu et al., 2008; Cheng et al., 2015; Zhu
et al., 2017).

Another concern in the current study is applying Mapper on channel-level MEG data
recorded by magnetometers; as different source configuration can produce similar MEG
channel-level maps, while similar source level data can produce different channel-level
signals due different head positions. To address this issue, future studies should investigate
application of Mapper on a set of nodes in the source space.

Another direction is to apply Mapper to a set of nodes in the source space rather than to
channel-level MEG data recorded by magnetometers. This will address the concern about
the fact that different source configuration can produce similar MEG channel-level maps,
while different head positions could produce different channel-level patterns from similar
source level patterns.

In this study, we have chosen Euclidean distance as a similarity measure and t-SNE as
a Mapper filter function. Inspired by manifold learning (Tenenbaum, Silva & Langford,
2000), the use of geodesic distances in the mapper algorithm has been recently suggested as
the geodesic distances preserve the locality of the original high dimensional data better than
Euclidean distance after dimension reduction (Saggar et al., 2022a; Saggar et al., 2022b).
Moreover, the filter function t-SNE can produce artificial clusters in low dimensions.
Hence, exploring different similarity measures and filter functions in a future study can
provide different insights from the MEG data.

One should also investigate the relationship between mapper graphs and MEG/EEG
microstates in cognitive tasks. It is expected that the limited number of microstates are
highly connected in mapper graphs due to their similar topography.
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