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ABSTRACT
Purpose. This study aimed to develop a prediction model to classify RPE65-mediated
inherited retinal disease (IRDs) based on protein secondary structure and to analyze
phenotype-protein structure correlations of RPE65 missense variants in a Chinese
cohort.
Methods. Pathogenic or likely pathogenic missense variants of RPE65 were obtained
from UniProt, ClinVar, and HGMD databases. The three-dimensional structure of
RPE65 was retrieved from the Protein Data Bank (PDB) and modified with Pymol
software. A novel prediction model was developed using LASSO regression and
multivariate logistic regression to identify RPE65-associated IRDs. A total of 21 Chinese
probands with RPE65 variants were collected to analyze phenotype-protein structure
correlations of RPE65 missense variants.
Results. The study found that both pathogenic and population missense variants were
associated with structural features of RPE65. Pathogenic variants were linked to sheet,
β-sheet, strands, β-hairpins, Fe2+ (iron center), and active site cavity, while population
variants were related to helix, loop, helices, and helix–helix interactions. The novel
prediction model showed accuracy and confidence in predicting the disease type of
RPE65 variants (AUC = 0.7531). The study identified 25 missense variants in Chinese
patients, accounting for 72.4%of totalmutations. A significant correlationwas observed
between clinical characteristics of RPE65-associated IRDs and changes in amino acid
type, specifically for missense variants of F8 (H68Y, P419S).
Conclusion. The study developed a novel prediction model based on the protein
structure of RPE65 and investigated phenotype-protein structure correlations of RPE65
missense variants in a Chinese cohort. The findings provide insights into the precise
diagnosis of RPE65-mutated IRDs.
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INTRODUCTION
The retinal pigment epithelium-specific 65 kD protein (RPE65) is a retinoid
isomerohydrolase that plays a critical role in the regeneration of 11-cis retinol in the visual
cycle. Encoded by the RPE65 gene (OMIM 180069), this protein is expressed exclusively
in the retinal pigment epithelium (Moiseyev et al., 2005). Autosomal recessive mutations
in RPE65, often involving bi- or multi-allelic mutations, can lead to photoreceptor
degeneration in humans (Gu et al., 1997). Clinically, a majority of RPE65 variants
(approximately 67%) are commonly associated with Leber congenital amaurosis (LCA)
or retinitis pigmentosa (RP) phenotypes (approximately 16%) (Stenson et al., 2017),
which have similar fundus manifestations (Aoun et al., 2021). In 2017, the US Food and
Drug Administration approved voretigene neparvovec (Luxturna®; Spark Therapeutics,
Philadelphia, PA, USA) gene therapy for the treatment of patients with viable retinal cells
and confirmed biallelic RPE65 mutation-associated retinal dystrophy (Russell et al., 2017).
However, while timing the initiation of gene therapy is an important consideration, we
still need more information about the natural history of the disease to better guide clinical
applications (Botto et al., 2022; Sodi et al., 2021). Therefore, understanding the correlation
between mutation and phenotype is critical.

RPE65 is a beta-propeller fold protein comprised of seven blades. Splicing and frameshift
mutations in this protein can result in a truncated and non-functional protein product
that is presumed to be null and irrelevant (Gu et al., 1997). However, predicting the
significance of missense variations associated with RPE65-mediated inherited retinal
diseases (IRDs) is challenging as both benign and pathogenic variations coexist in almost
every disease-associated gene (Lek et al., 2016). In RPE65-associated IRDs, the analysis of
missense mutants is particularly challenging as it is difficult to predict the significance of
variants of uncertain significance (VUS). Mutations causing disease often occur in regions
with secondary protein structures, which are crucial for protein stability and function
(Khan & Vihinen, 2007; Yue, Li & Moult, 2005). In 2009, the crystal structure of RPE65
was resolved, revealing details of its active site architecture and oligomeric state (Kiser et
al., 2009). Recent research has identified notable features of the RPE65 protein structure,
including an iron center coordinated by a 4-His/3-Glu motif, a hydrophobic/cationic patch
on the protein’s exterior, an active site cavity, and a dimeric form (Kiser, 2022). Despite
the knowledge that protein secondary structure influences protein function, few studies
have investigated the correlations between secondary structure and missense/phenotypes
in RPE65-mediated IRDs (Lorenz et al., 2008; Thompson et al., 2000).

In this study, we aimed to investigate the relationship between missense variations
in RPE65 and their impact on protein features. We analyzed missense variants in both
pathogenic and normal populations and developed a new prediction model based on
protein structure to calculate the risk of VUS occurring in RPE65 missense variants. We
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also examined the correlations between secondary structure and phenotypes in probands
with RPE65 variants to gain new insights into the role of RPE65 missense variants in the
pathogenicmechanisms ofRPE65-associated IRDs. Our study provides important guidance
for future gene therapy strategies and could ultimately lead to more effective treatment
options for RPE65-associated IRDs.

MATERIALS & METHODS
Data collection
Missense variants of the pathogenic (P), likely pathogenic (LP), and variants of uncertain
significance (VUS) of RPE65 were downloaded from the National Library of Medicine
database (ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/?term=RPE65%5Bgene%5D)
and Human Gene Mutation Database (HGMD, https://www.hgmd.cf.ac.uk/ac/index.php).
Missense variants of the study population were downloaded from the UniProt database
(https://www.uniprot.org/uniprot/Q16518#expression).

Subject
The current study was approved by the Ethics Committee of the Eye and ENT Hospital of
Fudan University and conformed to the tenets of the Declaration of Helsinki (2018021).
Written informed consent was obtained from all participants or their guardians. 21 Chinese
probands were enrolled from July 2018 to March 2022. All of the clinical examinations
were performed by practiced ophthalmologists, and the patients’ medical histories were
recorded. In total, RPs patients with RPE65 variants and their related family members
were enrolled in this retrospective analysis if they had the following qualifications: (1) a
confirmed diagnosis of RP or LCA clinically; (2) compound heterozygous and homozygous
pathogenic or likely pathogenic RPE65 variants that could be related to the phenotype; (3)
no other gene mutations. Patients with the following conditions were excluded from the
study: (1) other coexisting ocular diseases; (2) a history of trauma or surgery in either eye;
(3) complications including epiretinal membranes, retinal detachment, and maculopathy.

Ophthalmic examination
The ophthalmic examinations conducted included visual acuity testing, slit-lamp
biomicroscopy, fundus examination, visual field (VF, Humphrey Visual Field Analyzer,
Carl Zeiss, Dublin, California, USA), and full-field electroretinography (ERG). These
examinations were conducted according to the standards of the International Society for
Clinical Electrophysiology of Vision. Much optic coherence tomography (OCT) data was
missing, and therefore not included in this study. Clinical diagnosis of RP and LCA was
majorly based on history and ocular examination.

Molecular analysis
Molecular testing was performed after extracting genomic DNA from the peripheral blood
using a custom-designed panel (described in our earlier publication; Gao et al., 2019) or
whole-exome sequencing (WES). Exonic and adjacent intronic sequences were captured
and enriched from genomic DNA using the Roche KAPA HyperExome Chip and were run
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on a MgISEQ-2000 sequencer to test mutations. The quality control index of sequencing
data with an average sequencing depth in the target area was ≥180X, and the proportion
of loci with an average sequencing depth >20X in the target area was >95%. The RPE65
variant was confirmed by Sanger sequencing.

Structural biochemistry classification of RPE65
The RPE65 protein structure was downloaded from the PDB database (4f3d, https:
//www.pdbus.org/) and predicted by AlphaFold (Jumper et al., 2021). Combined with
the sequence obtained from molecular analysis, the RPE65 monomer of humans was
modified by Pymol software. Missense mutations were mapped on the RPE65 protein
structure. The degree of conservation of the amino acid substitution was assessed using
a substitution matrix (BLOSUM 62) (Stone, 2003). The RPE65 protein structure was
classified using the following features. Firstly, amino acids were classified into four groups
based on their physicochemical properties: (1) Non-polar amino acid (NPA): Ala, Leu,
Met, Phe, Pro, Tyr, Trp, Ile, Val; (2) Polar neutral amino acid (PNA): Asn, Cys, Gln,
Ser, Thr, Gly; (3) Polar basic amino acid (PBA): Arg, Lys, His; (4) Polar acid amino
acid (PAA): Asp, Glu (Lazar et al., 2022). Missense variants were classified by analyzing
whether their physicochemical properties have changed, which is called an amino acid (AA)
change. Secondly, the RPE65 structure was classified using the classic 3-class secondary
structure: helix, sheet, and loop. Thirdly, the RPE65 structure was identified into 8
motifs, called a PROMOTIF program according to Hutchinson & Thornton (1996) (https:
//www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html).
Finally, the RPE65 structure was classified into four functional features as described byKiser
et al. (2009) (Fig. S1). The location information of each amino acid is shown in Table S1.
The structure was classified into 16 three-dimensional (3D) features with some overlaps,
and every single amino acid site was turned into a digital fingerprint.

Development of a prediction model
The least absolute shrinkage and selection operator (LASSO) method was used to select the
best features of predictive risk factors, and logistic regression analysis was chosen to develop
a prediction model. The odds ratio (OR) and C-index were calculated. All statistical tests
were two-tailed and P < 0.05 was considered a significant difference. The optimal model
was selected to draw a nomogram and a calibration curve. The contact of amino acid
residues of variants was calculated with Pymol software.

Statistical analysis
In order to quantify the burden of pathogenic variation or population variation, a two-sided
chi-square test or Fisher’s exact test was used. Using the R program (version 4.1.3), it was
determined an OR>1 and p< 0.05 indicate that a particular 3D feature is characteristic of
pathogenic variants. Figures were plotted using the R package ‘‘ggplot2’’. The correlation
analysis between clinical characteristics and structural features was completed using
Kendall’s tau b correlation analysis with a two-tailed test, and a P value less than 0.05 in
SPSS was considered significant (version 26.0.0.0).
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RESULTS
Characteristic 3D features of pathogenic and population missense
variants of RPE65
According to the ClinVar and HGMD databases, missense mutations account for 67.58%
and 54.89%, respectively, of all mutations in pathogenic (P and LP) RPE65 variants. This
indicates that missense mutations are the most significant type of mutation in RPE65 genes
(Fig. 1A). After deduplication, we marked 153 pathogenic (P and LP), and 300 population
amino acid variations (as reported in the UniProt database) in the RPE65 monomer
(Fig. 1B). We then calculated the substitution matrix score (BLOSUM 62) between the
two groups and found that the score of population variants was higher than that of
RPE65-IRDs (P < 0.0001) (Fig. 1C). To systematically identify the 3D features associated
with ‘‘pathogenic’’ and ‘‘population’’ variants, we analyzed the 3D sites affected in 153
pathogenic variants (ClinVar and HGMD databases) and 300 general population variants
(UniProt database) from RPE65 genes (Table S2). Among the sixteen features, sheet (OR
= 2.55, P = 0.000), β-sheet (OR = 2.64, P = 0.000), strands (OR = 2.57, P = 0.000),
β-hairpins (OR = 1.78, P = 0.004), Fe2+ (iron center) (OR = 5.73, P = 0.001), and active
site cavity (OR= 2.76, P = 0.006) were significantly correlated with RPE65-associated IRDs
missense variants. Additonally, helix (OR= 0.37, P = 0.009), loop (OR= 0.55, P = 0.003),
helices (OR = 0.42, P = 0.11), and helix-helix interactions (OR = 0.43, P = 0.046) were
also correlated (Fig. 1D).

Development of a prediction model based on the RPE65 protein
structure
LASSO binary logistic regression was utilized to select the top fourteen 3D variables
from the sixteen structures analyzed (Figs. 2A and 2B). A nomogram was subsequently
created from these variables (Fig. 2C). The receiver operating characteristic (ROC) curves
generated demonstrated strong predictive capability with an area under curve (AUC) value
of 0.75131 (Fig. 3A). Calibration curves were generated to evaluate the calibration of the
RPE65-associated IRDs nomogram (Fig. 3B). Next, the risk of RPE65 missense variants
of uncertain significance (VUS) occurring was calculated using a nomogram (Fig. 4A).
The highest risk of VUS occurrence was observed in H241R and R44L, where amino acids
at both mutation sites were altered. H241R influenced the Fe2+ and active site cavity of
functional features. Both missense mutations were located in the β-sheet and in strands of
8-class-secondary structure(Fig. 4B), which were identified as risk factors for pathogenicity
(Fig. 1C). Furthermore, changes in residues were observed. The amino acid site 241 changed
from Histidine (H) to Arginine (R), decreasing its connection to Y239 (Fig. 4C). Similarly,
the residue at position 44R interacted with H68, F469, T525, and F526. In contrast, when
mutated to 44L, the residue was only connected to H68 (Fig. 4D). In summary, these
findings may indicate that both missense mutations are pathogenic or likely pathogenic.

Genotype analyses of patients with RPE65 variants
Twenty-one probands with RPE65 variants (13 males and eight females) were enrolled in
this study (Fig. S2). Missense mutations accounted for 72.4% of the total mutation types
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Figure 1 Association of pathogenic and population missense variations with 16 3D features (a com-
bination of amino acid features, secondary structural, and functional features on protein structure)
for RPE65. (A) The proportion of mutation type of RPE65 accumulated from the ClinVar database. (B)
A total of 153 pathogenic (P and LP), and 300 population amino acid variations overview. Red: RPE65-
IRDs missense variants. Blue: population amino acid variations. Magenta: Fe2+ (iron center). (C) The box-
plot shows the results of the difference between 153 pathogenic (P and LP), and 300 population amino
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ations with the features. The OR> 1 and OR< 1, along with P< 0.05, indicate that the corresponding
feature (y-axis) is enriched in pathogenic (red square) and population (blue square) variants, respectively.
P, pathogenic; LP, likely pathogenic; CI, confidence interval; OR, odds ratio. **** P < 0.0001.

Full-size DOI: 10.7717/peerj.15702/fig-1
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with some overlaps, which were identified in the RPE65 monomer (Fig. 5A). A total of 26
different mutations were observed, including 15 missense, five frameshifts, one nonsense,
and five splicing mutations. Thirteen patients had biallelic mutations, and one patient
(F13) had four allelic mutations, including one missense (Asp482Asn) and three frameshift
mutations (Leu270Hisfs11, Trp271Lysfs11, and Ser269Metfs13) (Table 1). For the purpose
of analysis, patient F8 was selected at random (Fig. 5B). The pathogenic missense mutation
H68Y (His68Tyr) was located in the sheet, β-sheet, strands, and β-hairpins, all of which
are risk factors. In contrast, P419S (Pro419Ser), which is a variant of uncertain significance
(VUS), with a BLOSUM 62 score of−1, was located in the sheet, loop, strands, β-hairpins,
and β-bulges, and its risk score ranged from 0.3 to 0.4, with no change in residue contact
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(Fig. 5C). Thus, it can be concluded that P419S has two risk factors and has a high possibility
of being pathogenic.

The correlation between phenotype and protein structure of
RPE65-mediated IRDs
The correlation between phenotype and protein structure of RPE65-mediated IRDs was
then analyzed. The clinical characteristics of the patients with RPE65-mediated IRDs
are presented in detail in Table 2. In this cohort, we conducted a correlation analysis
between the phenotype (including BCVA, illness duration, BCVA/illness duration, fundus
photography, and ERG) and missense mutations in the protein structure. The results of the
analysis are summarized in Table 3, which indicates that BCVA is strongly correlated with
an amino acid (AA) change (R= 0.515, P < 0.01) and β-hairpins (R= 0.33, P < 0.05).
To eliminate the effects of individual differences, the ratio of BCVA and illness duration
was calculated, where a smaller ratio indicates a relatively faster progression of the disease.
BCVA/illness duration was found to be correlated with AA change (R= 0.340, P < 0.05).
Furthermore, fundus photography and ERG were found to be correlated with AA change,
helix, and helices (P < 0.01).

DISCUSSION
Predicting the 3D structure that a protein will assume based solely on its amino acid
sequence has been a significant challenge in research for over 50 years (Anfinsen, 1973;
Dill et al., 2008). A recent study has revealed the molecular effect of missense variants
by accomplishing a comprehensive characterization of amino acid positions in protein
structures, providing reference for the clinical interpretation of pathogenic and benign
missense variants (Iqbal et al., 2020). Current studies show that most of the known
mutations in the functional region of the RPE65 protein can cause retinal disease (Kiser,
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2022). However, the way in which the protein structure influences disease remains unclear.
In this study, we explored the correlations between the pathogenicity and population
of RPE65 missense variants. Using a relatively large patient sample, we analyzed the
association between pathogenic and population missense variations to RPE65. We found
that the missense variants of RPE65-associated IRDs are related to the sheet and β-sheet,
strands, β-hairpins, iron center, and active site cavity, which may indicate that the missense
variants located in these sites are prone to be pathogenic.

In previous studies, researchers focused on clarifying the frequency and phenotypes
characteristic of different races or distributions (Gao et al., 2021; Li et al., 2020; Lopez-
Rodriguez et al., 2021). However, to date, genotype-phenotype correlations in patients
with RPE65 variants have not been well established (Gao et al., 2021). Recently, a study
analyzed the molecular characterization of the RPE65 cohort and genotype-phenotype
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correlation according to the number of RPE65 loss-of-function (LoF) alleles in the Italian
population (Testa et al., 2022). Yet there are no studies analyzing the correlation between
phenotype and missense variants. In this study, we indicated that the clinical characteristic
was correlated to changes in amino acid residues, helix, helices, and β-hairpins in the
missense mutation of RPE65. An AA change may be one of the factors influencing the
phenotype of RPE65-associated IRDs with missense variants.

Determining whether a genetic variation in a patient is responsible for their disease can
be challenging. Previously, researchers attempted to predict the pathogenicity of RPE65
mutations using an empirical algorithm to estimate pathogenic probability (EPP), which
was validated for certain RPE65 variants (Philp et al., 2009; Stone, 2003). However, this
method may have limited application in many cases. Recently, Cho et al. (2022) analyzed
carrier frequency and expected incidence of RPE65-associated IRDs in East Asians and
Koreans using exome data from the Genome Aggregation Database (gnomAD) and
the Korean Reference Genome Database (KRGDB). In our study, we investigated the
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Table 1 RPE65 variants identified in this cohort of patients.

Nucleotide
change

Amino acid
change

Exon/intron ACMG
category

Patients Mutation
type

Reference

c.1399C>G Pro467Ala E13 VUS F1, F3 Missense Reported
c.272G>A Arg91Gln E4 P F2, F15, F21 Missense Reported
c.271C>T Arg91Trp E4 P F2, F12 Missense Reported
c.1338G>T Arg446Ser E12 P F5, F7 Missense Reported
c.1543C>T Arg515Trp E14 P F6, F14, F20 Missense Reported
c.1444G>A Asp482Asn E13 LP F6, F13 Missense Reported
c.1255C>T Pro419Ser E12 VUS F8 Missense Reported
c.202C>T His68Tyr E3 P F8 Missense Reported
c.1590C>A Phe530Leu E14 LP F9, F16, F17 Missense Reported
c.997G>C Gly333Arg E9 VUS F10 Missense Reported
c.334T>A Cys112Ser E4 VUS F10 Missense Reported
c.93A>G Thr31Thr E2 VUS F15, F21 Synonymous Reported
c.335G>A Cys112Tyr E4 VUS F16 Missense Reported
c.1520C>T Ala507Val E14 VUS F17 Missense Novel
c.1051G>A Glu351Lys E10 VUS F19 Missense Novel
c.493C>T Gln165* E5 P F4 Nonsense Reported
c.837del Phe279Leufs46 E8 LP F11 Frameshift Novel
c.376del Val126*fs1 E5 LP F12 Frameshift Novel
c.808_809insA Leu270Hisfs11 E8 LP F13 Frameshift Novel
c.809_810insGAAG Trp271Lysfs11 E8 LP F13 Frameshift Novel
c.805_806insTGGA Ser269Metfs13 E8 LP F13 Frameshift Novel
c.94+2T>A _ I2 LP F1 Splicing Novel
c.245+4A>G _ I3 LP F18 Splicing Novel
c.354-2A>G _ I5 LP F7 Splicing Novel
c.998+1G>A _ I10 LP F3 Splicing Reported
c.858+1delG _ I9 LP F9 Splicing Novel

Notes.
E, Exon; I, Intron; P, Pathogenic; LP, Likely pathogenic; VUS, variants of uncertain significance; ACMG, The American College of Medical Genetics and Genomics.

association between populations and the pathogenicity of RPE65 missense variants and
developed a prediction model specifically tailored for missense variants of RPE65 based on
its secondary structure and functional features, without considering other missing factors.
We also discussed how to apply this model in clinical practice. For patients whose RPE65
variants are classified as variants of uncertain significance (VUS), we recommend locating
themissense variant and referring to the nomogram to calculate the risk score. If the variant
affects structural features strongly correlated with pathogenicity and receives a high-risk
score, it is reasonable to classify it as pathogenic. But for variants with limited risk factors or
low-risk scores, caution is necessary when estimating their pathogenicity using this model.

This study has certain limitations that should be considered. In cases where patients
exhibit multi-allelic mutations, it is important to ascertain the presence and abundance
of a mutation in the gene locus. Precise quantification of EGFR mutation abundance has
been reported to not only enable better patient selection for EGFR-TKI treatment but
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Table 2 The clinical characteristic of probands with RPE65 variants.

Patients Age(years)/
gender

BCVA
LogMAR R/L

Illness
duration
(years)

Fundus ERG Others Diagnosis

F1 10/F 0/0 10 WYD undetectable dark-adapted Nb RP
F2 6/M 0.60/0.92 6 WYD, BD Extinct Nb LCA
F3 6/M 0.70/0.70 NA None Extinct None LCA
F4 15/M 0.52/0.52 15 WYD, BD Extinct Nb LCA
F5 8/M NA 8 WYD Attenuate Nb LCA
F6 9/M 0.60/0.82 5 None Attenuate Nb RP
F7 28/M 1/3.2 28 BD Extinct Nb RP
F8 6/W 1/1.30 6 WYD Extinct Nb LCA
F9 10/M 0.52/0.40 10 WYD Attenuate Nb LCA
F10 48/W 3.20/3.20 48 BD Extinct Nb; Ny LCA
F11 20/M 0.82/1 15 None Attenuate Nb; Ny LCA
F12 30/M 2.90/2.90 30 NA Extinct Nb; Ny LCA
F13 30/W 0.30/0.40 30 BD Attenuate Nb RP
F14 34/W NA 34 BD Attenuate Nb RP
F15 61/M 3.20/3.20 61 BD NA Nb LCA
F16 25/M 0/0 25 None Attenuate Nb RP
F17 7/M 0.22/0.30 4 None Attenuate Nb RP
F18 52/M 0/0.22 0.5 BD Attenuate None RP
F19 29/M 2.9/2.9 7 BD Extinct Nb RP
F20 47/W 3.20/3.20 47 BD Attenuate Nb RP
F21 66/W 1.30/1.30 66 WYD, BD Extinct Nb LCA

Notes.
F, Family; M, man; W, women; NA, missing value; Nb, night blindness; Ny, nystagmus; R, right eye; L, left eye; M, male; F, female; BCVA, best corrected visual acu-
ity; LP (light perception), 3 LogMAR (3.2); HM (Hand Motion), 2 LogMAR (2.9); WYD, white or white-yellow dots; PD, Bone-spicule-like pigment; deposits; RP, retinitis
pigmentosa; LCA, Leber congenital amaurosis.

Table 3 The correlation between clinical characteristics and structural biochemistry in RPE65 mis-
sense variants.

AA change Helix Helices β-hairpins

BCVA 0.515** 0.234 0.234 0.330*

illness duration 0.156 0.187 0.187 −0.062
BCVA/illness duration 0.340* 0.145 0.145 0.186
Fundus 0.487** 0.426** 0.426** 0.152
ERG 0.387* 0.361* 0.361* 0.151

Notes.
Kendall’s tau b correlation analysis.
*Correlation is significant at the 0.05 level (2-tailed).
**Correlation is significant at the 0.01 level (2-tailed).

also to facilitate the development of more effective treatment strategies for patients with
a low abundance of EGFR mutations (Zhou et al., 2011). In our current model, the focus
is limited to the protein structure at the mutation site, as information regarding mutation
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abundance is unavailable. This limitation may be a contributing factor to the suboptimal
predictive accuracy observed in our study.

CONCLUSION
In this study, we investigated the relationship between pathogenic and population missense
variations of RPE65 and protein 3D features and developed a novel prediction model
(AUC = 0.7531). Furthermore, we analyzed the correlation between phenotype and
protein structure in a Chinese cohort of patients with RPE65 missense variants. We
developed a complementarymethod presenting a novel approach to predicting the potential
pathogenicity of RPE65 missense variants based on protein structure. Our findings may
provide valuable insights for the accurate diagnosis of RPE65-mutated inherited retinal
diseases.
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