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ABSTRACT
Background: The progression of complex diseases sometimes undergoes a drastic
critical transition, at which the biological system abruptly shifts from a relatively
healthy state (before-transition stage) to a disease state (after-transition stage).
Searching for such a critical transition or critical state is crucial to provide timely and
effective scientific treatment to patients. However, in most conditions where only a
small sample size of clinical data is available, resulting in failure when detecting the
critical states of complex diseases, particularly only single-sample data.
Methods: In this study, different from traditional methods that require multiple
samples at each time, a model-free computational method, single-sample Markov
flow entropy (sMFE), provides a solution to the identification problem of critical
states/pre-disease states of complex diseases, solely based on a single-sample.
Our proposed method was employed to characterize the dynamic changes of
complex diseases from the perspective of network entropy.
Results: The proposed approach was verified by unmistakably identifying the critical
state just before the occurrence of disease deterioration for four tumor datasets from
The Cancer Genome Atlas (TCGA) database. In addition, two new prognostic
biomarkers, optimistic sMFE (O-sMFE) and pessimistic sMFE (P-sMFE)
biomarkers, were identified by our method and enable the prognosis evaluation of
tumors.
Conclusions: The proposed method has shown its capability to accurately detect
pre-disease states of four cancers and provide two novel prognostic biomarkers,
O-sMFE and P-sMFE biomarkers, to facilitate the personalized prognosis of patients.
This is a remarkable achievement that could have a major impact on the diagnosis
and treatment of complex diseases.

Subjects Bioinformatics, Computational Biology, Oncology
Keywords Critical state, Single-sample Markov flow entropy (sMFE), Critical transition, Dynamic
network biomarker (DNB), Prognostic biomarker

INTRODUCTION
The time evolution of a complex biological system is sometimes viewed as a
time-dependent nonlinear dynamic system (Gorban et al., 2021; Liu, Chen & Chen, 2020),
with the abrupt transition seen as the phase shift at a bifurcation point (Scheffer et al.,
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2009). Therefore, from the viewpoint of dynamic systems, we can roughly model the
progression of complex diseases (such as cancer, COVID-19, diabetes, etc.) as three distinct
stages or states (Fig. 1A): (1) a before-transition state, a stable state with low fluctuation; (2)
a critical/pre-disease state, an unstable state before the start of qualitative changes, high
fluctuation (according to DNB theory (Chen et al., 2012), the variance of gene expression
increases dramatically), sensitive to perturbation; (3) an after-transition/disease state,
another stable state with low fluctuation after the qualitative transition. The pre-disease
state is unstable and can be reverted to the before-transition state with appropriate
intervention, while the after-transition/disease state is a stable state with high resilience
and is nearly irreversible (Chen et al., 2012; Liu et al., 2014). Therefore, it is essential to
identify the early warning signs of the critical transition during disease progression and
recognize the pre-disease state, so that timely medical intervention can be administered to
prevent or delay the progression of the disease.

Recently, the dynamic network biomarker (DNB) has been proposed to qualitatively
describe the critical state of a biological system (Chen et al., 2019). Specifically, DNB theory
uses differential equation theory to derive that systems exhibit three statistical properties
when they reach the bifurcation point, allowing us to measure this dynamic difference at
the molecular network level, not just gene expression. The proposal of DNB theory
provides a basic framework for identifying the pre-disease states of complex diseases (Chen
et al., 2016). For instance, successfully detect the pre-disease state of metabolic syndromes
(Koizumi et al., 2019; Liu et al., 2013), and respiratory viral infections (Gao et al., 2022),
identify immune checkpoint blockades (Lesterhuis et al., 2017), and assess cell fate
commitment (Peng et al., 2022; Zhong et al., 2022). However, most developed methods are
based on multiple samples, so multiple samples are required at each time, which limits
their application in most real-world cases where only a single sample is available.

Specifically, inspired by the previous study (Guo et al., 2021a, 2021b), this study
proposes a model-free computational approach, single-sample Markov flow entropy
(sMFE), which utilizes the inferred direct interaction network and the DNB concept to
characterize the perturbation of a single sample, thus detecting the early-warning signal of
critical transition during a complex disease process. Precisely, given reference samples
from the normal cohort, sMFE is calculated for each single sample against the directed
network, constructed based on rewiring the protein–protein interaction (PPI) network by
gene networks inference using projection and lagged regression (GNIPLR) method
(Zhang, Chang & Liu, 2021) (Fig. 1B). Two novel insights were provided in this
computational method. On the one hand, by eliminating indirect interactions between
genes, the established directed network more realistically reflects the molecular
interactions in the biological network, and thus dynamic changes during complex disease
progression can be more accurately captured. On the other hand, at the single-sample
level, sMFE provides a reliable method for quantifying the pre-disease state or critical point
of complex disease (Fig. 1C).
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Figure 1 The schematic of the sMFE method for detecting the critical state of complex diseases. (A) The schematic diagram of the evolution of
complex diseases. In dynamical systems theory, the evolution of disease can generally be divided into three stages or states, namely a relatively
normal (before-transition) state, a pre-disease (critical) state, and a disease (after-transition) state. Among them, the relatively normal and the
pre-disease states are reversible, while the disease state is irreversible. In addition, the expression of each molecular network in the before-transition
and after-transition states is low-fluctuating and highly volatile in the critical state; (B) single-sample Markov flow entropy (sMFE) algorithm. Given
a number of reference samples that can be obtained from normal cohort, and a directed network that used the GNIPLR (Gene networks inference
using projection and lagged regression) method to orient the PPI network. Specifically, both the reference samples and the single-sample to be
determined were mapped to this directed network, which can be divided into local networks. sMFE is calculated on a local network based on a single
sample of any individual. For each local network centered on gene k, the local sMFE score is calculated; (C) during the evolution of complex diseases,
the sMFE score (Eq. (7)) suddenly increases in the pre-disease state. This mutation in the sMFE indicates a complex biological system’s tipping point
(or critical state). Full-size DOI: 10.7717/peerj.15695/fig-1
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To test the effectiveness of sMFE, four different tumor datasets from TCGA, including
esophageal carcinoma (ESCA), colon adenocarcinoma (COAD), kidney renal clear cell
carcinoma (KIRC), lung adenocarcinoma (LUAD), were used to validate our algorithm.
In all datasets, the critical states identified by sMFE preceded severe disease deterioration,
i.e., a significant alteration in sMFE score indicated an early warning of the critical
transition to disease deterioration. By searching the literature, we found that the following
clinical characteristics during the deterioration of diseases (e.g., cancer) occur, and distant
metastasis occurs in the later stage of cancer development, which is difficult to recover by
external treatment and can be regarded as the basis for disease deterioration. Specifically,
the critical state for ESCA was identified in stage IIIA disease before distant metastasis, and
stage IIB was identified as the critical state for COAD before lymph node metastasis; stage
II was identified critical state for KIRC before the tumor migrates to form distant
metastasis, and that of LUAD was identified in stage IIIB disease before the tumor cells
invaded distant tissues or organs. In addition, we further analyze the signaling gene and
propose two types of biomarkers, i.e., optimistic sMFE (O-sMFE) and pessimistic sMFE
(P-sMFE) biomarkers (see Fig. S1 for the specific procedure), combined with survival
analysis. Statistically, O-sMFE biomarkers were associated with good prognosis, while
P-sMFE biomarkers were linked to poor prognosis. Furthermore, our results were
validated by functional and pathway enrichment analyses.

MATERIALS AND METHODS
Theoretical background
The DNB theory (Chen et al., 2012; Liu, Aihara & Chen, 2013) is proposed to visualize the
evolution of complex diseases into three periods: a normal (before-transition) state, a
pre-disease (critical) state, and a disease (after-transition) state. The normal state is stable
and resilient to perturbations, while the pre-disease state is unstable and reversible with
appropriate intervention. The disease state is also stable and resilient, but is almost
irreversible (Litt et al., 2001; Liu, Chen & Chen, 2020;McSharry, Smith & Tarassenko, 2003;
Venegas et al., 2005). Moreover, when a complex system is near the critical point, a
dominant group of DNB biomolecules can be identified, based on observed data, that
satisfy the following three conditions (Chen et al., 2012a):

� The Pearson correlation coefficient (PCCin) between any pair of members in the DNB
group rapidly increases;

� The Pearson correlation coefficient (PCCout) between one member of the DNB group
and any other non-DNB member rapidly decreases;

� The standard deviation (SDin) or coefficient of variation for any member in the DNB
group drastically increases.

Our DNB theory suggests that phase transitions are characterized by a set of highly
fluctuating and highly correlated features/variables, which implies an imminent transition
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to the disease state. Therefore, we can quantify the tipping points based on these three
conditions, provide early-warning signals of disease deterioration, and then determine the
biomolecular dominant group to make up DNB members. These three conditions are the
basis of DNB theory and have many applications in disease progression and biological
processes to predict its critical state (Liu, Aihara & Chen, 2013; Liu, Chen & Chen, 2020).

Markov chain entropy (MCE) (Shi et al., 2018) was constructed to represent the
potential of samples containing scRNA-Seq or bulk RNA-Seq information. This method
requires the normalized RNA Seq profile and a defined interaction network between the
genes.

Specifically, given an interaction network G with nv nodes and nE edges, and the
transition probability matrix P ¼ pij

� �
, where i; j ¼ 1; . . . ; nE. Where pij ¼ 0 if there is no

edge between two different nodes i and j. Then the Markov chain entropy based on
network G is defined as

MCE ¼ �
X
ði;jÞ2�E

pipij log pipij
� �

(1)

where pi was node i’s expression normalized to [0,1]. In this article, MCE was split into
each node to form Markov flow entropy (MFE) (Fig. 1B). For centered gene gk, the MFE is
defined as

MFEðgkÞ ¼ �
XM
j¼1

pipij log pipij
� �

(2)

where M denotes the number of the 1st-order neighbors ðgk1; . . . ; gkMÞ of gk, pij denotes the
transition probability from gk to gkj , and pipij means the probability transmitted from gk to
gkj along the directed edge.

Algorithm to identify the tipping point based on sMFE
Reference samples (healthy or relatively healthy cells; tumor-adjacent samples here) and
only one disease sample were required in the sMFE method to identify the tipping point
with the following algorithm (Fig. 1B).

(Step 1) Constructing a global directed network NG by mapping the genes to a
protein–protein interaction (PPI) network from STRING (http://string-db.org)
(Szklarczyk et al., 2015), with a confidence level of 0.800. Discard isolated nodes that do not
have any links with other nodes. The direct interaction network was constructed based on
rewiring the protein–protein interaction (PPI) network by GNIPLR (gene networks
inference using projection and lagged regression) (Zhang, Chang & Liu, 2021) method.
Tumor-adjacent samples were used to infer the gene regulatory network.

(Step 2) Mapping data into the global network NG constructed in the previous step to
form expression matrix. Mapping datasets of four cancers downloaded from the TCGA
database to the global network NG, then the gene expression matrix formed for further
analysis.
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(Step 3) Calculating the local Markov flow entropy (MFE) for each gene. Specifically, we
extract each gene gk’s local network Nk (k = 1, 2, …, L) from the global network NG

(Fig. 1B), the number of the local network is L, and gk1; . . . ; g
k
M

� �
are the 1st-order

neighbors of gk. Then, based on n reference samples, the formula for calculating local
Markov flow entropy MFEn

kðtÞ is

MFEn
kðtÞ ¼ �

XM
i¼1

xnkp
n
ki log xnkp

n
ki

� �
; (3)

with

pnkiðtÞ ¼
PCCn gki ðtÞ; gkðtÞ

� ��� ��
PM
j¼0

PCCn gkj ðtÞ; gkðtÞ
� ����

���
; (4)

where the constant M represents the count of neighbors in the local network Nk and
PCCn gki ðtÞ; gkðtÞ

� �
represents the Pearson correlation coefficient (PCC) between the

center gene gk and its 1-st neighbor gki based on n reference samples at time point t.
Specifically, gki¼ gk if j ¼ 0. xnk is the mean of the canter gene gk’s normalized expression
based on n reference samples at time point t.

(Step 4) Calculating the differential MFE called sMFEkðtÞ. Under n + 1 mixed samples,
where a single sample from an individual was added to n reference samples at time point t,
the same with the prior step, MFEnþ1

k ðtÞ is calculated, i.e.,

MFEnþ1
k ðtÞ ¼ �

XM
i¼1

xnþ1
k pnþ1

ki log xnþ1
k pnþ1

ki

� �
(5)

Then, the sMFEkðtÞ is calculated as

sMFEkðtÞ ¼ 1
logM

SDn gkðtÞ� � �MFEnt
k ðtÞ � SDnþ1 gkðtÞ� �þMFEnþ1

k ðtÞ�� ��; (6)

where SDnðgkðtÞÞ and SDnþ1ðgkðtÞÞ represent the standard deviation of the gene
expression for the center gene gk based on n reference samples and n + 1 mixed samples at
time point t, respectively.

(Step 5) The fifth step is to calculate the global single-sample Markov flow entropy
sMFEðtÞ, i.e.,

sMFEðtÞ ¼ 1
Q

XQ

k¼1

sMFEkðtÞ; (7)

where constant Q represents the count of top 5% genes with highest local sMFE.
Furthermore, t-test was applied to test if the identified critical state significantly different
with the other states. The alternative state was viewed as critical state if P < 0.05 (see
Supplemental Information). From the formula of sMFE, we can see that when the
interaction between the center node and the 1-st neighbor node converges (that is, the
transition probability is the same), the sMFE value reaches the maximum value.
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Conversely, when the interaction between the center node and one 1-st neighbor node is
extremely strong (the transition probability equals 1), the sMFE value reaches the
minimum. From DNB theory, it can know that in the sample at the critical point period,
the interaction between DNB molecules and their neighboring nodes will increase
extremely so that it can form a significant difference from the reference sample, and sMFE
can measure this difference, and when the sample reaches the critical point, the
significance increases so that it can warn the disease evolution process. According to DNB
theory (Chen et al., 2012; Liu, Aihara & Chen, 2013), when the system approaches the
critical point, the sMFE score can effectively characterize the fluctuation of the network,
and thus can be regarded as an early warning signal prior to critical deterioration.

Data processing and functional analysis
The Cancer Genome Atlas (TCGA) database (GDC (cancer.gov)) was used to download
four unrelated clinical tumor datasets: esophageal carcinoma (ESCA), colon
adenocarcinoma (COAD), (kidney renal clear cell carcinoma (KIRC)), and lung
adenocarcinoma (LUAD). RNA-seq data from tumor and tumor-adjacent samples, as well
as clinical information, were included in these datasets. Then we classified the tumor
samples into different stages based on clinical (stage) information downloaded from
TCGA, samples lacking stage information were discarded, and Table S1 provided the full
clinical staging information.

The molecular global template network was constructed using the steps shown in
Fig. 1A.

The first step in constructing the molecular global template network was to download
the protein–protein interaction networks for Homo sapiens from STRING (http://string-
db.org). This data was then used to generate a global template network, which was
composed of nodes representing proteins and edges representing interactions between
proteins. All interaction used for discussion was picked with high confidence (higher than
0.8). Nodes that are not connected to any other nodes are removed from the PPI network.

Second, the direct interaction network was constructed based on rewiring the
protein–protein interaction (PPI) network by GNIPLR (gene networks inference using
projection and lagged regression) (Zhang, Chang & Liu, 2021) method. Tumor-adjacent
samples were used to infer the gene regulatory network (GRN; directed network) for
subsequent analysis (detailed information for how to choose adjustable parameters in
GNIPLR were added in Supplemental Information).

In the end, the directed network, created in prior step, was adapted to map the gene
expression of each RNA-seq dataset to form a molecular network for further analysis.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database Mapper tool (KEGG
Mapper Color) and the Database for Annotation, Visualization and Integrated Discovery
(DAVID) Functional Annotation Tool (DAVID: Functional Annotation Tools (ncifcrf.
gov)) were used to conduct the enrichment analysis. These statistical analysis carried in the
article was done using R Software v 4.0.3 (R: The R Project for Statistical Computing
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(r-project.org)), and the R Survival package was used to make Cox survival analysis.
The visualization results and network analysis are implemented using Cytoscape software
(www.cytoscape.org).

RESULTS
Identifying the critical transition points of four cancers with sMFE
The sMFE algorithm was used to identify the critical transition points of four cancers
(ESCA, COAD, KIRC, and LUAD) from TCGA datasets. These datasets contain much
clinical information, in which doctors divide cancer patients into different stages according
to the size of the tumor diameter, such as KIRC samples were divided into four stages (I, II,
III, and IV), while LUAD samples were divided into seven stages (IA, IB, IIA, IIB, IIIA,
IIIB, and IV). The tumor-adjacent (TA) samples were deemed relatively normal and used
as a reference for each cancer when calculating sMFE according to the proposed algorithm.
The average sMFE score curve for each cancer stage was calculated to reflect the dynamic
change and was shown in Figs. 2A–2D. Based on DNB theory, the critical state during
disease progression can be reflected by the tipping point of the sMFE score curve (Fig. 1A).
Kaplan–Meier (log-rank) survival analysis was performed on the prognosis of
before-transition and after-transition samples (Figs. 2E–2H) to further validate the
identified critical state.

As seen in Fig. 2A (yellow curve), the average sMFE score of ESCA increased
significantly (P = 0.0077) at stage IIIA, suggesting an upcoming critical transition after
stage IIIA.; that is, the tumor migrates and invades to form distant metastasis at stage IIIB
and ultimately cause distant metastasis (stage IV) (Dong et al., 2022). While at the six-time
points, there was little significant difference among the average gene expression of
differentially expressed genes (DEGs) (the gray curve in Fig. 2A). Of note, samples taken
before and after the transition point (Stage IIIA) had significantly different survival curves
(P < 0.0001; Fig. 2E), and patients taken after the transition point (Stage IIIA) had shorter
survival times than those before the transition.

When applied to COAD, a significant change (P = 0.0045; Fig. 2B) in sMFE was
detected around stage IIB, suggesting lymph node metastasis and tumor invasion of other
adjacent organs in stage III (Hari et al., 2013). As presented in gray in Fig. 2B, dynamic
changes (P = 0.16) in the mean gene expression of DEGs were detected in stage IIIB and
therefore failed to provide timely early-warning signals of the critical transition. Moreover,
it is worth noting that survival analysis showed that the survival time of samples taken
before the transition point (Stage IIB) was significantly different than that taken after the
transition point (Stage IIB) (P < 0.0001; Fig. 2F). Furthermore, patients from after the
identified critical state (Stage IIB) had shorter survival times than those from before the
transition.

For KIRC dataset, a drastic increase (P = 0.014) in the sMFE score was observed in stage
II (transition point; Fig. 2C), indicating an upcoming critical transition into the disease
state (stage III/IV), where the tumor migrates to form distant metastasis at stage III (Gu &
Zhao, 2019). In terms of mean gene expression, dynamic changes (P = 0.25; the gray curve
in Fig. 2C) were detected in stage III and therefore failed to provide timely early-warning
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signals of the critical transition. Furthermore, survival analysis demonstrated that survival
curves had a significant difference (P < 0.0001) between stage I~II and stage III~IV KIRC
samples according to clinical information (Fig. 2G). In addition, the survival time of
patients after stage II was significantly shorter than before stage II.

The red curve presented the LUAD data in Fig. 2D, the drastic increase of sMFE
occurred at stage IIIB (P = 0.0027), indicating an upcoming critical transition after stage
IIIB; that is, stage IV was characterized by a distant metastasis process, in which the tumor
cells invaded distant tissues or organs (Chiang & Massagué, 2008). However, the gray
curve in Fig. 2D shows little significant increase in the mean expression of DEGs occurring
among the six-time points. Of note, the survival curves of samples taken before and after
the transition point (stage IIIB) tend to show a significantly different (P = 0.0024; Fig. 2H).
In addition, patients with stage after stage IIIB had shorter survival times than those
before. As shown, sMFE is an effective approach to identify the critical state of cancers.

The dynamic evolution of gene regulatory networks
To validate the critical states identified by sMFE, we further examined them from the
network perspective. First, for each sample, the top 5% of genes with the highest sMFE
scores were considered the signaling genes. Dynamic network biomarkers (DNBs) consist
of common signaling genes in samples in the identified critical state. In DNB theory, these
DNB molecules exhibit statistical properties when the system reaches a critical point.
Biologically, they may be involved in important biological reaction processes during
disease progression. These DNB molecules were mapped to the STRING database to form
a connected PPI network, and their dynamic changes in the process of disease evolution
were studied from the network level.

The landscape of the local sMFE score for ESCA data was depicted in Fig. 3A. It was
worth noting that the local sMFE scores of the signaling genes showed an abruptly
increased collaborative manner around stage IIIA. Furthermore, in the network structure,
a noticeable change occurred at stage IIIA (Fig. 3E), indicating an impending critical
transition (Dong et al., 2022), which spontaneously come together with the experimental
results. When applied to the COAD dataset, the landscape of the local sMFE score was
shown in Fig. 3B. It was discovered that the peak of local sMFE scores for signaling genes
appeared at stage IIB. Furthermore, there was a significant change in the network structure
at stage IIB (Fig. 3F), indicating lymph node metastasis and tumor invasion of other
adjacent organs in stage III (Hari et al., 2013). As shown in Fig. 3C, for KIRC, showing that
the peak local sMFE of signaling genes appeared at stage II. Moreover, in the PPI network,
a drastic change occurred in stage II (Fig. 3G), where the tumor gradually migrates to form
distant metastasis at stage III (Gu & Zhao, 2019). Results for LUAD in Fig. 3D, the local
sMFE score landscape peaked in stage IIIB and there was a significant change in the
network structure of stage IIIB (Fig. 3H), i.e., stage IV was characterized by a distant
metastasis process, in which the tumor cells invaded distant tissues or organs (Chiang &
Massagué, 2008). In addition, Fig. S2 provided results of the dynamic network changes
across all stages.
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Prognostic biomarkers of tumors in the sMFE method
In order to identify biomarkers that were effective in predicting prognoses. Indeed,
signaling genes could be categorized into two types of molecules for prognostic prediction
as common biomarkers for all samples: those for samples with poor prognosis, termed
pessimistic sMFE (P-sMFE) biomarkers; and those with good prognosis, termed optimistic
sMFE (O-sMFE) biomarkers. Furthermore, those two types of biomarkers are not only the
signaling genes, pessimistic/optimistic biomarkers, but also the non-differentially
expressed genes usually screened out by most researchers in the first step. More details
about the identification method are provided in Fig. S1.

The meaning of these two biomarkers can also be understood in this way, samples of
optimistic sMFE biomarkers that appeared in their signaling gene had better-predicted
prognoses than those without; in other words, these samples were expected to survive
longer than others. Conversely, samples with pessimistic sMFE biomarkers in their
signaling genes had lower predicted prognoses than those without; that is, these samples
were expected to survive for a shorter time than other samples. A total of four genes were
identified as optimistic sMFE biomarkers for ESCA (Fig. 4A and Table S2), while six genes
were identified as pessimistic sMFE biomarkers (Fig. 4A and Table S2). Specifically,
survival times of samples with O-sMFE biomarkers SCYL3 and TRPS1 (P = 0.016 and
0.036 respectively) were longer than those without, as shown in Fig. 4A. Conversely,
samples with P-sMFE biomarkers EPCAM and POLK (P = 0.0057 and 0.0064, respectively)
had shorter survival times than those without.

In the analysis for COAD, AGR2 (P = 0.044; Fig. 4B) and PCM1 (P = 0.046; Fig. 4B)
were identified as O-SMFE biomarkers, and it’s seen the survival time of these identified
samples tend to be longer than that of other samples according to survival curve analysis
(Fig. 4B). Additionally, ATP1A3 (P < 0.0001; Fig. 4B) and PARL (P = 0.00093; Fig. 4B) were
identified as P-SMFE biomarkers, survival analysis in Fig. 4B showed the survival time of
these identified samples tend to be shorter than that of other samples. When applied to
KIRC dataset, samples with O-sMFE biomarkers MAML2 and RNF5 (P = 0.0058 and
0.0034, respectively) had better prognoses, with longer survival times, compared to other
samples. Conversely, samples with P-sMFE biomarkers BST1 and VPS39 (P = 0.0085 and
0.00011, respectively) had worse prognoses, with shorter median survival times of almost
5 years. As shown in Fig. 4D, for LUAD, ACOX2 (P = 0.021; Fig. 4D) and KHDRBS3
(P = 0.027; Fig. 4D) were identified as O-SMFE biomarkers and FLNC (P = 0.0021; Fig. 4D)
and FZD1 (P = 0.0091; Fig. 4D) were identified as P-SMFE biomarkers.

We propose a method to uncover novel biomarkers, drug targets and key regulators,
which are usually overlooked by traditional studies due to their non-differential
expression. In addition, all identified optimistic/pessimistic sMFE biomarkers for the four
cancers were supplemented in Table S2.

Functional analysis of common signaling genes
Common signaling genes for the four cancers were extracted for functional analysis
(Fig. 5A). As shown in Fig. 5B, not only were there occurred rich intersections among
signaling genes from different cancers, but their biological functions were also closely

Liu et al. (2023), PeerJ, DOI 10.7717/peerj.15695 11/19

http://dx.doi.org/10.7717/peerj.15695/supp-1
http://dx.doi.org/10.7717/peerj.15695/supp-6
http://dx.doi.org/10.7717/peerj.15695/supp-6
http://dx.doi.org/10.7717/peerj.15695/supp-6
http://dx.doi.org/10.7717/peerj.15695
https://peerj.com/


related. In addition, we performed the KEGG pathway enrichment analysis of common
signaling genes, where their samples located in tipping points, to explore the biological
processes in which they participated. For these four tumor datasets, as shown in Figs.
5C–5F, these signaling genes were significantly associated with cancer-associated
pathways. For example the cell cycle (Hartwell & Kastan, 1994), PI3K-Akt signaling
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pathway (Martini et al., 2014), spliceosome (Yang, Beutler & Zhang, 2022), Wnt signaling
pathway (Zhou et al., 2022). In addition, Figs. 5G and 5H illustrated that common
signaling genes were mainly enriched in the above-mentioned pathway, which suggests
that these common signaling genes may serve an important contributor to cancer
development and progression. For instance, Ras-related C3 botulinum toxin substrate 2
(RAC2) promotes abnormal proliferation of quiescent cells by enhanced JUNB expression
via the MAL-SRF pathway (Pei et al., 2018), PIK3CA-mutation was reported related to
metastatic breast cancer (Higgins et al., 2012;Mosele et al., 2020), Protein tyrosine kinase 2
(PTK2) was a novel therapeutic target to overcome acquired EGFR-TKI resistance in
non-small cell lung cancer and as a driver of radioresistance in HPV-negative head and
neck cancerPTK2/FAK and radioresistance (Skinner et al., 2016; Tong et al., 2019), RhoA is
associated with invasion and poor prognosis in colorectal cancer (Jeong et al., 2016).

DISCUSSION
It is crucial to hunt for the critical state of complex biological systems. Suppose an early
warning signal of the critical state can be provided before the disease deterioration. In that
case, appropriate time can be provided to prevent or at least prepare for a catastrophic
deterioration. However, small sample sizes are a challenge in biological studies and clinical
practice, especially in cancer, and often lead to model errors and biases in the analysis.
To overcome these problems when identifying transition points or critical states that
precede disease states, the single-sample Markov flow entropy (sMFE) method was
proposed in this study. Its effectiveness and reliability have been tested across multiple
diseases.

In this study, we developed a computational method, single-sample Markov flow
entropy (sMFE), to explore the dynamic changes in combined effects on molecular
associations and thus characterize the perturbation of a single sample close to the tipping
point. In addition, functional enrichment analysis revealed that the common signaling
genes for four cancer datasets are involved in significant biological processes or pathways,
for instance, the cell cycle (Hartwell & Kastan, 1994), PI3K-Akt signaling pathway
(Martini et al., 2014), spliceosome (Yang, Beutler & Zhang, 2022), Wnt signaling pathway
(Zhou et al., 2022) (Fig. 5). Further analysis revealed two distinct types of biomarkers
derived from the signaling genes (Liu et al., 2019), i.e., pessimistic sMFE (P-sMFE) and
optimistic sMFE (O-sMfE) biomarkers. Furthermore, those two types of biomarkers not
only the signaling genes, pessimistic/optimistic biomarkers, but also the non-differentially
expressed genes and are therefore usually screened out by most researchers in the first step,
so they can provide novel insight for further study into the molecular mechanisms of how
tumor onset and disease deterioration work.

In a word, the sMFE approach has several important advantages. First, this method is a
model-free data-driven and single-sample-based algorithm, which is conducive to the
development of personalized medicine. Second, our method was based on the direct
interaction network, constructed from an a priori knowledge-based PPI network by
GNIPLR, which is different from the past studies that mainly focused on undirected
networks. Third, the sMFE method provided two distinct types of biomarkers applicable
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for identifying novel biomarkers unlike any previous one, drug targets in drug
development and prognostic indicators for prognostic analysis.

CONCLUSIONS
The sMFE method provides a solution to the identification problem of critical states/pre-
disease states of complex diseases solely based on a single sample, making it suitable for
real-world clinical data. In addition to effectively identifying the critical states or transition
points of the four cancers, our method provided two new prognostic biomarkers,
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optimistic sMFE (O-sMFE) and pessimistic sMFE (P-sMFE) biomarkers. Therefore, this
method has great practical application potential in the fields of personalized medicine,
identification of molecular mechanisms of disease progression, and preventive medicine.

LIST OF ABBREVIATIONS
sMFE Single-sample Markov flow entropy

DNB The Dynamical Network Biomarker

LUAD Lung adenocarcinoma

COAD Colon adenocarcinoma

KIRC Kidney renal clear cell carcinoma

ESCA Esophageal carcinoma

TCGA The Cancer Genome Atlas

SD Standard deviation

PCC Pearson correlation coefficient

signaling genes The top 5% of genes with the highest sMFE score

O-sMFE biomarker Optimistic sMFE biomarker

P-sMFE biomarker Pessimistic sMFE biomarker

DEGs Differentially expressed genes
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