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ABSTRACT
Objectives. To assess the performance of 3D Res-UNet for fully automated segmen-
tation of esophageal cancer (EC) and compare the segmentation accuracy between
conventional images (CI) and 40-keV virtual mono-energetic images (VMI40 kev).
Methods. Patients underwent spectral CT scanning and diagnosed of EC by operation
or gastroscope biopsy in our hospital from 2019 to 2020 were analyzed retrospectively.
All artery spectral base images were transferred to the dedicated workstation to generate
VMI40 kev and CI. The segmentation model of EC was constructed by 3D Res-UNet
neural network in VMI40 kev and CI, respectively. After optimization training, the
Dice similarity coefficient (DSC), overlap (IOU), average symmetrical surface distance
(ASSD) and 95% Hausdorff distance (HD_95) of EC at pixel level were tested and
calculated in the test set. The paired rank sum test was used to compare the results of
VMI40 kev and CI.
Results. A total of 160 patients were included in the analysis and randomly divided
into the training dataset (104 patients), validation dataset (26 patients) and test dataset
(30 patients). VMI40 kevas input data in the training dataset resulted in higher model
performance in the test dataset in comparison with using CI as input data (DSC:0.875
vs 0.859, IOU: 0.777 vs 0.755, ASSD:0.911 vs 0.981, HD_95: 4.41 vs 6.23, all p-value
<0.05).
Conclusion. Fully automated segmentation of EC with 3D Res-UNet has high accuracy
and clinically feasibility for both CI and VMI40 kev. Compared with CI, VMI40 kev
indicated slightly higher accuracy in this test dataset.

Subjects Computational Biology, Gastroenterology and Hepatology, Radiology and Medical
Imaging
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INTRODUCTION
Esophageal cancer (EC) is the seventh most common cancer and sixth leading cause of
cancer deaths worldwide in 2020, accounting for one in 18 cancer deaths (Sung et al.,
2021). At present, surgical treatment remains the main choice for EC, unfortunately
EC is frequently found at an advanced stage when surgery alone cannot achieve cure.
Despite recent medical advances that have enabled a remarkable increase in overall cancer
survival, the prognosis of EC remains poor, with a 5-year survival rate of 20% (Yan
et al., 2019; Pennathur et al., 2013). Although concurrent chemoradiotherapy has been
established as a standard treatment option for unresectable EC, radiotherapy is also one
of the most important treatment strategies for EC (Garg et al., 2016; Babic, Fuchs & Bruns,
2020). Thorax CT images are usually used for EC radiotherapy planning. The critical step
in the planning pipeline involves the extraction of the esophageal gross tumor volume
(GTV) from CT data by manual segmentation. However, manual or even semi-automatic
algorithms are usually operator-dependent, time-consuming and subject to high inter and
intra-observer variability in clinical practice. Thus, developing an automatic and reliable
esophageal GTV segmentation approach is desirable. However, automatic esophageal GTV
segmentation of CT scans has been rarely implemented, and is known to be challenging
due to various shapes, the poor contrast of the tumor with surrounding tissues, and the
existence of foreign bodies in the esophageal lumen.

Currently, the main methods for automatic segmentation of esophageal cancer on CT
images include the following: (1) Atlas-based method: by registering the normal atlas to the
image to be segmented, the corresponding labels in the atlas are used to segment the lesion.
This method is simple and easy to implement, but there are large registration errors and
poor segmentation results (Yang et al., 2017;Wang et al., 2015). (2) Feature-based method:
use features such asmorphology, gray level, and texture in the image to construct a classifier
or cluster for lesion segmentation. Commonly used features includemorphological features,
texture features, and gray level histogram features. This method is easily affected by image
quality and feature selection, and the final effect is difficult to guarantee (Brady et al.,
2021). (3) Deep learning-based method: use convolutional neural networks for end-to-end
learning and segmentation. This method can automatically learn image features for
segmentation, and the effect is good, but it requires a large amount of training data. In
recent years, with the development of deep learning technology, deep learning algorithms
have been widely used in the field of medical image segmentation. U-Net has gradually
become a hot spot in the field of image segmentation due to its good segmentation
performance (Ronneberger, Fischer & Brox, 2015). Several studies have developed specific
deep learning-based models relying on a U-Net convolutional architecture for automatic
segmentation of the lung, heart and liver, yielding promising results, with a reported Dice
Similarity Coefficient (DSC) between 0.92 and 0.95 (Zhu et al., 2019; Ammar, Bouattane
& Youssfi, 2021; Jin et al., 2020b). Although there have been some studies on CT-based
automatic segmentation of esophageal tumors, automatic segmentation of esophageal
tumors in CT images is still a challenging task due to the low contrast between the tumor
and surrounding tissues. This field is still in the exploratory stage and requires further
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research to improve segmentation accuracy and better apply it in clinical practice (Yousefi
et al., 2021; Jin et al., 2022; Yue et al., 2022).

Dual-layer spectral-detector computed tomography (SDCT) can acquire temporal
and spatial matched high- and low-energy photons from the same X-ray source, which
also enables material decomposition in the projection domain. The anti-correlated noise
suppression and iterative reconstruction algorithms are also applied, resulting in image
noise reduction and image quality improvement (Ozguner et al., 2018; Lu et al., 2019; Kim
et al., 2019). Virtual monoenergetic imaging (VMI) is a technique used in computed
tomography (CT) imaging to generate images at a specific energy level, also known as
a monoenergetic image. VMI images are derived from a spectral CT acquisition that
captures the attenuation of X-ray photons at different energy levels. VMI are equivalent
to single-energy radiographs, including 161 energy levels ranging from 40 to 200 keV.
Certainly, the VMI 40 keV has a good soft tissue resolution and maintains low noise,
which makes it suitable for routine lesion detection and observation of subtle differences
in soft tissue. Bruns et al. (2020) showed that virtual mono-energetic images improve the
accuracy of a fully convolutional network used for myocardial segmentation on cardiac
CT angiography (CCTA) images, with the DSC increased from 0.846 to 0.901 compared
with only conventional CCTA images. Dima et al. (2021) trained a U-Net based model to
segment peripancreatic arteries on iodine material decomposition images, and the final
DSC exceeded 0.95. These studies implied that spectral images obtained using SDCT can
provide additional information to optimize the algorithms. To our knowledge, it has
not been investigated whether the automatic segmentation model performance can be
improved using VMI40 keV compared to CI.

The main purpose of this study was to evaluate the performance of the 3D Res-UNet for
fully automated segmentation of EC on SDCT scans acquired for radiotherapy treatment
planning, and compare performance between CI and VMI40 keV data.

MATERIALS AND METHODS
All procedures performed in studies involving human participants were in accordance with
the ethical standards of the institutional. Informed consent was waived by Institutional
Review Board due to retrospective study characteristics.

Patient enrollment
This retrospective study was approved by the institutional review board of Zhongshan
Hospital affiliated to Xiamen University, and informed consent was waived. The Ethical
Approval number was XMZSYY-AF-SC-12-03. 259 Patients with histologically confirmed
EC by biopsy or surgery, who underwent enhanced CT with SDCT from May 2019 to
December 2020 were selected for this study. Exclusion criteria were: (a) chemotherapy or
radiotherapy or other anticancer treatments before the IQonCT scans; (b) a history of other
malignancies; and (c) incomplete medical records. After excluding 99 cases, 160 patients
were finally enrolled in this study and randomized divided into the training dataset (104
patients), validation dataset (26 patients) and test dataset (30 patients). Figure 1 depicts
the process used to select the images.
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Figure 1 Flow chart depicting the selection of the study patients.
Full-size DOI: 10.7717/peerj.15707/fig-1

CT image acquisition
Chest CT was performed in both the arterial and venous phases on a SDCT (IQon Spectral
CT, Philips Healthcare, Best, The Netherlands). All the patients were in the supine position,
with both arms raised and breathing calmly; while holding the breath, scanning range was
from the epiglottis to the costophrenic angle to ensure coverage of all esophageal and lung
tissues. Before initiating contrast-enhanced scanning, 70 ml contrast medium (Ultravist
injection at a concentration of 300 mg/ml; Bayer, Leverkusen, Germany) was injected
through the elbow vein at a rate of 2.5 ml/s using a power injector. After the injection,
20–30 ml of normal saline was injected for flushing at a rate of 3 ml/s. Arterial and venous
phase images were acquired at 25s and 60s. The following scanning parameters were used:
detector collimation, 64×0.625 mm; tube voltage, 120 kV; tube current, 180–250 mA;
rotation speed, 0.33s/rot; helical pitch, 0.671; matrix, 512×512.

Image reconstruction
Spectral base image (SBI) datasets were reconstructed, with a spectral level of three, a slice
thickness of one mm, a slice increment of one mm, standard kernel (B) with a window
width of 400 HU & a level of 40 HU, and sharp kernel (YB) with a window width of−1400
HU & a level of −600 HU.

All arterial phase images were transferred to the dedicated workstation (IntelliSpace
V9, Philips Healthcare) for further analysis. Both conventional images (CI) and virtual
mono-energetic images at 40 keV (VMI40 keV) were derived from SBI.

Esophageal cancer annotation
An open-source software (3D slicer, version 4.11, https://www.slicer.org/) was used to
delineate EC contours manually. All the tumor contours were drawn on each slice of
VMI40 kev by a radiologist with 8 years of experience and peer-reviewed by a senior
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radiologist with 15 years of experience. The adjacent airway, lymph nodes, heart, vascular
structures and thoracic vertebrae were avoided during contour drawing. Dice similarity
coefficient (DSC) was performed to assess consistency between the two observers for EC
segmentation.

Image pre-processing
Image pre-processing was performed as follows. (1) All voxel sizes were reset to 1 mm ×
1 mm × 1 mm by linear interpolation, and matrices were defined as n ×150×180 (slices
×columns ×rows) by Simple ITK (version 2.1, https://simpleitk.org/) just for the inclusion
of the EC and a small amount of adjacent tissues, to reduce the calculation burden and
graphic card’s memory storage. (2) The ScaleIntensityRanged function inMONAI (version
0.6, https://monai.io/) was used to rescale the density values of our images and all density
values in our images which ranged from −50 HU (minimum) to 400 HU (maximum),
were normalized and artificially scaled to a range of 0 to 1 using this function. (3) Before
sending the images into a convolutional neural network, all images in the training dataset
were randomly cropped to size of 96×96×96 mm3 and data augmentation was achieved
in the training dataset by image flipping and rotation using the RandCropByPosNegLabeld
and RandAffined functions in MONAI.

Automatic segmentation model and training
In this study, 3DRes-UNet, the classical U-net scheme combinedwith a residual connection
unit (RCU), was used for the automatic segmentation task. Five residual units were added
to the automatic segmentation model in this study, The model uses a kernel size of (3,
3, 3) and varying number of channels (16, 32, 64, 128, 256) to build the layers of the
encoder and decoder. It uses a stride of two to downsample the spatial dimensions of the
encoder and residual units with batch normalization to improve the model’s robustness.
The architecture of the automatic segmentation model is shown in Fig. 2

The Adam optimizer was used to train the automatic segmentation model with the Dice
loss function as the cost function. The batch size was set to eight, the learning rate was set
to 0.0001. The model was trained for 600 epochs. The curves depicting the training process
of the networks are presented in both Fig. 3.
The model was built using PyTorch (version 1.8, https://pytorch.org/) andMONAI (version
0.6, https://monai.io/) and trained on a Linux workstation (Ubuntu version 20.04) with one
NVIDIA GeForce GTX3090 GPU with 24 GB memory (NVIDIA, Santa Clara, VA, USA).

Evaluation of segmentation performance in the test dataset
After training the model, we examined its performance in predicting the ROIs in the test
dataset. Segmentation accuracy was evaluated using the DSC as follows. (1) A statistical
measure of spatial overlap also defined as DSC was derived as 2TP/(FP+2TP+FN), where
TP, FP and FN are the numbers of true positive, false positive and false negative detections,
respectively. (2) Intersection of union (IOU) was defined as TP/(FP+TP+FN), which
evaluates the numbers of TP and FN detections. (3) Average Symmetric Surface Distance
(ASSD)was defined as ASSD(A,B)= 1

S(A)+S(B)(
∑

sA∈S(A)d (sA,S(B))+
∑

sB∈S(B)d(sB,S(A))),
where S(A) denotes the set of surface voxels of A. The shortest distance of an arbitrary
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Figure 2 Detailed architecture of the 3D ResUnet.
Full-size DOI: 10.7717/peerj.15707/fig-2

Figure 3 Loss curve of the training process for Models VMI40 keV and CI (A). Evaluationmetric curve
of the training process for VMI40 keV and CI (B).

Full-size DOI: 10.7717/peerj.15707/fig-3

voxel ν to S(A) was defined as: d(ν,S(A))=min‖ν−
sA∈S(A)

sA‖, where ‖.‖ denotes the Euclidean

distance. (4) 95% Hausdorff Distance (HD_95) was defined as H(A,B) = max(h(A,B),
h(B,A)), a measure that describes the 95th percentile of all distances between points in
image A and the nearest point in image B, where h(A,B) = max(a ∈A)min(b ∈B) ‖a-b ‖
and h(B,A) = max(b ∈B)min(a ∈A) ‖b-a ‖ and ‖b-a ‖ is the Euclidean distance.
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Table 1 Participant demographics.

Variable Train and
validation

Test P value

n 104 + 26 30
Age (year) 63.7±9.1 63.7±10.1 0.999
Sex Male 98 26

Female 32 4
0.275

Histopathology
Squamous cell 126 28
Non-Squamous cell 4 2 0.689

Grade of differentiation
Well/moderate 115 28
poorly 15 2 0.651

Location
Cervical upper and upper+ middle 79 19
Middle +lower and lower 51 11 0.795

Tumor size(mm3) 24.97(12.56,34.99) 21.34(14.23,40.48) 0.481
T stage

2 10 3
3 97 24
4 23 3 0.565

Notes.
Categorical factors are displayed as n and continuous factors are displayed as mean±SD or interquartile ranges.

Statistical analysis
Statistical analyses were performed with R (version 4.0; R Core Team, 2020). Patients’ age
in the training plus validation datasets versus test dataset were compared with two-tailed
Independent t -test. The sex, histopathological features, differentiation grade and T stage of
EC were compared by the two-sided Fisher’s exact test. The independent sample rank-sum
test was used for comparing tumor size. DSC, IOU, ASSD and HD_95 in the test dataset
with VMI40 keV and CI as input data were compared by the paired Wilcoxon signed-rank
test. P < 0.05 was considered statistically significant.

RESULTS
Patient characteristics
A total of 160 patients were included in the analysis. They were aged from 39 to 88 years
(mean of 64 years). Table 1 lists clinical and demographic features in the training and
validation and test datasets. The results showed no statistically significant differences in
clinical and demographic characteristics between the training and validation and test
datasets. The histopathological types were squamous cell carcinoma, adenocarcinoma and
small cell carcinoma, most of which were well differentiated or moderately differentiated.
Tumor sizes ranged from 4.16 cm3 to 142.82 cm3 (median of 24.97 cm3). The DSC for the
EC segmentation between the two observers was 0.898 ± 0.036.
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Figure 4 Segmentation results on VMI40 keV and CI VMI40 keV (A) and CI (B). Red and blue contours
are label and segmentation, respectively.

Full-size DOI: 10.7717/peerj.15707/fig-4

Table 2 DSC, IOU, ASSD and HD_95 of EC for VMI40 kev and CI in the test dataset using the automatic
segmentationmodel.

Metric, median
(Q1, Q3)

VMI40 keV CI P-value

DSC 0.874(0.835,0.901) 0.859(0.787, 0.899) 0.022
IOU 0.777(0.716,0.820) 0.755(0.651,0.817) 0.021
ASSD (mm) 0.911(0.619, 1.296) 0.981(0.627,1.762) 0.028
HD_95 (mm) 4.41(3.00, 9.25) 6.23(3.45, 14.94) 0.035

Model performance
3D Res-UNet was applied to automatically segment the target volumes of EC on CT images.
Segmentation results for a representative patient for VMI40 keV and CI are shown in Fig. 4.
The median results of DSC, IOU, ASSD and HD_95 statistics for the segmentation indexes
VMI40 keV and CI in the test dataset are shown in Table 2, while Fig. 5 shows the distribution
of the results. We trained and evaluated 3D Res-UNet on VMI40 keV and CI, separately.
There were statistically significant differences in DSC, IOU, ASSD and HD_95 between
the models with VMI40 keV and CI. The results of VMI40 keV were slightly better for the
CI with the automatic segmentation model in DSC, IOU, ASSD and HD_95. According
to the good agreement threshold of the DSC (DSC ≥0.7) (Zijdenbos et al., 1994; Bartko,
1991), automatic segmentation results for the EC of VMI40 keV and CI were consistent with
manual segmentation results.
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Figure 5 Four indicators to evaluate the segmentation performance of automatic models distribution
of four evaluationmetrics. (A) DSC and ASSD, (B) IOU and HD_95 of ROIs determined in test dataset
(30 patients), for each segmentation mask (no patient’s dice below 0.5).

Full-size DOI: 10.7717/peerj.15707/fig-5

DISCUSSION
In this study, the 3D Res-UNet convolutional neural network (CNN) algorithmwas trained
for EC segmentation using enhanced VMI40 keV. After training, the CNN model could be
used for the automatic segmentation of EC on both enhanced VMI40 keV and CI with a
median DSC greater than 85%.

CNN architectures are supervised models that are trained end to end to learn a hierarchy
of features representing different levels of abstraction in a data-driven manner; therefore,
good data determine a good model. There is a lack of soft tissue contrast on CT images,
some of which are unsatisfactory. Yousefi et al. (2018) presented a 3D end-to-end method
based on a CNN for esophageal gross tumor volume segmentation, which achieved a
DSC value of 0.73 ± 0.20. Jin et al. (2020a) introduced a progressive semantically-nested
network segmentation model for gross tumor volume segmentation of esophageal cancer
with a DSC value of 0.751. Huang et al. (2020) investigated a Channel-Attention U-net
for semantic segmentation of the esophagus and EC, with a value for IOU in EC of only
0.625. Table 2 shows our model had a median IOU of 0.777 for VMI40 keV and 0.755 for
CI, indicating its superiority over the previously reported models. Our model achieved a
median DSC of 0.874 for VMI40 keV and 0.859 for CI, further improving the accuracy of
automatic segmentation, which may be explained by that better data with best contrast to
noise ratios (CNRs) were obtained in this study to train a better model drawing the tumor
contours on VMI40 keV arterial phase images (Kang et al., 2019;Mochizuki et al., 2022).

Although SDCTcanprovide bothVMI andCI, the patientswere scanned by conventional
CT during daily work. In this research, we trained the CNN with same label on both
VMI40 keV and CI produced by SDCT, and compared their segmentation accuracies,
achieving median DSCs of 0.874 for VMI40 keV and 0.859 for CI. This means the model
trained on CI also had a good segmentation performance, supporting the use of the trained
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Figure 6 A patient with EC located in the lower thoracic segment leading to obstruction and effusion
of the upper esophagus. (A & C) VMI40kev. (B & D) CI. Red and blue contours are label and segmenta-
tion, respectively. The yellow triangular arrow points to lymph nodes in (C). The segmentation on CI of
(B) and (D) shows an overestimation of the EC.

Full-size DOI: 10.7717/peerj.15707/fig-6

CNN for automatic segmentation of organs or tumors on outside-sourced conventional
CT images.

According to this research, the difference in the segmentation performance of DSC
was statistically significant (p< 0.05) between VMI40 keV and CI (median DSC 0.874 vs.
0.859), and similarly as IOU, ASSD and HD_95. The possible reasons are that low-keV
VMI significantly improved attenuation and signal-to-noise ratio for the primary tumor,
and the CNR of the primary tumor vs. circumjacent anatomical structures (esophageal
wall, diaphragm and liver parenchyma) was significantly higher in low-keV VMI, peaking
at VMI40 keV (Lee et al., 2018). Figure 6 shows the segmentation contour of EC between
VMI40 keV and CI, as VMI40 kev highlighted the edges of the soft tissue, especially when
the obstruction of esophageal cancer leads to the dilatation and effusion of the upper
esophagus; thus, the DSC of EC was improved by 0.148. However, this may cause another
problem: other tissues such as lymph nodes adjacent to the EC may be regarded as part of
the EC. Using VMI40 keV as input data improved the accuracy of segmentation.

The overall effect of the experiment was good both for VMI40 keV and CI. According to
Table 2, automatic segmentation had a more stable performance for VMI40 keV compared
with CI. There was a segmentation effect of our network on some small boundaries when
the EC had a cavity, especially on conventional images. Figure 7 shows a patient in whom
the upper half of the EC like the wall around was discarded. Our network achieved the
worst segmentation performance with a DSC of 0.606 for CI, which was improved to 0.841
for VMI40 keV. Unfortunately, the part of the EC adjacent to the thoracic vertebrae was too
thin, and was abandoned both on VMI40 keV and CI.

Besides its retrospective design, this study had some limitations. First, it had a single-
center design and used a single CT scanner. As only data from our institution were applied,
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Figure 7 A patient with upper thoracic EC showing constricted portion (lower) and non-constricted
portion (upper). (A) VMI40kev, (B) CI. Spot film of the barium-swallow study (C) and endoscopic image
(D) indicated the upper affected but non-constricted portion of EC. Image B shows missed segmentation
of the non-constricted upper portion on CI.

Full-size DOI: 10.7717/peerj.15707/fig-7

generalization to other scanners and sites requires the testing of the generalizability of
our automatic segmentation model. Secondly, the sample size of this study was limited. A
network is affected by the sample size, and the generalization ability of the model has not
been fully verified. Some cases with poor segmentation were found in EC; because of the
limited cases included in the current study, more cases are needed to improve the accuracy
of automatic segmentation in these cases. In the future, we plan to apply our model to
datasets obtained with various CT scanners in various institutions. Thirdly, metastatic
lymph node was also required to delineate along with EC lesion for radiotherapy treatment
planning. While our primary study only focused on the EC lesion segmentation.

CONCLUSION
In conclusion, automatic EC segmentation is clinically feasible with 3D-ResUNet, and using
VMI40 keV can increase its accuracy. Fully automated localization and segmentation of EC
based on the present study could be valuable for detection, diagnosis and chemoradiation
therapy planning in the future.
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